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ABSTRACT 

The irecent development of more sophisticated sensors for remote sensing 

systems enables the measurement of radiation in many more spectral intervals than 

previous possible. An example of this technology is the AVlRlS system., which collects 

image data in 220 bands. The increased dimensionality of such hyperspectral data 

provides a challenge to the current techniques for analyzing such data. 

Our experience in three dimensional space tends to rr~islead our intuition of 

geometrical and statistical properties in high dimensional space, properties that must 

guide our choices in the data analysis process. Using Euclidean and Cartesian 

geometry, high dimensional space properties are investigated and their implication for 

high dimensional data and its analysis are studied in order to illuminate the 

differences between conventional spaces and hyperdimensional space. 

Supervised classification techniques use labeled samples in order to train the 

classifier. Usually the number of such samples is limited, and as the number of bands 

available increases, this limitation becomes more severe, and can become dominate 

over the projected added value of having the additional bands 'available. This 

suggests the need for reducing the dimensionality via a preprocessing method which 

takes into consideration high dimensional space properties. Such reduction should 

enable th'e estimation of feature extraction parameters to be niore accurate. Using a 

technique referred to as Projection Pursuit, two parametric pro'jection pursuit 

algorithms have been developed: Parallel Parametric Projection Pursuit and 

Sequential Parametric Projection Pursuit. In the present work both methods are 

presented, and an iterative procedure of the Sequential Approach that mitigates the 

computation time problem is shown. 

Parametric Projection Pursuit' methods requires the use ,of a numerical 

optimization algorithm. A method to estimate an initial value that can rrlore quickly lead 

to the global maximum is presented for projection pursuit using Bhattacharyya 

distance ;3s the Projection Index. This method leads also to a high dimensional version 

of a feature selection algorithm, which requires significantly less computation than the 

normal procedure. 





1. INTRODUCTION 

1 .I Background 

Multispectral image data consist of a set of measurements containing 

information from the scene at a number of different spectral wavelengths. Remote 

Sensing rnultispectral data may include measurements from ultraviolet, visible near, 

middle, and thermal infrared and rr~icrowave ranges of wavelengths. The different 

ranges of wavelengths characterize the interaction mechar'lism between 

electromagnetic radiation and the materials illuminated. The reflected energy 

measured by the sensors depends on such properties as pigmentation, moisture 

content and cellular structure of vegetation, mineral and nioisture content of soil, the 

level of sedimentation of water, and the heat capacity of material surfaces among 

others [I]. On the basis that every material will have a different spectra11 response, one 

expects to be able to classify the scene into different materials or regions. This type of 

process is used, for example, by agricultural analysts in the classification of crops. The 

purpose of acquiring remote sensing image data is to identify and classify different 

surface rr~aterials by their spatial and spectral distribution of energy [2]. 

In the present research, multispectral data will be modeled as rnultivariate data 

distributions, and this will allow us to use the theory of stochastic or random processes 

[3]. On the basis of this representation, multivariate statistical analysis will be used to 

produce quantitative results. Specifically, we will use statistical pattern recognition to 

categorize each elementary observation into one of a limited number of discrete pre- 

specified classes. The pattern recognition and classification model contains three 

parts: a transducer, a feature extractor and a classifier [4] (see Figure 1 . I) .  The 

transducer is the sensor that produces the multispectral image da.ta. The feature 

extractor extracts relevant information of the input data. The classifier assigns the 

observation to one of the possible classes. The classification performs a partition in the 

feature space into different regions and assigns the observations to each one of the 

classes depending in the region of the feature space where they are localized. That 



partition vvill be developed with the objective of minimizing the probability of error in 

the process of classification. We expect that each class will have different statistical 

properties, in their spectral response for a particular scene. As a consequence we will 

be able to separate them into different classes. 

0bjec:t 

Fig. 1 -1. Classical pattern recognition and classification model. 

, 

1.2 Statement of the Problem 

The recent development of more sophisticated remote sensing systems enables 

the measurement of radiation in many more spectral intervals than possible 

previously. An exarr~ple of this technology is the AVlRlS system, which collects image 

data in 220 bands. As the number of dimensions of high spectral resolution data 

increases;, the capability to detect more detailed classes should also increase. 

Although, with the increment of the number of features, the cost and complexity of the 

feature extractor and classifier increase, it is expected that the classification accuracy 

will increase as well. In statistical pattern recognition, supervised classification 

techniques use labeled samples available for training the classifier and estimates its 

performance. Even if the classifier has good performance on the traini~ng samples that 

is not guaranteed in new samples. That is the reason the labeled sarr~ples have been 

divided in two independent sets: one for learning (training samples) and the other for 

estimatin~g its classification accuracy (test samples). Usually the number of such 

samples is limited. It has been observe frequently in practice that b,eyond a certain 

point, if the number of training samples per feature is small, the addition of more 

dimensions leads to a worst performance in terms of a penalty in the test samples 

classification accuracy. Hughes proved that the basic source of the problem is the 

limited number of training samples [5]. The penalty becomes more serious in high 

dimensional cases. In other terms, as the number of dimensions and c:lasses increase 

with the number of training samples being fixed the problem get worse. That is why the 

optimum number of features for classification is limited by the nurnber of training 

samples [6]. In order to avoid what has been named the Hughes phenomena, there 

had beert some empirical and analytical research in the adequate plroportion of the 

number of training samples per nurr~ber of features. Fukunaga [7] proved that the 

Transducer.* Feature Extraction .+ Classifier +Decision 
, A 



required liumber of training samples is linearly related to the dimensionality for a 

linear classifier and to the square of the dimensionality for a quadratic classifier. In 

terms of nonparametric classifiers the situation is even worse. It has been estimated 

that as tlie number of dimensions increases the training sample:; size need to 

increases exponentially in order to have an effective estimate of !:he multivariate 

densities needed to perform a nonparametric classification [8] [9]. These limitations are 

what had been called the curse of dimensionality [4, pp. 951. That condition had 

restricted severely the practical applications of statistical pattern recognition 

procedures in high dimensional data. 

The previous discussion shows the need to reduce the dimerlsionality of the 

data. A nurr~ber of techniques for feature extraction have been developed to reduce 

dimensionality. Among these techniques are Principal Components, Discriminant 

Analysis, and Decision Boundary Feature Extraction [ I  01. These techniques estimate 

the statistics at full dimensionality in order to extract relevant features for classification. 

If the nurriber of training samples is not adequately large the estimatioln of parameters 

in high dimensional data will not be accurate enough. As a result,, the estimated 

features nnay not be reliable. The use of a data preprocessing algorithm before the use 

of any feature extraction algorithm had been proposed in order to reduce the 

dimensionality [ I  I ] .  In the present work a different preprocessirlg algorithm is 

proposed,, It will produce a linear combination of features that reduces dimensionality, 

but by performing the computation at a lower dimensional space, consequently 

avoiding what had been named the curse of dimensionality. That reduction enables 

the estirrlation of parameters to be more accurate for feature extraction with 

classification purposes (see Figure 2). 

High Dimensional Dat 

7- 
Further Dimension Reduction 

Feature Extraction w m  

Fig. 1.2. Preprocessing of high dimensional data. 



The preprocessing method developed in the present work will take into account 

a priori, problem specific information. It will be developed after co~nsidering some 

characteristics of high dimensional space geometry and statistics of multispectral data. 

Its objective is to linearly combines features, at the same time preserving the distance 

between classes. 

1.3 Thesis Organization 

Our familiarity with a three spatial dimensions world is based on our 

experience. At the same time we are not capable of imagining a high dimensional 

space in order to develop some intuition of its differences and similarities with the 

known three dimensional Euclidean space. Still we can grasp some insights of high 

dimensional spaces with the use of some mathematical tools. Chapter 2 will study 

some patterns of high dimensional space and their implication for hiigh dimensional 

data and its analysis. That will provide the rationale, the need, and the requisites of a 

preprocessing block. 

In chapter 3 a study and evaluation of different feature extraction techniques will 

be done. It will show the development of the algorithm that will accomplish the 

objective of the preprocessing block fulfilling the requisites established in chapter 2. 

That algorithm is based on a technique developed in statistics named Projection 

Pursuit. Based on the fact that the algorithm will do its computation at a lower 

dimensional subspace, it will require the use of a numerical optimization method. 

Chapter 4 will show a further development that has the objective olf avoiding local 

optima. FYinally chapter 5 will provide a summary of the conclusions and suggestions 

for further work. Experimental results for different classifiers and feature extraction 

methods are provided throughout the thesis. 



2. HIGH DIMENSIONAL SPACE PROPERTIE,S 

2.1 Introduction 

The complexity of dimensionality has been known for more than three decades, 

and its impact varies from one field to another. In combinatorial optimi~~ation over many 

dimensions, it is seen as an exponential growth of the computationa.l effort with the 

number of dimensions. In statistics, it manifests itself as a problem with parameter or 

density estimation due to the paucity of data. The negative effect of this paucity results 

from sorrle geometrical, statistical and asymptotical properties of high dimensional 

feature space. These characteristics exhibit surprising behavior of data in higher 

dimensions. 

There are many assumptions that we make about characteristics of lower 

dimensional spaces based on ol.lr experience in three dimensional Euclidean space. 

There is a conceptual barrier that makes it difficult to have proper intuition of the 

properties of high dimensional space and its consequences in high dimensional data 

behavior. Most of the assumptions that are important for statistical purposes we tend to 

relate to our three dimensional space intuition, for example, as to where the 

concentration of volume is of such figures as cubes, spheres, and ellipsoids or where 

the data concentration is in known density function families such as normal and 

uniform. Other important perceptions that are relevant for statistical analysis are, for 

example, how the diagonals relate to the coordinates, the number of labeled samples 

required for s~~pervised classification, the assumption of normality in data, and the 

importance of mean and covariance difference in the process of discrimination among 

different statistical classes. In the next section some characteristics of high 

dimensional space will be studied, and their impact in supervised classification data 

analysis will be discussed. Most of these properties do not fit our experience in three 

dimensio'nal Euclidean space as mentioned before. 



2.2 Geometrical, Statistical And Asymptotical Properties 

In this section we illustrate some unusual or unexpected hyperspace 

characteriistics including a proof and discussion. These illustrations #are intended to 

show that higher dimensional space is quite different from the dimensional space with 

which we are familiar. 

As dimen:sionality increases: 

A. The volume of a hypercube concentrates in the comers [8, pp. 291. 

It has been shown [12] that the volume of the hypersphere of radius r and dimension d is 

given by the equation: 

and that the volume of a hypercube in [-r, rid is given by the equation: 

V, ( r )  = volume - cube = (2r)d (2.2) 

The fraction of the volume of a hypersphere inscribed in a hypercube is: 

where d is the number of dimensions. We see in Figure 2.1 how (2.3) decreases as the 

dimension;Jity increases. 

dimension d 

Fig. 2.1. Fractional volume of a hypersphere inscribed in a hypercube as a 
function of dimensionality. 

Note that Lim,,, f,, = 0 which implies that the volume of the hypercube is increasingly 

concentrated in the corners as d increases. 



B.  The volzime of a hypersphere concentrates in an outside shell [8, pp. 2911 [13]. 

The fraction of the volume of an outside shell of a sphere of radius I?-E inscribed in a 

sphere of radius r is: 

In Figure 2.2 we can observe, for the case E = r/5, how as the dimension increases the 

volume concentr ,ates in the outside shell. 
1 

I I I I  I I 1 1 1 1 1  

Fig. 2. 
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dimension d 

.2. Volume of a hypersphere contained in the outside sh 
function of dimensionality. 

Note that lim,,, fd2 = 1, Y E  > 0, implying that most of the volume of a hypersphere is 

concentrated in an outside shell. 

C. The volume of a hyperellipsoid concentrates in an outside shell. 

Here the previous result will be generalized to a hyperellipsoid. Let the 

equation of a hyperellipsoid in ddimensions be written as: 

The vol~~rne is calculated by the equation [I 2, pp. 361: 

' 1 2 1  
The volurne of a hyperellipsoid defined by the equation: 

where 0 :5 6, < Ai, V i ,  is calculated by: 



The fraction of the volume of V,(hi - 6 , )  inscribed in the volume V,(hi) is: 
d 

Let ymin = min(?), then 

Using the fact that f d ,  2 0 it is concluded that lim f d ,  = 0. 
d - m  

The characteristics previously mentioned have two important consequences for 

high dimensional data that appear immediately. The first one is that high dimensional 

space is mostly empty, which implies that multivariate data in ~d is usually in a lower 

dimensiorial structure. As a consequence high dimensional data can be projected to a 

lower dimensional subspace without losing significant information in terms of 

separability among the different statistical classes. The second consequence of the 

foregoing, is that normally distributed data will have a tendency to concentrate in the 

tails; similarly, uniforrr~ly distributed data will be more likely to be lcollected in the 

corners, making density estimation more difficult. Local neighborhoods are almost 

surely enipty, requiring the bandwidth of estimation to be large and producing the 

effect of losing detailed density estimation. 

S~~ppor t  for this tendency can be found in the statistical behavior of normally 

and uniforrr~ly distributed multivariate data at high dimensionality. It is expected that as 

the dimensionality increases the data will concentrate in an outside shell. As the 

number of dimensions increases that shell will increase its distance from the origin as 

well. 

To show this specific multivariate data behavior, an experiment was developed. 

Multivariate normal and uniform distributed data were generated. 'The normal and 

uniform variables are independent identically distributed sarr~ples from the 

distributions N(0,I) and U(- I l l ) ,  respectively. Figures 2.3 and 2.4 illustrate the 

histograms of random variables, the distance from the zero coordinate and its square, 

that are flunctions of normal or uniform vectors at different number of dimensions. 



Normal, dimensions = 1 

300 1 7  

Normal, dimensions = 10 
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Fig. 2.3. Histograms of functions of Normally distributed random variables. 



Uniform, dimensions = 1 

Uniform, dimensions = 220 
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Fig. 2.4. Histograms of functions of Uniformly distributed random variables. 
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Frorri Figure 2.3, the data increasingly concentrate in an outside shell with the 

growth of dimensions. It can be observed that the concentration of points moves out 

from zero coordinates as the dimensionality increments. 

These experiments show how the means and the standard deviations are 

functions of the number of dimensions. As the dimensionality incr'eases the data 

concentrates in an outside shell. The mean and standard deviation of two random 

variables: 

are computed. These variables are the distance and the square of the! distance of the 

random vectors. The values of the parameters and the histograms of the random 

variables are shown in Figure 2.3 and 2.4 for normal and uniform distribution of the 

data. As the dimensionality increases the distance from the zero coordinate of both 

random variables increases as well. These results show that the data have a tendency 

to concentrate in an outside shell and how the shell's distance from the zero 

coordinate increases with the increment of the number of dimensions. 

Note that (2.12) has a chi-square distribution with d degrees of freedom when the 

xi's are samples from the N(0,l) distribution. The mean and variance of Rare: E(R) = 

d, Var(R) = 2d [14]. This conclusion supports the previous thesis. 

Undler these circumstances it would be difficult to implement any density 

estimation procedure and to obtain accurate results. Generally nonparametric 

approaches will have even greater problems with high dimensional data. 

D. The diagonals are nearly orthogonal to all coordinate axis [8, pp. 27-3 11 [13]. 

The cosine of the angle between any diagonal vector and a Euclidean coordinate axis is: 

Figure 2,.5 illustrates how the angle between the diagonal and the coordinates, 

theta(d), approaches 900 with increases in dimensionality. 

Note that lim,,,cos(8,)= 0, which implies that in high dimensional space the 

diagonals have a tendency to become orthogonals to the Euclidean coordinates. 

This result is important because the projection of any cluster onto any diagonal, 

e.g., by averaging features, could destroy information contained in multispectral data. 



In order to explain this, let adjag be any diagonal in a d dimensional space. Let ac i  be 

the ith coordinate of that space. Any point in the space can be represented by the form: 

The projection of P over adjag, Pdiag is: 

i=l 

But as d increases aci
Tadhg - 0 which implies that Pdhg = 0 .  As a consequence Pdjag is 

being projected to the zero coordinate, losing information about its location at the d 

dimensiorial space. 

dimension d 
Fig. 2.5. Angle (in degrees) between a diagonal and a Euclidean coordinate 

vs. dimensionality. 

E .  The required number of labeled samples for supen/ised classification increases as 

a functior,~ of dimensionality. 

Fukunaga [7] proves that the required number of training sarrlples is linearly 

related to the dimensionality for a linear classifier and to the square of the 

dimensionality for a quadratic classifier. That fact is very relevant, especially since 

experiments have demonstrated that there are circumstances wher'e second order 

statistics are more relevant than first order statistics in discriminating among classes in 

high dimensional data [I  51. In terms of nonparametric classifiers the situation is even 



more severe. It has been estimated that as the number of dimensions increases, the 

sample size needs to increase exponentially in order to have an effective estimate of 

multivariate densities [8, pp 208-21 21 [9]. 

It is to be expected that high dimensional data contains more information. At the 

same time the above characteristics tell us that it is difficult with the current techniques, 

which are usually based on computations at full dimensionality, Ito extract such 

information unless the available labeled data is substantial. A concrete example of this 

is the so-called Hughes phenomena. Hughes proved that with a liniited number of 

training samples there is a penalty in classification accuracy as the nurnber of features 

increases beyond some point [5]. 

F. For most high dimensional data sets', low linear projections have the tendency to be 

normal, or a combination of normal distributions, as the dimension increases. 

Th'at is a significant characteristic of high dimensional data that is quite relevant 

to its analysis. It has been proved [ I  61 [ I  71 that as the dimensionality tends to infinity, 

lower dirrlensional linear projections will approach a normality model with probability 

approaching one (see Figure 2.6). Normality in this case implies a normal or a 

combination of normal distributions. 

Hilgh Dimensional Linear Projection Low Dimensi'onal Data 
(d - dimensions) Y = A ' X  

X Normal as d -o Infinity 

Fig. 2.6. The tendency of lower dimensional projections to be Normal. 

Several experiments will illustrate this with simulated and real data. The 

procedure in these experiments is to project the data from a high dimensional space to 

a one dimensional subspace. We examine the behavior of the projected data as the 

number of dimensions in the original high dimensional space increases from one to 

ten and finally to one hundred. The method of projecting the data is to multiply it with a 

normal vector with random angles from the coordinates. A histogram is used to 

observe the data distribution. A normal density function is plotted with the histogram to 

compare the results to normal. 

Figure 2.7 shows the case of generated data from a uniform distribution. As the 

number of dimensions increases in the original space ,the projected data's histogram 

has a tendency to be normal. Figure 2.8 shows the results of the same experiment with 

real AVIRIS data with one soybeans class. Note that the results are similar to the 

generated data. 



-1.5 -1 -0.5 0 0.5 1 

Fig. 2.7. Generated data: One class with Uniform distribution. 

Fig. 2.8. AVIRIS Multispectral data: One class, soybeans. 

These results tempt us to expect that the data can be assume to be a combination 

of normal distributions in the projected subspace without any problem. Other 

experiments show that a combination of normal distributions where each one 

represenits a different statistical class could collapse into one normal distribution. That 



will imply loss of information. Figure 2.9 and 2.10 show the result of repeating the 

experime~its for a two class problem. Both show the risk of damaging data projecting it 

into one riormal distribution loosing separability and information. In the case of Figure 

2.1 0 we have real AVlRlS data with a corn and a soybeans class. 

u 
-40 -20 0 20 40 60 80 

Fig. 2.9. Generated data: Two classes with Normal distributions. 

Fig. 2.10. AVIRIS Multispectral data: Two classes, corn and soybeans. 



In all the cases above we can see the advantage of developing an algorithm that 

will estim~ate the projection directions that separate the explicitly defined classes, 

doing the computations at a lower dimensional space. The vectors that it computes will 

separate the classes, and at the same time, the explicitly defined classes will behave 

asymptotiically more like a normal distribution. The assumption of normality will be 

better gro'unded in the projected SI-lbspace than at full dimensionality. 

2.3 Asy~nptotical First And Second Order Statistics Properties 

Lee and Landgrebe [I51 performed an experiment where they classified some 

high dimensional data in order to see the relative role that first and second order 

statistics played. To accomplish this objective the experiment compared three 

classifier!;. The first was an ML classification which uses class mean and class 

covariancie information. The second was an ML classifier constrained to use only 

covariance differences among classes. 'The last one was a min~imum distance 

classifier that uses only first order statistics. Figure 2.1 1 shows their result. 

In that particular experiment as the number of dimension grew the role played by 

the secolid order statistics increased in discriminating among classes. The authors 

gave a rational explanation for that particular characteristic based on th~e fact that there 

are circumstances where tliere is a high correlation between adjacent bands and that 

most data are distributed along a few major components producing a hyperellipsoid 

shaped clata distribution. Under these circumstances the shape of the distribution 

given by ithe second order statistics becomes extremely important. 

Hen? a more general basis will be given for the role of the first arid second order 

statistics in hyperspectral data where adjacent bands could be correlated in any way. 

The results will be based on the asymptotic behavior of high dimen~~ional data. This 

will aid in the understanding of the conditions required for the predorrlinance of either 

,first order or second order statistics in the discrimination among the sitatistical classes 

in high dimensional space. 



Number of Features - (a) Using covariance and mean differences - (b) Using covariance differences only 

--+- (c) Using mean differences only 

Fig. 2.11. Performance comparison of Normal ML, Normal ML with zer,o 
mean data, and the Minimum Distance classifier, each with 12 

multitemporal classes. 

It is expected that, as the number of features increases, the inforrillation contained 

in multispectral data increases as well. In supervised classification that increment of 

information is translated to the number of statistical classes and their separability. 

There are different measures of distance and separability among statistical classes in 

use. The choice here will be Bhattacharyya distance. It is used beca~~se it provides a 

bound of classification accuracy. In addition it takes into account first order and second 

order statistics. Bhattacharyya distance is the sum of two component:;, one based on 

mean differences and the other based on covariance differences. 

The Bha1:tacharyya distance under the assumption of normality is c,omputed by the 

equation: 



The mean difference component of the Bhattacharyya distance is: 

and the covariance difference component of the Bhattacharyya distance is: 

(2.17) 

In order to see how Bhattacharyya distance and its mean and covariance 

compone~its can aid in the understanding of the role of first and second order statistics, 

two experiment were developed. The first one has conditions where second order 

statistics are more relevant in discriminating among the c1asse.s. The second 

experiment has conditions for the predominance of first order statistics. 

Experiment 1 

In this experiment data was generated for two statistical classes. Both classes 

belong to normal distributions with different means and covariances in a 15 

dimensiorial space. Each class has 500 points. Their respective parameters are: 

M,=[o  0 0 0 0 ..- 0 0 0 0IT 

The data was classified according to three classifiers. The first was the ML 

classifier, the second was the ML (ML Cov) classifier constrained to use only 

covariance difference, and the third was minimum distance classifier (Min Dist). This 

enables us to have similar conditions to Lee and Landgrebe's experiment. The results 

is shown in Figure 2.12. 
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Fig. 2.12. Performance comparison of Normal ML, Normal ML with zero 
mean data, and Minimum Distance classifier. Two generated classes. 

Observe how the results reserr~ble Lee and Landgrebe's results. In order to have 

an understanding of the roles played by first and second order sta1:istics the mean 

(Bhatt Mean) and covariance (Bhatt Cov) components of Bhattacharyya distance and 

its sum were computed and are shown in Figure 2.13. Their ratio of Bhatt Mean / Bhatt 

Cov was calculated and sliown in Figure 2.14. 

- Bhatl Mean 

.C Bhatl Cov 

I - Total Dist I 

Number of Features 

Fig. 2.13. Bhattacharyya distance and its mean and covariance components. 
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Fig. 2.14. Ratio of Bhattacharyya distance mean component over the 
covariance component. 

Both figures show that there is a relation between second order statistics 

predominance and Bhatt Cov relevance. As the number of dimensior~s increases the 

ratio Bhatt Mean / Bhatt Cov decreases significantly and ML Cov classifier becomes 

more relevant than Min Dist. That shows that if as the dimensionality increases the 

ratio Bhatt Mean / Bhatt Cov decreases then second order statistics are more relevant 

in high dimensional data even when that could not be the case in low dimensionality. 

Experiment 2 

This experiment is similar to the previous one. The difference is in the fact that first 

order statistics are predominant in this case. The parameters of th'e two statistical 

classes are: 

M,=[O 0 0 0 0 ... 0 0 0 0IT 



The classification results are shown in Figure 2.15. Observe ,that Min Dist 

classifier becomes more accurate than Min Cov after six dimensions. 

The mean (Bhatt Mean) and covariance (Bhatt Cov) c:omponents of 

Bhattacharyya distance and their sum were computed and are shown in Figure 2.16. 

Their ratio of Bhatt Cov / Bhatt Mean was calculated and shown in Figure 2.17. As the 

number of dimensions increases the ratio Bhatt Cov / Bhatt Mean decreases showing 

that first order statistics are more relevant in the classification of data. 

- Total Dist L A  

Number of Features 

Fig. 2.16. Bhattacharyya distance and its mean and ,ariance components. 
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Fig. 2.17. Ratio of Bhattacharyya distance covariance component over tlhe 
mean component. 

The previous results show how the predominance of the mean or covariance 

Bhattacharyya distance components relates directly with first or second order statistics 

relevance in terms of classification accuracy. In the present work both components will 

be compilted analytically and used to calculated upper bounds that will be functions of 

the number of dimensions. These bounds will be calculated for the case where the 

mean difference plays a predominant role and for the case where the covariance 

difference became predominant. Then the limits of the number of dimensions 

increment will be taken enabling one to understand the behavior of high dimensional 

data under such circumstances. That is the reason for dividing all the calculations into 

two cases: covariance predominance and mean predominance. 

2.3.1 Case 1: Covariance difference as the dominant role in statistical class 
separ(ability 

Assume a two class problem where without loss of generality the first and second 

order statistics are: 

Observe that every two covariance matrices can be simultaneously diagonalized 

to obtain the previous covariance matrices form [18]. That will enable us to have less 

complicated calculations without losing generality. 

Under the conditions that: 

(a) a; E (a,,, a,,), where a,, > 0, and at least there exist an a; such that ai # 1. 



(b) E,,, = m a  (liil) be S U C ~  that E,, = 0 .  
V i ~ ( k + l . d )  

k 
(c) k =: f ( d )  3 lim- = 0 ,  (as an example V A  > O,d = k'"") 

d+- d 

(d) E;' E (E,,, Em,),Vi E (1,k) and Em < - (to see the validity of this last 

as:;umption, see Appendix B). 

Then as d increases the covariance contribution will dominate the Bhattacharyya 

distance. 

Proof: 

The means contribution to the Bhattacharyya distance can be written as (see 

Observe ithat amin minimizes ( 1  + a,) ,  V i .  Then 

d - k  2 

4 a 2 ( 1  + amin) Em, 

Note that 
1 1 -CE: 5-CE max = Emax 
k i=1 k i=l 

with the c:onsequence that 

- - k d - k  2 

i r ~ " ~ m a x  4a2(l+a,,,) Emax + 4a
2
(1  + a,,) Em, 

The covariances contribution to the Bhattacharyya distance can be written as (see 

Appendix A): 

1 + a, 
Let y be the argument that minimizes - , V i ,  subject to the constrain that y # 1 .  

2 f i  

That argument must exist, based on the fact that a, E (am,,am,), where amin > 0 and 

that 3 i  3 cri # 1 .  Then 

Define a bound as 

where: 



The quantity @,,(d) is an upper bound of @ ( a i ,  q , d )  and it can be rewritten as 

k d - k  2 
- Em, + - 
d 

Emax 

am, ( d )  = 

202(1  + a m i n ) l n [ s ]  

Finally taking the limit of d 

By the ass~lmption that E,, = 0 ,  then lim @,,(d) = 0 .  AS a consequence 
d+m 

lim @(ai, E i ,  d )  = 0 (2.30) 
d + -  

In conclusion, second order statistics and tlie hyper-ellipsoids shapes will play a 

more important role in discriminating among the classes than the means and the 

hyper-ellipsoids positions relative to one another. 

Discussilon 

This proof only requires that a,, - amin > 0 (differences in variances). It does not 

depend on how much this difference should be. The quantity maxleil can be as large 

as the physical devices permit. Also it only requires that k = f ( d )  3 limd + ( k / d )  = 0, but it 

does not constrain the rate. In other terms, in low dimensional data the differences in 

covariance can be small and k = d and in terms of the mean such difference can be 

very larg~e. In that case first order statistics will be more relevalnt in providing 

information than second order statistics in such low dimensional subs'paces. But if as 

the dimension increases, the rate at which covariance informatior1 (even a small 

amount of information in low dimensional subspace) grows faster (nothing is said 

about ho,w much faster) than the rate at which mean information grows (even large 

amounts of differences) then there will be a point where the total covariances 

information plays a more important role in discriminating among the classes than the 

means information. 

2.3.2 Case 2: Mean differences as dominant in statistical class separability 



Assume a two class problem, where without loss of generakty, the first and 

second o~rder statistics are: 

Under the assumptions that: 

(a) a, 15 ( a  ,,,, a,,) where 0 < a,, < a,,, < m,Vi E (1,k) .  

(b) Lii cr ( 1  - S, l+  S),Vi E ( k  + 1,d) where 6 = 0 .  

(c) 2 Emin > 0 ,  V i  E ( 1 ,  d )  . 

(d) l i ,!(k/d) = 0 ,  (as an example V A  > 0,d = k'"')). 
d+= 

As d increases, the means differences will dominate the Bhattacharyya distance. 

Proof: 

The means contribution to the Bhattacharyya distance can be written as (see 

Appendix A) 

at the sarne time it can be written as: 

d - k  1 

V[Z 
Note that the maximum of ( 1  + &,) = ( 2  + 6 )  and that the maximum of ( 1  i- ai)  = ( 1  + a,,). 

As a consequence 

A d - k  ] (2.31) 
'M"M= 402(2 + 6 )  d - k i=k+,  

Observe that 
1 " 

E,, 2 - C & ; , V m  
m i=, 

This impl~ies that: 

The covariance's contribution to the Bhattacharyya distance can be written as (see 

Appendix: A): 



Let a be the argument that maximizes ( I +  a i ) / ( 2 & ) , b ' i ~  (1,k) .  Let & be the 

argument that maxirr~ize (1 + h i ) / ( 2 r )  a; , b ' i ~ ( k + l , d ) ,  where & € ( I - 6 , 1 + 6 ) .  Then 

k l + a  d - k  1 + 6  
=-In  - 

P C  5 Pcmm 2 ( 26] + T ~ n [ z ]  

Define a bound 

PC < Pcmm - 
P ( a i , & , , d )  = - - - - Pm,,(d) (2.40) 

Ph4 Phfmin 

Substituting equations, tlie upper bound Pm,(d) will be calculated as: 

d - k  

Taking th'e limit as d tends to infinity: 

Observe that because 6 = 0 then & = 1 and lim P,,(d) = 0 .  As a consequence 
d +- 

lim ~ ( a , ,  E ~ ,  d )  = 0 (2.43) 
d + -  

In conclusion then, for the conditions specified in this case, first order statistics 

and the hyper-ellipsoids positions relative to one another will play a more important 

role than second order statistics and the hyperellipsoid shape. 

Discussion 

This proof only requires that E,? 2 Emin > 0,b'i E (1 ,d) .  It does not require a limitation 

on how large Emin should be. a,, could be as large as the physical devises will 

allow. Also it requires that limd +, ( k / d ) = o ,  but it does not constraiin how the limit 

should approach zero. Even if in low dimensional data, where k = d ,  the covariance 

difference is very large and dominates over the means, if as the dimensionality 

increases, the rate at which means differences (even small differences) grows faster 

than the covariance one, tlieli there will be a point where the total mean differences 

will provide more information for classes discrimination than covariances differences. 



2.4 High Dimensional Characteristics Implications for Supervised Cla:ssification 

Based on the characteristics of high dimensional data that the volume of 

hypercubes have a tendency to concentrates in the corners, and in a hyperellipsoid in 

an outsidle shell, it is apparent that high dimensional space is mostly empty, and 

multivaria.te data is usually in a lower dimensional structure. As a consequence it is 

possible to reduce the dimensionality without losing significant information and 

separability. Due to the difficulties of density estimation in nonparametric approaches, 

a parametric version of data analysis algorithms maybe expected to provide better 

performa~ice where only limited numbers of labeled sarr~ples are avai~lable to provide 

the needed a priori information. 

The increased number of labeled samples required for supervised classification 

as the d~tmensionality increases presents a problem to current feature extraction 

algorithrr~s where computation is done at full dimensionality, e.g. Principal 

Components, Discriminant Analysis and Decision Boundary Feature Extraction [ I  01. A 

new method is required that, instead of doing the computation at f1.111 dimensionality, it 

is done in a lower dimensional subspace. Performing the computation in a lower 

dimensio~nal subspace that is a result of a linear projection from the original high 

dimensional space will make the assumption of normality better grounded in reality, 

giving a better parameter estimation, and better classification accuracy. 

A preprocessing method of high dimensional data based on such characteristics 

has been developed based on a technique called Projectiorr Pursuit. The 

preprocessing method is called Parametric Projection Pursuit [ I  91 [20]. 

Parametric Projection Pursuit reduces the dimensionality of the data maintaining 

as much information as possible by optimizing a Projection Index that is a measure of 

separability. The projection index that is used is the minimum Bhattacharyya distance 

among the classes, taking in consideration first and second order characteristics. The 

calculatio~n is performed in the lower dimensional subspace where the data is to be 

projectedl. Such preprocessing is used before a feature extractiorl algorithm and 

classification process as shown in Figure 2.18. 
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Fig. 2.1 8. Classification of high dimensional data including preprocessing of 
high dimensional data. 

In Figure 2.18 'the different feature spaces have been named with Greek letters in 

order to alvoid confusion. @ is the original high dimensional space. T is the subspace 

resulting from a class-conditional linear projection from @ using a. preprocessing 

algorithm, e.g. Parametric Projection Pursuit. Y is the result of a feature extraction 

method. Y could be projected directly from Q, or, if preprocessing is used, it is 

projected from T. Finally L2 is a one dimensional space that is a result of classification 

of data from Y space. Note that the ,three procedures, preprocessing, feature 

extraction and classification use labeled samples as a priori informatiom. 

2.5 Concclusion 

In this section we will consider some implications of what has been discussed for 

supervised classification. In terms of parameter estimation, a large number of samples 

are requi~ed to make a given estimation in multispectral data to adequate precision. In 

a nonparametric approach, the number of samples required to satisfactorily estimate 

the density is even greater. Both kinds of estimations confront the lproblem of high 

dimensional space characteristics. As a consequence, it is desirable to project the 

data to a lower dimensional space where high-dimensional geometric: characteristics 

and the Hughes phenomena are reduced. Commonly used techriiques such as 

Principal Components, Discriminant Analysis, and Decision Boundary Feature 

Extraction have the disadvantage of requiring computations at full climensionality in 

which the required number of labeled samples is very large. The procedures use 

estimated statistics that are not necessarily accurate. Another problem is the 



assumption of normality. Nothing guarantees that at full dimensionality, that model fits 

well. 

It has been shown that high dimensional spaces are mostly empty, indicating that 

the data structures involve exist primarily in a subspace. The problem is which 

subspace it is to be found in is situation-specific. Thus the goal is to reduce the 

dimensionality of the data to the right subspace without losing separability information. 

The approach is to make the computations in a lower dimensional space, i.e. in r 
instead of iD, where the projected data produce a maximally separable structure and 

which, in turn, avoids the problem of dimensionality in the face of the limited number of 

training samples. Further, a linear projection to a lower dimensional subspace will 

make the assumption of normality in the r subspace more suitable tha.n in the original 

iD. In such a lower dimensional subspace any method used for fe4ature extraction 

could be used before a final classification of data, even those that have the 

assumption of normality. 

In remote sensing data analysis the best projection would certainly be the one 

that separates data into different meaningful clusters that are exhaustive, separable, 

and of ir~formation value [2, pp. 3401. A measure of separability among different 

statistical classes is thus needed. Based on what has been studied, it should take into 

consider~ltion First order and second order statistics. Methods used in low dimensional 

subspaces to see which one could predominate, e.g. histograms or alny other density 

estimation procedure, will not necessarily work in high dimensional data as section 2.3 

shows. 





3. PROJECTION PURSUIT, DIMENSIONAL REDUCTION AND 
FEATURE EXTRACTION 

3.1 lntrolduction 

In ,the last chapter it was shown why it is desirable to reduce thle dimensionality 

of the multispectral data in a preprocessing step. As indicated in Figure 2.18 this 

preprocessing should be before the use of a feature extraction algorithm in order to 

make the analysis and the estimation of parameters more effective. This is due to the 

limited n ~ ~ m b e r  of training samples, the Hughes Phenomenon and the geometrical and 

statistical properties of data in high dimensional space. It was shown that care should 

be taken with .the assurrlption of normality and that the preprocessing method should 

avoid doi~ng the computation in the high dimensional space. Instead, the computations 

should be done in a lower dimensional space to produce better parameter estimation. 

Dimensional reduction is a process of projectivg the data from an original space 

to a lower-dimensional subspace having more effective features. In statistical pattern 

recognition effective features are those most capable of preserving class separability 

[18, pp. 4411. It is well known that class separability among distribu,tion!; is preserved in 

any nons,ingular linear transformation. What is required is a transformation in which 

full separability among distributions is preserved as much as possible in a lower 

dimensional subspace. That transformation must reduce the dimensionality by 

searchinsg for the subspace that preserves class separability as m ~ ~ c h  as possible. 

lrrlplied in the previous statement is the requirement for optimizing with respect to a 

measure of class separability. This measure of class separability should consider both 

first and second order statistics. 

3.2 Feature Extraction Algorithm Overview 

In order to understand what characteristics a preprocessing allgorithm should 

have (second block in Figure 2.18) we studied the properties of high diniensional data 

(first block). In the present section a survey of commonly founcl dimensionality 



reduction algorithms will be presented. These procedures have ,traditionally been 

used as feature extraction methods in relatively low dimensional data. One objective 

here is ,to study their properties and see if they fulfill the requirement that 

preprocessing must have in high dimensional data. Another is to see how a feature 

extraction method should relate to a preprocessing block. 

3.2.1 Principal Components 

This method assumes that the distribution takes the form of a single 

hyperellipsoid such that its shape and dimensionality can be determined by the mean 

vector and covariance matrix of the distribution [8, pp. 2061. This can be done by 

observing the eigenvalues of the positive definite covariance matrix, C, of the total 

multispectral data set. Writing C in its spectral representation we have A = [a1 a2 ... ad] 

and: 

The ails iare the eigenvectors corresponding to the eigenvalues hi. The eigenvalues 

are ordered as: h, 2 h, 2...2 h, > 0 .  The method comprises a linear transformation of 

the original data X into a new space Y, where Yi = aiT(xyx). The ai are then selected 

to reduce the dimensionality by choosing a d' < d such that: 

5 ni 
i=-> Pw (3.3) 

5 ni 
i= l  

where pqh is some arbitrarily selected proportion of the total cumulative eigenvalue 

sum. 

A problem with this method is that it treats the data as if it is a si~ngle distribution. 

Our goal is to divide this data into different distributions that represent different 

statistical classes, thus our requirement is to base this division upon class separability, 



a factor that this method ignores. As a consequence this method could merge different 

classes necessarily harming classification accuracy. Though the complutation of C is at 

full dimer~sionality this may not be a limitation in this case, since all data, not just the 

training samples may be used. 

3.2.2 Feature subset selection 

Some authors have proposed algorithms by which a subset of ,features can be 

chosen ,from the original set [2, pp. 1641. This requires a compisrison between 

statistical distance measurements among the classes. The features ,that provide the 

largest statistical separability will be chosen. Among the measurements used for 

statistical separability are Divergence, Bhattacharyya, Jeffreys-Matusita, Cramer-Van 

Mises, Kierfer-Wolfowitz, Kolmogorov Variational, KuIIback-Liebler Numbers, 

Mahalanobis, Samuels-Bachi, and Swain-Fu [21]. 

One type of feature s~~bse t  selection, proposed by [22], uses an automatic band 

selection algorithm based on Markov chain ,theory. Applying this statistical theory and 

a quality criterion, the algorithm selects a near optimal set of bands to be used for 

classification purposes. The quality criterion is based on interclass dlistance or error 

rate estimation. 

A problem with feature subset selection is that it considers a subset of all linear 

combinations. Consequently it can be optimum in that subset only. In order that a 

feature selection algorithm be optimal, the search for a subset of features has to be 

exhaustive [23]. The number of combinations of bands increases exponentially as the 

dimensionality increases and, as a result, an exhaustive search dema~nds a very large 

number olf computations. 

3.2.3 Discriminant Analysis 

In terms of classification using the Bayes classifier, Bayes error becomes the 

class separability criterion to measure feature effectiveness [18, pp. ,4411. The major 

problem with this criterion is that a closed mathematical expression is available for 

only a few special cases. Even when it exists, the calculation of Baye:; error demands 

numerical integration [ I  8, pp. 87-90]. That is why other, simpler criteria had been used 

based on a mathematically closed form. One of those criteria used is Canonical 

Analysis [ I ,  pp. 2161. In this method a series of vectors ai's are calculated so they will 

maximize a criterion function called the Fisher ratio. Such a function is: 

where 



Equation (3.5) is the average within class covariance matrix. Equation (3.6) represents 

the between class covariance matrix and (3.7) is the overall mean. 

One of the problems with this method is that if the difference in ,the class mean 

vectors is small the features chosen will not be reliable. If one mean vector is very 

different From the others, its class will eclipse the others in the coniputation of the 

between class covariance matrix. As a consequence, the feature exltraction process 

will be ineffective. Another problem with this method is that for a case of M classes a 

maximum of M-1 features can be extracted, limiting the final dimensionality 

independently of class separation. 

Fisher Retio Discriminant Analysis Modifications 

Somie modifications have been performed on the Fisher ratio in order to obtain a 

variation of the Discriminant Analysis Canonical procedure. Two of those modifications 

are Orthc~normal Discriminant Vectors (ODV) and Multidimensional Data Mappings. 

Orthonorlnal Discriminant Vector 

This method [24] uses the Fisher ratio criterion and sequentially extracts the 

features optimizing the criterion under the constraint of orthonormality, i.e. aiTaj = 6ij. 

Where 6ij is the Kronecker delta. Contrary to Canonical Analysis that, for an M class 

problem, can only calculate up to M-1 features, ODV can calculate .as much as d-1 

features where d is the number of dimensions in the original feature space. A single 

modifi~ati~on of ODV based on a modified plus e-take away f algorithrr~ was developed 

[25]. This modified ODV has a mechanism to remove the superfluous features 

automatically. It has been proved theoretically that this method performs better than 

Discrirr~inant Analysis in terms of the Fisher criterion [26]. 

Parametric and Nonparametric M~,~ltidimensional Data Mappings. 

This method [27] uses a modification of the previous criterion function that is an 

extension of Malina's class distance. Such criterion for two classes is: 



( I  -P)aTva + ~ l a ~ ~ ' - ' a l  
I(a) = 

aTwa 
(3.8) 

Where P is a supplied scalar, V is a between-class scatter matrix (corresponding 

to C, in the parametric case), W is a class independent scatter matrices 

(corresponding to Z, in parametric case), w(-) is the difference between within class 

scatter matrices (which is the difference of covariance matrices in the parametric case). 

The authors use it to map high dimensional data from Rn to ~2 or ~ f l  for a two class 

case. It has the advantage of being flexible enough, in terms of the parameters, to 

obtain known projections and produce new ones, parametric and nor~parametric. The 

disadvantage is that it has been derived for the two class case, and projected to ~2 or 

~ 3 .  Ever, if it would be generalized, it shares the same disadvantage as Canonical 

Analysis. Another problem is the estimation of some control parameters. The authors 

think that many parameter must be tested to obtain appropriate ones. 

Corrlpared with Principal Component Analysis, these Discriminant Analysis 

methods have the advantage that class separability in terms of the Fisher criterion is 

explicitly used in the calculation. 'The major disadvantage is that parameters must be 

estimated at full dimensionality, where they are not necessarily accurate. As a 

consequence the vectors ai's are not necessarily suitable for clusters separation. 

3.2.4 Decision Boundary feature extraction algorithm 

Lee and Landgrebe [ lo ]  proposed an algorithm based on decision boundaries 

that predicts the number of features necessary to achieve the same classification 

accuracy as in the original space. 'This algorithms has tlie advantage that it finds the 

necessary feature vectors. 

Let :l( be an observation in the d-dimensional space. Under a Bayes decision rule 

with the hypothesis Hi, i = 1, 2, the decision will be made according to 1:he rule: 
X E w, , if h(X) < t , otherwise X E w, (3.9) 

where: 

Let :K* be the projected vector of X in a subspace W. That subspiace should have 

the chara.cteristic that for any observation X: 

(h(X) - t ) ( h ( ~ * )  - t )  > 0 (3.12) 



The physical meaning of the above equation is that the classification result of X* 

is the sanie as X. The proposed algorithm finds the minimum dimensio~n of a subspace 

such that this inequality holds for the given observations and finds the features that 

produce such a projection. 

This algorithm has been applied successfully. Its only problem is that it demands 

a high number of training samples for high dimensional space. This oc:curs because it 

compute:; the class statistical parameters at full dimensionality. The authors 

suggested, for a further development, an algorithm that will pre-proc;ess the data in 

order to reduce the dimensionality before using this algorithm [I 1, pp. 206-2091. 

3.2.5 Significant Weighted Supervised feature extraction 

Kiyasu and Fujimura [28] discuss an algorithm based on a significance weighting 

approach. The algorithm first reduces the data using Principal Components Analysis. 

Then, it weights the classes in such a way that one feature can be used to separate a 

particular pair of classes without considering other pairs. Finally it will check if that 

feature separates all the other pairs of classes. If it does not work for a specific set of 

pairs, the process will be repeated for that particular group of classes. 

There are several problems with this method. First, it assumes that one feature is 

enough to separate two classes. Second, one has to order the classes, which requires 

that some criteria be developed. Third, each time a new feature for any pair of classes 

is found, one must check whether it separates the other pairs sufficiently. Therefore the 

separabiliity of every pair of classes must be checked more than once. As the number 

of classe!; increase the computations rise exponentially. 

3.2.6 Discriminative Feature Extraction 

Bienn and Katagiri [29] tried to minimize the classification error using a 

discriminative learning theory. Under the assumption that classification is done 

pursuing the minimum Bayes risk, this method tries to estimate the fealtures optimizing 

an index that directly minimize the classification error. It estimates the feature 

extraction parameter as well as the classification parameters at the same time 

optimizinlg a function of the global loss that is an index of misclassifications. Such 

optimizatiion is performed by a gradient search algorithm and an iterati,ve approach. 

The problem with this method is that such algorithm must estimate other 

parameters outside the feature extraction and classification ones. Because it is an 

iterative approach it has to performs a lot of classifications and feature extraction 



estimatioris which are time consuming. It does the computation at full dimensionality, 

leaving the problem of having small number of label samples unsolved. 

All the techniques discussed above have some advantages and some 

disadvantages. Among the disadvantages the most significant are (1) that the 

computations are performed at full dimensionality and (2) that the number of 

computatiions is quite high. The first disadvantage is related to the problems of high 

dimensional space and its estimations of parameters or densities. The second is 

related to computational efficiency. 

We next discuss a technique named Projection Pursuit which ha:; the advantage 

of making the computations in a lower dimensional subspace where an "interesting" 

projection will occur. It is flexible enough to allow the analyst to define what 

"interesting" means, making it useful for a variety of different purposes. We will use it to 

develop am algorithm to preprocess the data before engaging in final feature extraction 

and classification processes (see Figure 2.18). 

3.3 Projection Pursuit 
3.3.1 Definition 

Projlection Pursuit has been defined as [8, pp. 208-2121 "... the numerical 

optimization of a criterion in search of the most interesting low-dimensional linear 

projectiorl of a high dimensional data cloud." In the original idea Projection Pursuit is 

used to select potentially interesting projections by the local optimization over 

projectiorl directions of some index of interestingness. This introduces the challenge of 

how to characterize "interestingness" in a numerical fashion. Projection Pursuit 

automatically picks an "interesting" lower dimensional projection from high 

dimensio~nal data by maximizing or minimizing a function called the projection index. 

This technique is able to bypass many of the problems of high dimensionality by 

making the corr~putations in a lower dimensional subspace. 

The idea of a projection index other than variance was discussed in the late 

sixties and early seventies. The first successful implementation was done by Friedman 

and Tukey [30]. The idea had been extended to projection pursuit regression [31] [32], 

and projection pursuit density estimation [33] [9]. Huber worked on the connection 

between projection pursuit and some other fields like computer tomography, time 

series, arid finite sample implementations [34]. 

For a mathematical interpretation, define the following vectors and functions: 



X is the initial multivariate data set (dxN). In multispectral data, we refer to N 

elements consisting of d bands. A geometrical representation will impby that it is a set 

containing N data points in a d-dimensional space. 

Y is the resulting dimensionally reduced projected data (nnxN). A is the 

parametric orthonormal matrix (dxm) where Y = A ~ X .  Projection Pursuit is the method 

that computes A optimizing the projection index I (A~x ) .  Sometimes the projection 

index is written in the form I(A) or I(a) in cases having a parametric vector instead of a 

matrix. 

3.3.2 Projection Pursuit and engineering applications 

This technique has been applied in different areas of engineeriqg. In the area of 

robotics il: has been used in order to improve a robot's navigating sysitem [35]. In that 

work the authors estimate the direction and configuration in the two dimensional path 

of the robot from the one dimensional data with the goal that the area (of uncertainty of 

location has a Gaussian distribution with a small variance when projected to one 

dimensiori. 

In the area of neural networks it has been applied in numerous o~ccasions. It has 

been demonstrated that there exists a connection between the BCM learning 

procedure and Projection Pursuit [36:1 [37]. A projection index was developed as an 

objective function which is the expected value of the loss function of the neurons. Its 

minimization projects the data far from a Gaussian distribution. The projection index is 

Its) = E[z(x~] (3.13) 

where 

The variable p represents the learning rate. Jones [38] developed a Projection 

Pursuit Learning network by approximating the target function f(X:) by the neural 

network output o(X), where: 
4 

f (X) - o(X) = I; (a:~)  (3.15) 
i = l  

and each1 projection index is defined as 

The ai's are chosen to best approximate (3.15) 

In terms of remote sensing data, Nason used the technique with multispectral 

images to project data to a 3-dimensional space corresponding to red, green, and 



blue. Tha't projection produces a scene on the screen that allows for a more exact 

human interpretation [39]. 

3.3.3 IProjection index 

The choice of the projection index is the most critical aspect of this technique. 

What "interesting" mealis depends on what function or projection index one uses. In 

remote sensing data analysis "interesting" would certainly be a projection which 

separates data into different meaningful clusters which are exhaustive, separable, and 

of information value [2, pp. 3401. 

Many nonparametric projection indices have been proposed with the purpose of 

maintainin~g the distance among the clusters. The Friedman-Tukey index is the "result 

of constructing a kernel density estimate from the projected data point and then 

summing its values at those data points" [40]. Let Y = aTx, where a is a vector, then: 

l ( a T x )  = d(a )  = J ~ ( Y ) ~ F , ( Y )  (3.17) 

where ;(Y) is the kernel estimate and FN is the empirical distribution of the projected 

data. Jones and Sibson show that maximization of this index emphasizes a large 

departure from a parabolic density function form rather than specific instances of 

clustering. 

Other nonparametric indices were proposed because of their special properties. 

Among these are the Standardized Fisher (3.18) and the negative Shannon entropy 

(3.19) [8, pp. 2101: 

If (y) log(y)dy (3.19) 

After the data have been spherized both indices have the property that each is 

minimized at the normal density with the same mean and standard deviation. It is well 

known in Information Theory that entropy is maximized by the Normal distribution [41]. 

Maximizil~~g the negative entropy index will thus give the least normal projection. This 

type of linear projection would be expected to produce a multimodal density with the 

consequence of maximizing the separation among clusters. 

Peter Hall [42] discussed two other indices for density estimators and regression. 

The first one, named Friedman's, index is: 

where U, = 2@(Y) - I and Y = aTx. Note that Y is normal if U is uniform. As a 

consequence the maximization of I(a) is a departure from normality. 'The otlier index 



proposed by Hall is the L~ distance between the density of Y = aTx arid the standard 

normal density @(y) : 

-m 

Optirnizing the indices implies a recalculation and a numerical integration of 

them, which becomes difficult as the number of dimensions in Y increases. To 

overcome this, it has been proposed to estimate the indices by a series of polynomial 

estimatiorls from the data. Huber suggested the use of a Moment index that is an 

approximation to Shannon entropy [34]. The index is based on the third and fourth 

sample moments of the projected data and was computed by Jones and Sibson [40]. 

Friedman and Hall used a series of orthol~orrnal polynomials. The Friedman's index 

used a normalize Legendre polynomial sequence estimation. Hall's index used a 

Hermite polynomial series. In all of these, the series must be truncated to a nl-~mber 

that needs to be estimated. 

The indices just discussed have five main disadvantages. The first is that the data 

must be centered at zero and spherized in order to spread the data equally in all 

directions. That action causes an enhanced contribution from noisy variables. 'The 

second disadvantage is that these indices are suitable ollly for nonparametric 

approaches which wastes a priori information. Consequently, these indices do not 

allow sufficient flexibility to the analyst in order to define what interesting means on a 

case-by-c'ase basis. The third disadvantage is that the techniques requires a lot of data 

in order tc) estimate the Moment index, the polynomial series elements, or the number 

of elements of the truncated series of orthogonal polynomials. The foutith disadvantage 

is that classes are not defined, and as a result statistical distance is not explicitly 

delimited. The fifth is that it is not clear how to estimate the final number of features to 

preserve ;as much information as required. 

3.4 Parametric Projection Pursuit 
3.4.1 A parametric approach 

Taking into consideration the disadvantages of the nonparametric projection 

indices discussed above, a parametric approach will be proposed in the present work. 

The analyst will use labeled samples in order to define classes explicitlly. In addition, a 

convenient statistical distance among the classes plus some constraints on matrix A 

will give sufficient flexibility for the development of a projection index that will imply a 

convenient definition of "interesting", as shown in Figure 3.1. 
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Fig. 3.1. A possible projection pursuit scheme for the remote sensing 
circumstance. 

Discriminant Analysis and Parametric Projection Pursuit are similar processes 

in terms of optirr~izing a criterion function l ( a T ~ )  analytically or numerically. The main 

difference with Discriminant Analysis is the order of the process as shown in Figures 

3.2 and 3.3. 

/ 
Estimation of 
parameters at A such that 
full dimensionality. 
Examples: 
M,'s  and c,'s 

Fig. 3.2. Discriminant Analysis process order 
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Y = A ~ X  

Fig. 3.3. Projection Pursuit process order. 

Obst?rve that Projection Pursuit starts with an a priori matr i :~ A, then the 

parameters in a low dimensional space are estimated and matrix A is recomputed by 

optimizing the projection index I(ATx). Because the optimization is performed in a low 

dimensiorlal subspace, a numerical method is needed. Note that the! parameters in 

Projection Pursuit are functions of the parametric matrix A. Discriminanit Analysis is the 

opposite, A is a function of the parameters. The computations at a lovver dimensional 

space enables this method to better handle the problem of small numbers of samples, 

the Hughes phenomena, high dimensional geometrical and statistical properties, and 

the assurription of normality as previously mentioned. 

3.4.2 Parametric projection indices 

Bo [4l3] proposed the use of a parametric index for the two class problem, defined 

as: 

where 

B(A) = (ATM, - A ~ M ~ ) ~ ( A ~ M ,  - ATM2) (3.23) 

W(A) = tmce(AI,AT + A12AT) (3.24) 

This index tries to maximize the difference in the means and redluce the scatter 

within the same class. It has the advantage of having a closed solution and a 

procedure of estimating the final number of features. But it has the disadvantage of not 

being related, directly or as a bound, with classification accuracy. A1s.o it must make 

the computation at full diniensionality, reducing the method to a discriminant analysis 

method with a projection index different from the Fisher criterion. -The computation at 

full dimensionality entails the problem already discussed of estimating the parameters 



with a small number of training samples producing a lack of accuracy in terms of the 

estimated features. 

With the objective of enhanced classification accuracy we proposed the use of 

Bhattacharyya distance among two classes because of its relationship with 

classification accuracy and it uses of first and second order statistics (as discussed in 

chapter 1 [I 8, pp. 99-1 091. Such an index for the two class case is: 

In the case of more than two classes the minimum Bhattacharyya distance among 

the classes could be used: 

C is the number of combinations of group of two classes. Assuming there are L 

classes then: 

Frorrl ground truth information the analyst can define the classes and estimate the 

mean ancl covariance of each. As an example, consider two sets of training samples in 

2-dimensional space. The first appears in Figure 3.4. Both data sets are samples from 

normal distributions. The parameters of the data are: 



8 
Data: 20 ptslclass 

Fig. 3.4. Example two dimensional normally distributed data. 

Parametric Projection Pursuit calculates the angle at which the vector 

a = [cos(0:1 sin(€))] maximizes the projection index of the projected data (I-dimension). 

From the projected training samples the means and variances in one dimension can 

be estimated. The negative of the Bhattacharyya distance was used as a statistical 

distance and as the projection index. Therefore we want in this case to minimize the 

index (equivalent to maximize Bhattacharyya distance). Figure 3.5. stiows the plot of 

the negative Bhattacharyya distance versus angle. 

After computing 'the vector a{max} that maximizes Bhattacharyya distance 

(minimize negative Bhattacharyya distance) we projected the data to a one 

dimensional space. Figure 3.6 shows the density functions of the projected data. 
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Fig. 3.5. Negative of Bhattacharyya distance versus angle. 
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Fig. 3.6. Densities of the projected data. 



In the sec:ond set of data we have two normal classes with parameters: 

As can be seen these two classes are more difficult to separate. 

Figure 3.7 shows the data in a 2-dimensional space, Figure 3.8 the negative 

Bhattacharyya distance, and Figure 3.9 the density functions of the projected data at 

a{max). 

Data: 20 points/Class 
10 

* * * * 
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* * * * *  
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Fig. 3.7. Example two dimensional normally distributed data. 
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Fig. 3.8. Negative of Bhattacharyya distance versus angle. 
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Fig. 3.9. Densities of the projected data. 



Figure 3.8 shows an in- porta ant detail. The optimization process can arrive at a 

local optitnum instead of at a global one. 

The computation of the parametric matrix A can lead to some problems. It must be 

guaranteed that the columns of A are linearly independent. Additionally there are 

obstacles such as the arrival at a local optimum and the corr~putation time. Such 

difficulties increase when the number of dimensions is large in the original space 0, 

as in the case of AVlRlS data with 220 bands. Reducing the dimensionality directly 

from 220 to, for example, 20 and avoiding such problems in .the process of 

optimization of the projection index could be difficult. In order to overcome to a great 

extent such obstacles, a set of constraints on the matrix A will be proposed. 

Henceforth, when Projection Pursuit is mentioned, it will refer to the parametric 

approach. 

3.5 Projjecting Adjacent Groups of Features: Parallel and Sequelitial Projection 
Pursuit 

3.5.1 Proposed constraints on A 

In this section the special constraints imposed on the A matrix will be explained. 

The objective of these limitations is to divide the bands in the space @ into a partition 

of groups of adjacent features in order to project each group to one dimension. For a 

definition of the constraints, A can be rewritten as: A = [A1 A2 ... AM-1 AM], were Ai 

is the ith column of A. Every column of A will be filled with zeroes, except at a group of 

adjacent positions, i.e., A i  = [0 ... 0 a i  0 . - .  o]T where a i  i:s defined as: 
T 

a, =[a,,  a,, ... anti] . Observe that the column Ai will combine ni adjacent bands. In 

order to have a partition of groups of adjacent bands the columns must be orthogonal, 

and no two Ai's may have nonzeroes at the same locations. In other terms, for all i, j 

such that for i t j A~T.A~ = 0. 

The physical interpretation of the constraints are shown in Figure :3.10 and Figure 

3.1 1. Every group of n i  adjacent bands will be linearly combined to produce one 

feature. No two groups will have the same feature. The spectral response of every 

element of the multispectral data is projected to a lower dimensional subspace 

preserving the order of the features of the spectral response for the purpose of human 

analysis. These projections correspond in Figure 2.18 to a mapping from the original 

space 0 to the subspace T. 

Some of the advantages that the colistraints provide to the optimization process 

are: 



It (1 :I is fast, (2) preserves the order of the features in the class spectral response, 

(3) is flexible in terms of the number of adjacent bands to be combined, (4) takes into 

consideration the ground truth information and the interest of the analyst, (5) the A 

col~.~mns are orthogonal, allowing the algorithm to avoid linear dependencies among 

Ails, (6) will make easier the process to construct an initial guess matrix A 
Still there is an issue to be solved: how is the optimization of ,the projection index 

to be implemented in such a scheme of linear combination of features? There are two 

approaches: (1) in every group of adjacent features the projeclion function is 

optimizecl locally and independently of each other, producing one feature, (2) The 

linear co,mbinations of adjacent bands are calculated in a way that optimizes the 

global projection index in the projected subspace where the data set Y is localized. 

These approaches will be called Parallel Parametric Projection Pursuit and 

Sequential Paranietric Projection Pursuit. 

3.5.2 Parallel Parametric Projection Pursuit 

In this approach each group of adjacent bands is linearly projected to obtain one 

feature. In each projection a vector ai is calculated for the ith group of adjacent bands 

in order to optimize the projection index in the projected vector. That projection creates 

a new feature in the projected subspace T. The projections in every group are 

independent of each other. Figure 3.10 shows a physical interpretation of the scheme 

of projection in the spectral response of an element. There niust be the sanie number 

of optimiz:ations as the number of groups of adjacent bands. 
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Fig. 3.10. Parallel Parametric Projection Pursuit. 

The advantage of such approach is that it is fast, because every grloup of adjacent 

bands is projected in parallel and independently of one another. At the same time, this 

is a disadvantage because there is a lack of relation between such groups of adjacent 

bands. A:; a consequence there is a lack of control in the optimization (of the projection 

index in the whole subspace T. 

3.5.3 Sequential Parametric Projection Pursuit 

The problem of lack of relation between groups of adjacent barids is solved by 

a new algorithm that will project ,the groups of neighboring bands optiniizing the global 

projectiori index in the projected subspace T. For a physical interpretation of this 

algorithm see Figure 3.1 1, where the projection of a spectral response of an element 

is presented. 'This algorithm can be time consuming. A way of overcoming this 

problem is to develop an iterative procedure for this approach. Such an iterative 

approach will follow these steps: 

(1) An initial guess for every ai for every group of adjacent bands is stored. 

(2) Maintaining the rest of the ails constant, compute a1 (the vector that projects the 

first group of adjacent bands) to maximize the global minimum Bhattacharyya 

distance. 



(3) Keep repeating the procedure for the ith group where ai is calcullated optimizing 

again the global Bhattacharyya distance while maintaining the aj's constant, where i+ 

1. 

(4) Once the last ith group of adjacent band is projected kept repeating the process 

from step 2 (compute all the aj's sequentially) until the maximization stops increasing 

significantly. 

+ v ~ v  t +vrr r +vr 7 r 
n l  features n2 features n3 features 

Projection Projection Maximize - 

Glot~al 

Projectiol> Index 7 

Fig. 3.1 1. Sequential Parametric Projection Pursuit. 

3.5.4 Optimization 

Projection Pursuit based procedures require a numerical optimization of the 

multidime!nsional function I(A), also written as I(ATx). Different classes of methods 

have been developed to optimize multidimensional functions. Aniong them are 

Downhill Simplex, Direction Set, Conjugate Gradient, Variable Metric and Simulated 

Annealing. The analyst can use the method that is thought more appropriated to the 

type of data and projection index used. In the present research the Downhill Sirrrplex 

method has been used. This method requires almost no special assumptions about 

the projection index to be optimized. It could be extremely slow and at the same time 

robust. This method has been suggested for the case when the optimii!ation is only an 

incidental part of the overall problem [44]. We believed that is the case because of the 

many oplimizations that need to be done in the Parallel approach and the iterative 

version of Sequential Projection Pursuit. 



3.6 Experiments 
3.6.1 Comparing methods 

A series of three experiments were developed with the objective of comparing 

preproce:ssing methods, i.e. Parallel and Sequential Projection Pursuit approaches, 

with the direct use of a Feature Extraction method. The experiments also will enable 

us to observe how sensitive Projection Pursuit methods are to initial guless of matrix A 

and different projection indices. 

The multispectral data used in these experiments is a segment of AVlRlS data 

taken of NW Indiana's Indian Pine test site. From the original 220 spectral channels 

200 were used, discarding the water absorption bands. This data was obtained in 

June 1992. By that time most of the crops in the agricultural portion of the test site had 

not reached their maximum ground cover. In such circumstances the classification is a 

challenging problem, because the energy measured in the data came not only from 

the crops; but also from variations in the soil type, soil moisture, and previous crop 

residues. In the present experiment four classes were defined: corn, corn-notill, 

soybean-min, soybean-notill. The total number of training samples is 179 (less than 

the number of bands used). Thus, the algorithms were tested against the problem of a 

severe lirnitation of samples. Table 1 shows the number of training samples and test 

samples for each class. 

Table 3.1 

Classes, number of training and test samples. 

Classes Training Test Samples 
Samples 

Corn 22 234 
Corn-notill 52 620 
Soybean-min 61 1910 
Soybean-notill 44 737 

--- 
Total 179 3501 

The multispectral data was reduced in dimensionality to 20 dimensions by three 

methods: direct use of Discriminant Analysis as a feature extraction method to project 

from 100 to 20 dimensions. Parallel Projection Pursuit and Sequential Projection 

Pursuit as preprocessing methods to project from a 200 to a 20 dimensional space. 



Using Discriminant Analysis, the data was reduced from 100 bands (one in every 

two bandls from the original 200) to 20 (from space to Y subspace). From the 

original number of bands 100 were used because of the limited nurnber of training 

samples (179). Parallel Projection Pursuit and Sequential Projection Pursuit (iterative 

approach) were applied to the data to reduce the dimensionality ,from 200 to 20 

dimensional subspace (from a to T) optimizing a projection index. In both 

approaches the number of adjacent bands combined in each group was held 

constant:: 10 bands linearly combined to produce a new fea.l:ure. After the 

dimensionality of the data was reduced to 20 by both approaches, Discriminant 

Analysis, Decision Boundary and Feature Selection where used as feature extraction 

 algorithm:^ in order to project from r to the Y subspace. The feature  election method 

used was minimum Bhattacharyya distance as a measure of statis'tical distance 

among the classes. 

Four types of classifiers were used: ML, ML with 2% threshold, a spectral-spatial 

classifier named ECHO [45] [46] and ECHO with 2% threshold. In the second and the 

fourth, a threshold was applied to the standard classifiers such that if the classes were 

truly nornial 2% of the least likely points would be thresholded. These 2% provide one 

indication of how well the tales of the data fit the normal model. All of ithese classifiers 

petformetl a projection from Y to the resulted space R. 

In the first experiment the projection index used was the minimum Bhattacharyya 

distance among the classes. The initial guess for matrix A is one that averages every 

group of adjacent bands, i.e. hi =[1 1 1IT. This experiment will tlest Parallel and 

Sequential Projection Pursuit against direct use of Feature Extraction methods, i.e. 

Discriminant Analysis, to project data from a space to Y subspace. In the second 

experime~nt the same projection index is used, while a different initial guess for matrix 

A was used. This experiment will test how well Parallel and Sequential Projection 

Pursuit deal with the problem of global optimization and how sensitive they are to a 

variation in A. The third experiment uses a different projection index, the Fisher 

criterion, and will test it against the use of minimum Bhattacharyya distance. All the 

tests are iin terms of test field classification accuracy. 

3.6.2 Experiment 1 

The minimum Bhattacharyya distance among ,the classes was calculated in 20 

dimensional space for the three data sets corresponding to the three rnethods used to 

project the data to a subspace of a. The result is shown in Figure 3.12. 
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Fig. 3.12. Minimum Bhattacharyya Distance among the classes. 

As can be observed Sequential Projection Pursuit preserved more information in 

terms of minimum Bhattacharyya distance than Discriminant Analysis From 100 bands 

(DA 100-20) and Parallel Projection Pursuit. 'The result is based on the fact that 

Discrimin'ant Analysis makes the computation at high dimensionality (1 00 dimensions 

of the original a space) with a small number of label samples (179 samples) where 

the Hughes Phenomena takes place. Another element to take into consideration is 

that Discriminant Analysis calculates the features maximizing an01 her index than 

Bhattacharyya distance, named the Fisher criterion. 

Sequential Projection Pursuit makes the computation and directly maximizes the 

projectior~ index to a 20 dimensional space T. Parallel Projection Pursuit maximizes 

the mir~inium Bhattacharyya index at each one of the 20 features ir~dependently of 

each other. As a consequence, there is a lack of control over the distance among the 

classes in the total projected subspace. 'The subsequent subsections will show the 

results of projecting the data from the r subspace to Y with different feature extraction 

or selection methods in order to compare them with direct projection from a space to 

Y using Discriminant Analysis (DA 100-20). 

Discriminant Analysis 

This feature extraction method was used to project data from the r subspace to 

Y after tlhe Projection Pursuit based methods were applied. It will provide the most 

direct cornparison against direct projection from a to Y (DA 100-20) because the 

same feature extraction procedure was used either at the a space and at the l- 

subspace. 



After Discriminant Analysis was applied to both data sets where Parametric 

Projection Pursuit (Parallel and Sequential approaches) was used they were 

classified and the test fields classification accuracy results can be seen in Figures 

3.13, 3.14, 3.15 and 3.16. The classification accuracy results on the test fields for 

standard Maximum Likelihood classifier can be seen in Figure 3.13. 

I - Sequential I 

Number of Features 

Fig. 3.13. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after difference methods based on Projection Pursuit 
(Parallel and Sequential) for ML Classifier. 

As can be seen, the classification accuracy in the data from the two Projection 

Pursuit based approaches are much better than using direct Discriminant Analysis 

(DA 100-20). The reason is that both approaches made the computation at a small 

dimensional space. This allows the approaches to deal better wiith the Hughes 

Phenomena and high dimensional space characteristics, preserving more information. 

'This enables Discriminant Analysis to make the computation at fewer dimensions with 

the same number of labeled samples, computing more accurate features. Because we 

have a small number of classes (4) the optimum number of features using 

Discriminant Analysis is 3. It is possible that such a small number of classes enables 

the Paralllel approach to reach the maximum, in terms of classification accuracy, 

because this procedure optimizes each group of adjacent bands locally. Also the 

global minimum Bhattacharyya distance for Parallel Projection Pursuit was large 

enough, more than 5, to maintain the classes well separated for classification 

purposes. On ,the basis of the fact that the optimization in each feature is independent 



of each other, the results can not be guaranteed for most experiments, especially for 

the cases where the number of classes is large. 

The same steps were followed again but this time using Maximum Likelihood 

with a 2% threshold. -The results are shown in Figure 3.14. 
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Fig. 3.14. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pur:suit 
(Parallel and Sequential) for ML with threshold. 

Note that both approaches of Projection Pursuit performed significantly better 

compared with Discriminant Analysis used directly from 100 dimensions, with a 

difference as much as 50%. It is significant that such a difference happens at the use 

of the best three features. It is known that Discrirr~inant Analysis computes a number of 

features equal to the number of classes minus one, in this case three. In the 

Discriminant Analysis algorithm the rest of the features are selected randomly. The 

optimum classification accuracy was expected to be at three for ML{threshold) in all 

cases. Such a maximum point was reached only with the use of Projection Pursuit 

based algorithms. In the direct Discriminant Analysis (DA 100-20) that is not the case, 

because it is thresholding most of the data. Because of the Hughes Phenomena and 

other high dimensional characteristics, Discriminant Analysis is not computing 

accurate features as a result of making the computation at 100 dimensions with a 

small number of samples. This is shown in the fact that classific:ation accuracy 

immediately starts to decrease. Projection Pursuit based algorithms, on the other 

hand, increase as expected until they reach a maximum at three best features. The 



reason is that the assumption of normality holds better when the computations are 

done at tlie lower dimensional space, T. 

Figure 3.15 and 3.16 show the results for the ECHO classifier andl ECHO with 2% 

thresholds. The results are similar to those with the ML classifiers and support our 

previous discussion. The only difference is that for the ECHO classifier, Parallel 

Projectiori Pursuit performs even better than the Sequential approach. 

Number of Features 
Fig. 3.15. Test fields classification accuracy comparison between direct use 

of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pur:iuit 
(Parallel and Sequential) for ECHO Classifier. 

1 

DA 100-20 

Parallel 

Sequential 

DA 100-20 

Parallel 

Number of Features 

Fig. 3.16. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Purliuit 
(Parallel and Sequential) for ECHO with threshold. 



Decision Boundary 

This feature extraction algorithm was used to project data from I' to Y after the 

use of Projection Pursuit based algorithms and compare its results with direct use of 

Discrirr~inant Analysis in high dimensional space. The Decision Boundary method 

could not be used at 200 bands to project the data from @ to Y ,  because it required at 

least 20-1 samples per class. The difference between DA 100-20 and Decision 

Boundary at 20 dimensions is low. The results in the ML and ECHO classifier cases 

can be explained by the fact that Decision Boundary demands morle samples than 

Discriminant Analysis. Still the classification with thresholds shows that Projection 

Pursuit based preprocessing approach have a better grounded assumption of 

normality. 
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Fig. 3.17. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pur!juit 
(Parallel and Sequential) for ML Classifier. 
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Fig. 3.18. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML with threshold. 
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Fig. 3.19. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO Classifier. 
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Fig. 3.20. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Purljuit 
(Parallel and Sequential) for ECHO with threshold. 

Feature Selection 

Feature selection could not be used in the 200 dimensional space to project 

the data l o  the Y subspace. That is because the number of calculations for feature 

selection in high dimensional space will be extremely high 200!/((20!)(180!)) = 1027. 

Feature selection was applied, as previously done with Discriminant Analysis and 

Decision Boundary, after the use of Projectior~ Pursuit based algorithm:;. The results in 

terms of classification accuracy, were compared with direct application of Discriminant 

Analysis (DA 100-20). In all the experiments the classification accuracy and the 

assumption of normality were better with feature selection than with direct use of 

Discriminant Analysis. Note that in the first to fourth features Sequ~intial Projection 

Pursuit performs better than in the rest. The reason is that feature selection is more 

related to Sequential Projection Pursuit. That occurs because the Sequential 

approach directly maximizes ,the same global statistical distance used in feature 

selection. 

The results for ML and ECHO classifiers confirm what had been said previously, 

that Projection Pi-~rsuit based algorithms handle Hughes phenomena, normality 

assumptions and geometrical and statistical properties of high dimensional space 

better than direct use of Discriminant Analysis (DA 100-20) in high dim8ensional data. 
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Fig. 3.21. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pur:juit 
(Parallel and Sequential) for ML Classifier. 
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Fig. 3.22. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML with threshold. 
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Fig. 3.23. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feal.ure 
Selection after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO Classifier. 
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Fig. 3.24. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pur,suit 
(Parallel and Sequential) for ECHO with threshold. 

3.6.3 Experiment 2 

In this experiment the same projection index, i.e. minimum Bhattacharyya 

distance and a different initial guesses for matrix A were used in order to test how 

sensitive the Projection Pursuit procedures were to this parameter. 

After the data was projected to the 20 dimensional subspaces, by the different 

methods, the minimum Bhattacharyya distance among the classes was calculated. 

The results can be seen in Figure 3.25. The figure shows how Sequential Projection 



Pursuit's amount of statistical distance increases with respect to experiment 1. At the 

same time Parallel Projection Pursuit's index decreases significantly with respect to 

the same experiment. 

As mentioned before this shows how the lack of overall control in the optimization 

process affects the performance of Parallel Projection Pursuit. The subsequent 

subsecticlns will show the result of projecting the data from r subspace to Y by 

different feature extraction or selection methods in order to compare them with direct 

projectior~s from 0 space to Y subspace using Discriminant Analysis (DA 100-1 20). 

DA 100-20 Parallel PP Sequential PP 

Fig. 3.25. Minimum Bhattacharyya distance among the classes. 

Discriminant Analysis 

Here Discriminant Analysis was used as a feature extraction method to project 

the data from r space to Y subspace to compare its results with direct use of 

Discriminant Analysis from 0 to Y and with the previous experiments. 

Figures 3.26 and 3.27 show the ML classification results. Note how the Parallel 

approach performs more poorly than even DA 100-20. That is because of the small 

separation among the classes in the r subspace. This experiment shows that Parallel 

Projection Pursuit depends more on the initial guess matrix A variation than 

Sequential Projection Pursuit. 'The spatial-spectral ECHO classifier has similar results 

shown in Figures 3.28 and 3.29. Sequential Parametric Projection Pursuit with its 

direct control over the overall optimization shows a better performance in terms of 

maintaining classes separation in the process of reducing the dimerlsionality and is 

more robust than the Parallel approach to the initial guess of matrix A .  Because in the 

Parallel a.pproach the optimization is done in each feature independent of each other, 

it is not guaranteed what could happens in the global projection index. 
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Fig. 3.26. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML Classifier. 
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Fig. 3.27. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML with threshold. 
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Fig. 3.28. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO Classifier. 
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Fig. 3.29. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO with threshold. 

Decision Boundary 

The results of ,the use of Decision Boundary as a feature extraction method show 

as in experiment 1 that this depends on a large number of labeled samples. This 

method i:; probably more sensitive to that number than to the separation of classes at 

high dimensional space in order to estimate accurate features. 

The results show that Discriminant Analysis is less sensitive to the number of 

labeled data than Decision Boundary Feature Extraction in terms of classification 



accuracy, In some circumstances Decision Boundary can estimate such inappropriate 

features !so as to even diminish the assumption of normality, as show~n in Figure 3.30 

and Figure 3.31. 
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Fig. 3.30. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML Classifier. 

DA 10Cl-20 

+ Parallel 

Number of Features 

Fig. 3.31. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML with threshold. 
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Fig. 3.32. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO Classifier. 
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Fig. 3.33. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO with threshold. 

Feature Selection 

The results of this subsection show that Sequential Projection Pu~rsuit, which has 

the largest measure of minimum Bhattacharyya distance performs better than direct 

Discriminant Analysis and Parallel Projection Pursuit. The Parallel approach had the 

poorest performance due to the small measure of projection index. Feature selection, 

as statecl before, seems to be directly related to the global minimum Bhattacharyya 

distance. The results shown in Figures 3.34, 3.35, 3.36, and 3.37 are not surprising 



since the feature selection algorithm applied uses the minimum Bhattacharyya 

distance ias it measure of class separability. 
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Fig. 3.34. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML Classifier. 

* DA 100-20 

& Parallel 

Sequential L A  

Number of Features 

Fig. 3.35. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Fealture 
Selection after different methods based on Projection Pursuit 
(Parallel and Sequential) for ML with threshold. 
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Fig. 3.36. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Fea~ture 
Selection after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO Classifier. 
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Fig. 3.37. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit 
(Parallel and Sequential) for ECHO with threshold. 

3.6.4 Experiment 3: Fisher ratio criterion as a projection index 

The purpose of this experiment is to test another possible projection index and 

compare it with rr~inimum Bhattacharyya distance. The proposed projection index is 

the Fisher criterion as defined previously. A minor modification has been done to 

provide a, matrix Projection Pursuit form. Accordingly the index is 



Note that A is not a square matrix. As a consequence the projection index can not be 

reduced to  trace[^,'^,] which has a closed analytic solution [18, pp. 445-4551. 

Sequential Projection Pursuit was used with the Fisher criterion as its projection index 

to project the data from @ space to r subspace. Only Sequential Projection Pursuit 

was usecl because of the lack of global control of the Parallel approa'ch, as shown in 

the previous results. Different feature extraction and selection methods will be used to 

project the data from r to Y, i.e. Discriminant Analysis, Decision Bclundary Feature 

Extractio~rl and feature selection. The last one uses the minimum Bhattacharyya 

distance i2S a measure of class separability. 

Discriminant Analysis 

In this subsection Discriminant Analysis was used as a feature extraction method 

after the use of Sequential Projection Pursuit and compares it with direct use of 

Discriminant Analysis at full dimensionality (DA 100-20). The results are poorer than 

direct use of Discriminant Analysis and than Projection Pursuit Based algorithms using 

minimum Bhattacharyya distance as a projection index. This is due to some inherent 

problems in the Fisher criterion index. One is that if the difference in the mean vectors 

is small, the features estimations will not be reliable. Another problem is that the Fisher 

criterion index estimates the parameters for the entire labeled data set and is not class 

specific. Finally it is not directly related with probability of error as; Bhattacharyya 

distance is. Note that most of the data are thresholded on ML-2% and ECHO-2%. 

These suggest doubt that normality ass~.~mptions hold. 



- Sequential I- 

Number of Features 

Fig. 3.38. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after a method based on Projection Pursuit (Sequential) for 
ML Classifier. 
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Fig. 3.39. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after a method based on Projection Pursuit (Sequential) for 
ML with threshold. 
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Fig. 3.40. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant Ana1y:jis 

after a method based on Projection Pursuit (Sequential) for ECHO Classifier. 
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Fig. 3.41. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after a method based on Projection Pursuit (Sequential) for 
ECHO with threshold. 

Decision Boundary 

The results with Decision Boundary are similar than with the use of Discriminant 

Analysis i3s a feature extraction method. Direct use of Discriminant Ar~alysis (DA 100- 

20) produices better results because of the problems mentioned of Fisher criterion, and 

the small number of labeled samples, a problem to which Decision Boundary is more 

sensitive than Discriminant Analysis. 
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Fig. 3.42. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after a method based on Projection Pursuit (Sequential) 
for ML Classifier. 
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Fig. 3.43. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after a method based on Projection Pursuit (Sequenf.ial) 
for ML with threshold. 
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Fig. 3.44. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after a method based on Projection Pursuit (Sequential) 
for ECHO Classifier. 
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Fig. 3.45. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after a method based on Projection Pursuit (Sequential) 
for ECHO with threshold. 

Feature Selection 

The results with feature selection after using Sequential Projection Pursuit are 

much better than with Decision Boundary or Discriminant Analysis methods. In terms 

of ML classification, Discriminant Analysis at full dimensionality (CIA 100-20) still 

performs better. With the ECHO classifier, Sequential Projection P'~~rsuit performs 

better and reaches a maximum with the use of two features, then it compares with DA 



100-20 until 16 features. The Sequential approach performs better with respect to ML- 

2% and ECHO-2%. The data is maintained together in clusters. 

Ever) when the results of feature selection are better than with the use of 

Discriminiant Analysis and Decision Boundary in this experiment, they are poorer than 

Feature Selection in experiment 1 and 2 where the projection index used is minimum 

Bhattacharyya distance. 
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Fig. 3.46. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after a method based on Projection Pursuit (Sequential) 
for ML Classifier. 
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Fig. 3.47. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 

Selection after a method based on Projection Pursuit (Sequential) 
for ML with threshold. 
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Fig. 3.48. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after a method based on Projection Pursuit (Sequential) 
for ECHO Classifier. 
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Fig. 3.49. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after a method based on Projection Pursuit (Sequential) 
for ECHO with threshold. 

3.7 Conlclusion 

The increasing number of features in modern data sources augment the amount 

of information that should be extractable from multispectral data. At the same time, 

since there is usually a limit on the number of labeled samples, the effects of 

degrading factors such as the Hughes phenomena and other characleristics of high 

dimensional data are exacerbated as the number of dimensions increases. The 

challenge is to reduce the number of dimensions while avoiding the obstacles posed 



by the above mentioned phenomenon, and while preserving maxirr~um information 

and using a priori data. 

A modified scheme of supervised classification had been proposed. Such 

modification is the result of an addition of a preprocessing algorithm with the purpose 

of reducing the dimensionality of the data, projecting it to a subspace where Feature 

Extraction or Selection is more suitable. Projection Pursuit had been the method used 

to develop the algorithms for accomplish such preprocessing. A parametric version 

was developed and used based on the use of a projection index that uses labeled 

samples as a priori information. 

Paralmetric Projection Pursuit fulfills the criteria established in Chapter 1 for a 

preprocessing method. This procedure, performing the computations at a lower 

dimensional subspace, makes the assurrlption of normality better grounded in reality, 

providing better estimations of parameters and features. All of this enables the 

algorithm to better deal with the Hughes phenomena, maintaining the data in clusters 

and providing better classification accuracy. 

Two approaches had been developed, Parallel and Sequential Parametric 

Projection Pursuit. The Parallel approach has the advantage of being faster, but it 

does not guaranteed that it will perform better in terms of the optimization of the overall 

projectiorl index. The Sequential method had the disadvantage of being slow if it is 

directly iniplemented. Such disadvantage could be overcome to a grea~t extent with an 

iterative version. The advantage that Sequential Projection Pursuit has to offer is a 

direct cor~trol of the projection index over the projected subspace. 

The optimization of the global projection index allows more control and a better 

performa~ice against the problem of local maxima and the sensitivity with the initial 

guess ma~trix A than local optimization in the Parallel approach. 

Two possible projection indices were tested, mirlimum Bhattacliaryya distance 

among the classes and the Fisher criterion. Both use first and second order statistics. 

The experiments demonstrated that minimum Bhattacharyya distance performs better 

in terms of classification accuracy. This is due to some inherent properties of minimum 

Bhattacharyya distance and some problems with the Fisher function. Bhattacharyya 

distance is related with classification accuracy as a bound. Among some problems 

with the Fisher criterion there are two significant ones that could affect the calculations. 

'The two are when the means of two classes are significantly close, and if one class 

mean is very different from the others. This index contains the parameter of the whole 

training set; meanwhile, minimum Bhattacharyya distance uses training samples 



separately for all the classes. On the basis of these arguments and empirical results, 

minimum Bhattacharyya distance is preferred over the Fisher criterion. 



4. GLOBAL OPTIMIZATION 

4.1 Introduction 

As discussed previously, Parametric Projection Pursuit based algorithms are 

sensitive in terms of arriving at a small local maximum instead to the global one. 

Experiments 1 and 2 of the previous chapter are examples of that problem. Figure 4.1 

displays the values of the global minimum Bhattacharyya distance for the different 

methods used and in the different experiments, i.e. direct Discriminant Analysis (DA 

100-20), Parallel Projection Pursuit at experiment 1 (PPPI) and 2 (PPP2), and 

Sequential Projection Pursuit at experiment 1 (SPPI ) and 2 (SPP2). Some statements 

can be established as a consequence of the results. In the process of optimizing the 

projectiorl index, in this case minimum Bhattacharyya distance, Parallel Projection 

Pursuit was too sensitive to the initial choice matrix. From figure 4.1 it can be observed 

that this scheme is not able to optimize the global projection index more than the direct 

application of Discriminant Analysis (DA 100-20). This is due to the fact that Parallel 

Projection Pursuit optimize local projection indices and as a result it has a lack of 

control in the overall projection index optimization. On the other hand, Sequential 

Projectiorl Pursuit is more robust to the problem of small local maxima bringing about 

a larger optimization of the projection index . Still, an algorithm is needed to find an 

initial choice for matrix A that enables it to arrive to an acceptable, though perhaps 

suboptim~um solution. 
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Fig. 4.1. Minimum Bhattacharyya distance produced by the different 
methods and different experiments. 

In order to observe the importance of the initial choice for ma.trix A and the 

problem of arriving at a poor local maxim, let's see an example. Project two class data 

from a two dimensional space to one. The statistical parameters of the data are: 

Figure 4.2 shows the Bhattacharyya distance as a function of the angle of 

projection of a normalized vector. 



Angle (radians) 

Fig. 4.2. Bhattacharyya distance for the two dimensional illustration 

Note that there are two maxims. One is located at angle 1.73 radians and the 

other, which is global, at 3.00 radians. There is a difference of almosi: 250% in these 

two maxims. It is expected that the situation would worsen as the number of 

dimensions increases. 

The purpose of the present chapter is to develop an algorithm that estimates A in 

order to overcome, as much as possible, the problem of small local maxima. In order 

to do that, the algorithm will estimate a set of variables in the A matrix: the initial 
choice vectors ii that linearly combines the adjacent bands, and the number of 

adjacent bands ni,Vi in every group. 

In th~e non-parametric version of Projection Pursuit density approximation and 

regressio~n the use of a two stage algorithm has been proposed in order to estimate 

the orientation with a better rate of convergence [47]. The first stage uses 

~~ndersmoothed density estimators to estimate the orientation. The second stage uses 

those orientations for another estimation with a correct amount of smoclthing. 

An analogous idea will be developed here for Parametric Projection Pursuit. 

4.2 Preprocessing Block Stages and the Initial Conditions 

In order to avoid reaching a suboptimal local maximum instead of the desired 

global one, the preprocessing block in Figure 2.18 is divided into two stages as shown 

in Figure 4.3. The first one has the objective of estimating an initial choice of matrix A .  



The estirrlation of this parametric matrix is based on the initial choice vectors 2,'s and 
1 

the number of adjacent bands ni combined in each group in the partition of features 

shown in Figure 3.1 1. The second stage is the numerical optimization of the global 

projection index in order to estimate A, as explained in chapter 3. Tlhe focus of this 

chapter is in the development of an algorithm that accomplish the objectives of stage 

1. 

I Preprocessing I 

Fig. 4.3. Preprocessing block. 
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4.3 Estimation of the Initial Choice iils for Each Group of Adjacent Bands 

Each group of adjacent bands will have a bank of estimated gues'ses i. 1 's. In this 

section we will assume that the values of ni are given. The procedure to calculate 

them will be explained in section 4.4. The matrix 6 will be constructed by choosing 
one estimated guess ii from each bank. Among these guesses there are two that are 
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very significant. The first one is based on the assumption that the mean difference is 

dominant in the Bhattacharyya distance. The mean difference portion of the 

Bhattacharyya distance is: 
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The other is based on the assumption that the covariance difference is the part 

that is dominant. The covariance difference portion of the Bhattacharyya distance is: 

The mean difference portion is maxirrrized by the vector [18, pp. 455-4571: 

-1 

a 
Mmax 

In order lo  compute the vector that maximizes the covariance difference element a 

previous matrix A must be computed. That matrix is defined as: 

The vector that maximizes PC, aCmax is the eigenvector of A that corresponds to the 

largest qu~antity of a function of its eigenvalue. That function is defined as: 

These vectors and parameters are estimated to maximize the projection index in 

the one dimensional projected feature where each group of adjacent bands will be 

projected, The vectors must be estimated for every combination of two classes. Those 

estimates depend only on the groups of adjacent bands and are independent of the 

estimates of the other groups. Also in each bank a vector that averages all the features 

and vectlors that select only one fea t~~ re  in that grol-lp of bands will be stored. 

Assuming there are K classes and ni features in each group of adjacent bands, then 
= are: the total number of initial choices iils in the ith group of adjacent bands 



The first element corresponds to twice the nurr~ber of every conibination of two 

classes, corresponding to aMmax and acmax. The second corresporlds to choosing 

one feature from the ni possible ones and the third to averaging. 

The process of building the initial choice matrix A from the estimated Ci stored in 

each bank that belongs to each group of adjacent bands is similar to the iterative 

procedure of the numerical optimization of the Sequential Projection Pursuit algorithm. 

The procedure is as follows: 
(1) Choose one fi from each bank for every group of adjacent bands. Every ii 

belongs to the proper place in the ith column of A that corresponds to the ith 

group of adjacent bands. 
(2) Mahtaining the rest of the Cils constant, choose the il from the first bank of 

samples that maximizes the global projection index. 
(3) Repeat the procedure for each group such that the Pi is chosen from the ith 

bank of sarr~ples, meanwhile the 2,s for i z j will be held constant. 
J 

(4) Once the last Ci is chosen, repeat the process from step 2 until the 

maxirr~ization converges or stops to increase significantly. 

Note thal the value of the ni's could not be larger than the minirrlum number of 

samples per class. That will ensure a nonsingular matrix Xi for each class. 

Observe that in the case of storing in each bank that belongs to each group of 

adjacent bands only vectors that select one feature in that particular group we would 

have a Projection Pursuit version of feature selection for high dimensional data. 

Two experiments were developed with the purpose of showing the validity of this 

algorithm. 

4.3.1 Experiment 1 

This experiment has the objective of projecting two class data from a two 

dimensior~al space to one. The statistical parameters are: 



X1 
Fig. 4.4. Data set in two dimensional space. 

Froni the parameters and Figure 4.4 it can be seen that the means' difference 

component is the only term that exists in the Bhattacharyya distance. Figure 4.5 shows 

the Bhattacharyya distance as a function of the angle of projection. 'The theoretical 

value at which the maxim is located is .78 radians. Because there are only two classes 

and a two dimensional space, only one bank of ii guesses is constr~~cted. The total 

number clf guesses in this bank is 2(1) + 2+ 1=5. Corresponding to aMmax, acmax, 

averaging, and choosing one coordinate (XI or X2). 
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Fig. 4.5. Bhattacharyya distance. 

As expected the algorithm chooses aMmax which corresponds to the assumption 

that means difference dominates. The vector aMmax is a normal vectlor with an angle 

of .78 radians, exactly where the theoretical maxima is. 

4.3.2 Experiment 2 

In the present experiment data which belongs to two statistical classes will be 

projected from a 2 dimensional space to one. The statistical parameter:; are: 

In this particular case the Bhattacharyya distance has two components: means 

and covariance differences. Figure 4.6 shows the data in the two dimensional space. 

Figure 4.'7 shows the Bhattacharyya distance as a function of the angle of projection. 

From there it could be seen that there is a possibility to arrive at a small local 

maximurn (which is at 1.7272 radians) instead of at the global maxirnum (located at 

3.00 radiims). 
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Fig. 4.6. Data set in two dimensional space. 
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Fig. 4.7. Bhattacharyya distance. 

Fronn the five estimated guesses, the algorithm chooses aMmax which is located 

at .0997 radians (which is equivalent to x: + .0997). Note that this guess is good 

enough to arrive to a global maxim with the use of a numerical 0ptimiz:ation method. It 

is interesting that acmax is located at .8909 radians. Still that guess should be enough 

for a nurn~erical optimization method, but is closer to the local maxim than aMmax. 



4.4 Estilmation of the Number of Adjacent Bands ni Combined in Ealch Group in the 
Partition of Features 

The second block of stage one in Figure 4.3, which estimates the values of the 

nj's, will be based on well-developed techniques of binary decision trees. Decision 

trees hav'e been used in machine learning systems for some time [48]. Also they have 

been applied in pattern recognition and remote sensing image analysis. An example 

of their application is the design of decision tree classifiers where they have been 

used to partition the space in developing decision rules [49]. Some authors [50], [51] 

applied them in the design of hierarchical classifiers that decide at eaclh node to which 

class a particular sample belongs. 

The basic idea of decision trees is to break a particular complex problem into 

simpler ones that can be more easily solved. It is expected that solutior~s can be united 

and at least approximate ,the optimum global solution. 

It has been demonstrated that an optimal decision tree is an N-P complete 

problem [52]. In terms of pattern classification four heuristic methods of Decision Tree 

 classifier:^ have been developed in order to overcome that problem: (a) top-down, (b) 

bottom-up, (c) hybrid and (d) tree growing-pruning. Top-down mlethods start to 

separate the samples into different groups until the final number of classes of 

information value is reached. Bottom-up methods have the opposite approach; starting 

with a grioup of classes, they groups classes until the root node is reached. In the 

hybrid approach the bottom-up procedure is used to aid the top-dlown approach. 

Finally in the tree growing-pruning approach the tree is allowed to grow to its 

maximum size and then the tree is pruned. 

A bi~iary tree algorithm will be used in this project to estimate the suboptimum 

number of adjacent bands that should be linearly combined in order to reduce the 

dimensio~iality. The heuristic approach used is a hybrid decision tree. In the following 

is explai~ied how every heuristic approach just described can be applied in an 

algorithm to accomplish the objective of the second block in the first stage of Figure 

4.3. 

4.4.1 Top-down 

This algorithm starts to collect the feature space cD as a partitiion of groups of 

adjacent bands. Each group of adjacent bands will be projected to different features in 

the projected subspace T. As a consequence each group is equivalen,t to a dimension 

of the reduced feature subspace T. It is in that subspace where a final feature 

extractiorl algorithm will be applied before the classification occurs. 



This algorithm begins projecting linearly the total number of features to one 
dimension. It estimates the projection PI that maximizes the minimunl Bhattacharyya 

distance. At this point this algorithm integrates the previously described procedures i ~ i  

this chapler in section 4.3. 

Statiting from one group of adjacent bands, the algorithm breaks the group into a 

partition of two groups of adjacent bands (step 1 in Figure 4.8). Then it breaks each 

group indlependently of each other into two new partitions creating tvvo sets of three 

dimensional space. The preliminaries optimum iils will be calculated for each 

independ'ent set. For every set of three dimensional space the increment of the global 

minimum Bhattacharyya distance is computed and named ABI  and AB2. Figure 4.8, 

step 2 shows this graphically. 'The algorithm chooses the largest increment in the 

Bhattacharyya distance (in Figure 4.8 the group with ABI,  indicated by the dark 

circles). In the next step each group of adjacent bands, including the previously 

rejected groups (in this case the group with increment AB2 indicated bmy white circles), 

is divided independently into two groups of adjacent bands. This process creates 

three sels of four groups of adjacent bands corresponding to three sets of four 

dimensional spaces. Again the set that produces a larger increment in the global 

projectiorl index is chosen (in this case a group with increment AB2 i11 step 3, Figure 

4.8). The procedure is repeated successively in the following steps: 

(a) Divide independently each group of adjacent bands into two new groups, 

creating new independent sets of groups of adjacent bands. 

(b) For each set compute the global projection index and c:ompute the 

increment in the projection index ABi . 

(c) Choose the set that produces the larger increment in the global projection 
index if the percentage increment is larger than a threshold T,-,. The 

percentage of increment is defined as: 

In the equation PI is the projection index value. The index i represents the current 

value, while i-1 represents the previous one. These steps are repeated until the 

increment in minimum Bhattacharyya distance is not larger than a threshold 7,-, or 

until the algorithm reaches a maximum number of features establishe'd by the analyst 

or by the number of label samples. 
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Fig. 4.8. Top-down algorithm. 

In the case of an even number of adjacent features the group is divided in two 

equal numbers of groups. In the case of an odd number, i.e. (2N+1) either of two 

things could be done: (i) Choose randomly the combination of one group having N 

and the other N+l or (ii) Compute both possibilities as two independent sets and 

choose the one that produces the largest increment in the minimum Bhattacharyya 

distance as in step c. 

The first procedure is faster. If all groups have an odd number (of features, this 

algorithm is twice as faster as the second. The second procedure erlsures choosing 

the optimum combination. Observe that at each step the algorithm increases by one, 

the number of groups of adjacent bands linearly combined in the partition. This implies 

that the dimensionally reduced space increases one dimension at each step. At step k 

it will create k independent sets of k+l groups of adjacent bands corresponding to 

k+l dimensional subspace T. 

4.4.2 Bottom-up 

This algorithm starts with a number of features in the dimensional projected 

subspace T, where each one corresponds to one group of adjace~rlt bands in the 

partition of the high dimensional space @. The goal of this procedure is to reduce the 

number of dimensions of the lower dimensional subspace avoiding a significant 

reduction of the projection index. 

Eve~y two adjacent groups of adjacent bands are joined into orhe producing an 

independent set of groups of adjacent bands. For each set the preli~ninary optimum 



i . ' s  will t ~ e  calculated. Like in top-down, here this algorithm integrates the procedure 
1 

described in section 4.3. Then for each independent set the decrease in projection 

index AEli is computed. It is important to note here that ABi is an absolute value 

measure always positive in the equations. The algorithm chooses the set that 

produces the minimum reduction in the projection index if the percentage of decrease 
is smaller than a defined threshold 7,-,. The percentage of decrease i:s defined as: 

rnin(mi) 
ABD. = 

1 PI.  
1- 1  

where PI is defined as in top-down procedure. The procedure can be repeated, 

creating riew sets of dimensionally reduced spaces by combining adjacent groups of 

adjacent bands, including those previously rejected as shown in Figure 4.9. 

Step 1 + 

0 Step 2 - \ 

0 

a 
Fig. 4.9. Bottom-up algorithm. 

At step k it will produce k-I independent sets each one with k-I groups of adjacent 

bands correspondi~ig to subspaces of k-I dimensions. 

4.4.3 Hybrids 

Theye are two types of hybrids or combinations of these two groups: 



Hybrid I 

Starting with the top-down procedure the present algorithm allows the tree to 

grow until it reaches its maximum number of features. There are two ways to decide 

when the algorithm arrives at a maximum: the maximum number is supplied by the 

analyst taking into consideration the number of labeled samples and other factors, or 
until the percentage of growth of ABI is less than a threshold T,-,. Then apply the 

bottom-up procedure in order to reduce the number of features. This last step is 

allowed tto reduce the dimensionality until it reaches a minimum number of features 

supplied by the analyst or until its percentage of reduction ABD is larger than the 

threshold T,-,. 

Hybrid II 

This procedure results by intercharrging both algorithms: top-down and bottom- 

up. Starti~ng with the top-down procedure increase the dimensions of the subspace by 

1. Then use bottom-up to verify that it can reduce by one dimension without 

decreasing the projection index significantly. In order to avoid an infinite loop the 
relationship between the thresholds should be 7,-, IT,-,. 'This algorithm should 

stop when both algorithms sequentially fail to meet the requirements with respect to 

the thresholds or when it arrives at a maximum or minimum nurr~ber of features 

provided by the analyst or limited by the number of training samples. Hybrid I is 

significantly faster, however Hybrid II is more efficient especially when the number of 

labeled s'amples is quite small. 

The top-down binary tree has some characteristics that resemble a greedy 

algorithm. A greedy algorithm has the attribute that, at each step, it makes the choice 

that looks better at the moment. It makes locally optimal choices with the hope that it 

will lead to a globally optimal solution [53]. The fundamental differenice is that in the 

top-down algorithm every choice is not limited to the children of the chosen nodes. 

Every choice i~icludes all nodes. 

The bottom-up tree at the same time resembles some elemenits of a dynamic 

programrning algorithm, i.e. the binary parsed tree. The similarity is that it combines 

groups of adjacent channels with a rr~inimum loss of projection index. 

4.5 High Dimensional Projection Pursuit Feature Selection 

Frorn now on we will call the Parametric Sequential Projection F'ursuit algorithm 

just Projection Pursuit. It will use the methods in sections 4.3 and 4.4 of this chapter 

equivalent to stage 1 in Figure 4.3 in order to estimate A .  Then it u:jes a numerical 



optimizaton algorithm equivalent to stage 2 in Figure 4.3 to finallly compute A.  

Projectior~ Pursuit Feature Selection uses the method explained in slections 4.3 and 

4.4 in the present chapter with a significant transformation. Every bank described in 

section 4.3 will only contain vectors that choose one feature in every group of adjacent 

bands. It follows the procedure described in that section to choose which vectors will 

maximize the global minimum Bhattacharyya distance. Through the fieedback shown 

in Figure 4.3 it also estimates a suboptimum width of each group of adjacent bands. In 

this method there is no second stage, i.e., numerical optimization of the projection 

index. This algorithm has significant fewer computations in high dimensional data than 

a normal feature selection algorithm as described in chapter 3 

4.6 Experiments 

A series of experiments had been developed in order to test the! algorithm. The 

first experiment was designed to test the algorithm with a ten dimensional generated 

data. The first and second order statistics are known. This experiment will calculate 

two matrices A ,  one for Projection Pursuit and the other for Projection Pursuit Feature 

Selection with their Bhattacharyya distances and the final A for Projection Pursuit. 

The second experiment uses real multispectral data from an AVlRlS frame. The 

objective is to use the first stage algorithm to calculate for Projection Pursuit and 

Projection Pursuit Feature Selection. Then it calculates A with a numerical analysis 

stage. It compares them with direct use of Discriminant Analysis at full dimensionality 

in the space and verifies how this algorithm is enhanced by Projection Pursuit in 

terms of test field classification accuracy. This experiment represe~nts the case of 

having a small number of classes and training samples. 

The third experiment has the purpose of testing the algorithm against the case of 

having a relative larger number of classes, and training samples. Projection Pursuit 

was used to see how it enhances the performance of two known feature extraction 

schemas; Decision Boundary Feature Extraction and Discriminant Analysis, in terms of 

classification accuracy. Both of those algorithms were applied at full dimensionality 

and their fields classification accuracy results were compared with !:heir application 

after Projection Pursuit was used. 

4.6.1 Experiment 1 

The purpose of this experiment is to test the first and second stage of 

preprocessing in generated data with known statistics. It will be a test of how well the 

first stag'e estimates the ni's and the final dimensionality of the data for Projection 



Pursuit and Projection Pursuit Feature Selection. 'The data for this experiment were 

generated using the following first and second order statistics: 

The theoretical Bhattacharyya distance is 3.675 and the estimated Bhattacharyya 

distance is 3.823. It is important to note that the algorithm will use estimated 

parameters. In this case the estimated Bhattacharyya distance is the measure used to 

compare the others. 

The original number of features is ten and the number of samples per class is 

500. In this experiment the hybrid version used for Projection Pursuil: and Projection 

Pursuit Feature Selection is the hybrid II approach for the first stage. T!he thresholds to 

finish are the same 7,-, = 7,-, =.005. It is generated data where groups of adjacent 

channels influence each other. In the first two channels the meam difference is 

predominant. The covariance dominates in the third, fourth and fifth channel. The sixth 

and the seventh channel are a mixture of mean and covariance differe~nces. The eight, 

nine and tenth have mean difference dominance. 

Projection Pursuit 

In this part of the experiment the Projection Pursuit algorithm was used. Table 4.1 

shows the results in terms of number of features, the number of adjacent features 

combined in each group, which is the vector n, the Bhattacharyya distance for the 

matrix A (PPI) and the Bhattacharyya distance for A, after the numerical optimization 

(PP2). These two matrices were generated by the binary tree method in a first stage 

algorithrr~ explained in section 4.3 and 4.4 of this chapter and by the numerical 

optimization method explained in chapter 3. 



Table 4.1 

Number of n Stage 1 Stage 2 
Features (Binary (Numericall 

Tree) opt.) 
PP1 PP2 

1 11 01 2.91 82 2.91 82 

Observe ,the division in 4 bands. It almost fits the different groups of adjacent 

bands. It does not fit exactly because the parameter are being estimated and are not 

exactly as the theoretical used to generate the data. That c o ~ ~ l d  also be because the 

feature seven and eight are a mixture of mean and covariance differe~nce. For groups 

where the mean difference is dominant, it almost did not break them. For groups where 

covarianc:e difference is dominant, it divided until having groups of single features. 

That is expected because pure covariance difference domination sho~~ ld  require more 

features to preserve information. Another important observation is that in the first stage 

calculation, the algorithm that computes A in this case was almost enough to estimate 

the sub-optimum transformation. For thresholds of value .005, the algclrithm stops at 7 

features. The values of PP1 and PP2 were close; it almost did not need a numerical 

optirnization. 

Projection Pursuit Feature Selection 

This part of the experiment uses the Projection Pursuit Fe'ature Selection 

algorithm. It does not use the numerical optimization of a second stage. The first stage 

only uses vectors of the form: [0 ... 0 1 0 ... 0] in the guessed estimation in each bank of 

adjacent bands. It requires a larger dimensionality in the projected subspace (9 vs. 7) 

than the previous experiment for the thresholds 7,-, = zT-, =.005. 'The results are 

shown in table 4.2. 



Table 4.2 

Number of 
Features 

Stage 1 
(Binary 
Tree) 
PP1 

0.5065 
0.6741 
1 .I249 
1.6022 
3.3994 
3.5366 
3.6549 
3.7629 
3.81 74 

Note that the algorithm stop at a number of dimensions close to the number at full 

dimensionality. The values of PP1 in PPFS are less, than PP1 and PP2 values of PP 

found in ti3ble 4.1. 

4.6.2 Experiment 2 

The multispectral data used in these experiments is a segment of AVlRlS data 

taken of I\JW Indiana's Indian Pine test site. From the original 220 spectral channels 

200 were used, discarding the atmospheric absorption bands. In the present 

experiment four classes were defined: corn, corn-notill, soybean-min, and soybean- 

notill. The total number of training samples is 179 (less than the number of bands 

used) and the total number of test samples is 3501. Table 4.3 shows the number of 

training and test samples for each class. 

Table 4.3 

Classes 

Corn-notill 
Soybean-notill 
Soybean-min 

Corn 

Total 

Training Samples Test Samples 



'The lnultispectral data was reduced in dimensionality from 200 dimensions in a, 

space to 20 dimensions by three methods: (1) using direct Discrirr~inan~t Analysis as a 

feature extraction method to project from 100 to 20 dimensions (DA 100-20), (2) 

Sequentia.1 Projection Pursuit having only a numerical maximization stage (PP) , and 

(3) Projec:tion Pursuit with a first stage that estimated matrix A (PP-Opt) and to 16 

dimensiorlal subspace r by one method: (4) Projection Pursuit Feature! Selection (PP- 

Opt-FS). DA 100-20, one of the few known feature extraction algorithms that can be 

used to extract high dimensional information without estimating singular matrices with 

such small number of label samples. Using Discriminant Analysis the data was 

reduced from 100 bands (one in every two bands from the original 200) to a 20 

dimensional subspace Y .  From the original number of bands, 100 were used 

because of the limited number of training samples (179). Iterative Sequential 

Projectiorl Pursuit (PP) was applied to the data in order to reduce the dimensionality, 

maximizir~g the minimum Bhattacharyya distance among the classes. In this approach 

the number of adjacent bands combined in each group was 10 and tlhe initial choice 

vector for maximization was chosen to be a vector that averages the adjacent bands 

on a group. This approach only has a numerical optimization method. It was used as a 

measure of improvement of performance of Projection Pursuit with a first stage named 

in this experiment Projection Pursuit optimized (PP-Opt). Projection Pursuit Feature 

Selection (PPFS) and the optimum version of Sequential Projection Pursuit (PP-Opt) 

were used as described in sections 4.4 and 4.5. Both use the hyb~rid II heuristical 

approach to construct the a priori matrix A with thresholds r,-, and r,-, equal to 

.005. 

In the Projection Pursuit based algorithms, after the dimension;ality of the data 

was redl-rced, Discriminant Analysis, Decision Boundary and feature selection were 

used as feature extraction algorithms in order to project the data from r to Y.  The 

feature selection method used minimum Bhattacharyya distance as a measure of 

statistical distance among the classes. 

Four types of classifiers were used. The first one is ML classifier, the second is 

ML with :2OlO threshold. The third is a spectral-spatial classifier named ECHO [45] [46] 

and the fourth is ECHO with 2% threshold. In the second and the fourth a threshold 

was applied to the standard classifiers whereby in case of normal distribution of the 

data 2% of the least likely points will be thresholded. These 2% provide one indication 

of how well the data fit the normal model and are maintained in clusters that represent 

statistical classes. All of these classifiers performed a projection from to the resulted 



space $2. All of these schemes of preprocessing, feature extraction, anld data analysis 

are summarized in Table 4.4. 

Table 4.4 

Case Preprocessing Feature Extraction Classifier 

Direct use of (i) ML 
Discriminant Analysis (ii) ML-2% 

1 NIA @+Y (iii) ECHO 
(DA 100-20) (iv) ECHO-2% 

Projection Pursuit (a) Discriminant Analysis 

2 with only (b) Decision Boundary 
numerical (c) Feature Selection 

optirrrization 

(PP) 
Projection Pursuit (a) Discriminant Analysis 

3 with First and (b) Decision Boundary 
Second Stage (c) Feature Selection 

(PP-Opt) 

(i) ML 
(ii) ML-2% 
(iii) ECHO 

(iv) ECHO-2% 

(i) ML 
(ii) ML-2% 
(iii) ECHO 

(iv) ECHO-2% 

Projection Pursuit (a) Discriminant Analysis (i) ML 

4 Feature Selection (b) Decision Boundary (ii) ML-2% 
(PP-Opt-FS) (c) Feature Selection (iii) ECHO 

(iv) ECHO-2% 

Projection Pursuit 

Table 4.5 shows the results of the partition of groups of adjacent b i ~ ~ d s .  It starts at 

ten because one class has only 22 labeled samples (corn). That will imply that the 

estimated covariance matrices, which are needed to estimate the i i l s  cannot be larger 

than 22 - 1 That will ensure a nonsingular estimation of the covariance matrix. The 

program subtracts two to the minimum number of labeled samples per class instead of 

one, which will make the maximum number of adjacent features in a group being 20. 

At the sarne time it stops at 20 because the algorithm is defined to stop at the minimum 

nurr~ber of labeled samples per class - 2. 



Table 4.5 

Number of 
Features 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Table 4.6 shows the values of the projection index for A for each partition of 

group of a~djacent bands. Only the last partiti011 and it estimated i i ls  will be given to a 

numerical optimization method. 

Table 4.6 

Number of 
Features 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

PP1 - Minimum 
Bhattacharyya 

Distance 
5.71 36 
6.621 6 
7.2698 
7.5288 
8.3720 
8.781 9 
9.3800 
9.8638 

10.31 47 
10.8491 
1 1.21 86 

Projection Pursuit Feature Selection 

The here was generated using Projection Pursuit Feature Selection algorithm. 

Unlike the Projection Pursuit optimum, it starts to build the r space from one 

dimension because it does not need to compute any feature based on the first and 

second order statistics. Table 4.7 and 4.8 show the results as the r space was built for 

different partition of groups of adjacent bands. 



Number of 
Features 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
13 
14 
15 
16 
15 
16 

Table 4.7 

n 

Number of 
Features 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
13 
14 
15 
16 
15 
16 

Table 4.8 

PP1 - Minimum 
Bhattacharyya 

Distance 
0.1790 
0.3689 
1.2999 
2.571 9 
3.0469 
3.3786 
3.7681 
4.4081 
4.9991 
5.6360 
5.9841 
6.5579 
6.9356 
7.2868 
6.9356 
7.3654 
7.81 99 
8.2205 
7.8551 
8.3080 



The dimensionality of the projected subspace was not able to grow after 16 

features because it could not grow more than 5% (tt~resholds values are .005). Note 

that the case of 13, 14, 15, and 16 features were repeated because of the loop created 

in the hybrid II algorithm, given the interchange between top-down and bottom-up 

algoritt~m:;. Projection Pursuit optimum after the estimation of A ,  uses a numerical 

optimization method in order to accomplish the second stage of Figure 4.3. It increases 

the minimum Bhattacharyya distance from 1 1.21 86 in the first stage to 18.30. 

The minim~~m Bhattacharyya distance among the classes was calculated for the 

three data sets at a 16 dimensional space for PP-Opt-FS, and in a :20 dimensional 

space for DA 100-20, PP, and PP-Opt. The results are shown in Table 41.9. 

Table 4.9 

Minimum Bhattacharyya Distance among the classes 

D A PP- PP PP- 
100- Opt- 0 ~t 
20 FS 

Min. 
Bhatt. 7.53 8.33 10.73 18.30 
Dist. 

Observe that the Projection Pursuit based algorithms preserved m~ore information 

in terms of minimum Bhattacharyya distance than direct use of Discrirninant Analysis 

at iP space. The result is based on the fact that Discriminant Analysis makes the 

computation at full dimensionality (100 dimensions) with a small nuniber of labeled 

samples (179 samples). Meanwhile the Projection Pursuit based algor~ithms make ,the 

computation and directly maximize the projection index in the 16 or 20 final 

dimension~al space. Another factor is that Discriminant Analysis calculal:es the features 

maximizing another index than Bhattacharyya distance, i.e., Fisher criterion. Observe 

that Projection Pursuit Feature Selection compares favorably with Discriminant 

Analysis. Also Projection Pursuit optimization using the first stage lloop before the 

numerical optimization (PP-Opt), as described in section 4.4, has the best 

performan~ce. It has an improvement of around 83% over Projection Pursuit which only 

has a numerical optimization stage (PP). It avoids, better than the others, the problem 

of reaching a small local maximum. 

The subsequent s~.~bsections will show the results of projecting the preprocessed 

data from the r subspace to Y with different feature extraction or selection methods in 



order to compare them with direct projection from @ space to Y! using Discriminant 

Analysis (DA 100-20). The comparison will be in terms of test fielcls classification 

accuracy. Because of the small number of training samples, their classification results 

are not that relevant. 

Feature Extraction Methods 

Discriminant Analysis 

This feature extraction method was used to project data from the r subspace to 

Y! after the Projection Pursuit based methods were applied. It will provide the most 

direct coniparison against direct projection from @ to Y! (DA 100-20) because the 

same feature extraction procedure was used either at @ space and at I' subspace. 

After Discriminant Analysis was applied to data sets preprocessed by Projection 

Pursuit based algorithms, they were classified and the test fields class;ification resl-~lts 

can be seen in Figures 4.1 0, 4.1 1, 4.1 2, and 4.1 3. The classification accuracy results 

on the test fields using the Maximum Likelihood classifier can be seen in Figure 4.10. 

Number of Features 

Fig. 4.10. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit (PP, 
PP-Opt, PP-Opt-FS) for ML classifier. 

Observe in Figure 4.1 0 that Projection Pursuit's classification accuracies are 

much better than using direct Discriminant Analysis (100-20). Projection Pursuit 

optimization becomes the best method as the number of dimension increases. It better 

overcomes the Hughes phenomena and the geometrical and statistical properties of 



high dimensional space. Projection Pursuit without the first stage of optimization (PP) 

did not ha~ndle the Hughes phenomena as the dimensions increase as well as PP-Opt 

or PP-Opt-FS. From Figure 4.1 1 it can be seen that the Projection Pursuit approaches 

performecl significantly better, with a difference sometimes of 45%, than Discriminant 

Analysis directly applied to 100 dimensions, when a threshold is applied in a 

classifier. This may be due to the fact that in all approaches the computatior~ is made 

in a small dimensional space where the assumption of normality is more suitable. This 

allows the computation to deal more effectively with the Hughes Phenomena, 

preserving more information and enabling Discriminant Analysis to make the 

computation at lower dimensionality with the same number of label samples. 

ECHO and ECHO-2% have similar results than ML (which only takes into 

consideration spectral information) and it confirms what it had been said. The only 

difference is that the ECHO classifier accuracies are better due to the addition of 

spatial contextual information. 

Number of Features 

Fig. 4.1 1 .  Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit (I'P, 
PP-Opt, PP-Opt-FS) for ML with 2% threshold. 



Number of Features 

Fig. 4.12. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit (l?P, 
PP-Opt, PP-Opt-FS) for ECHO classifier. 

Number of Features 

Fig. 4.13. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit (I'P, 
PP-Opt, PP-Opt-FS) for ECHO with 2% threshold. 

Decision IBoundary 

This feature extraction algorithm was used to project data from T' to Y after the 

use of Projection Pursuit based algorithms and compare its results with direct use of 

Discriminant Analysis at high dimensional space. Decision Boundary could not be 

used at 200 bands to project the data from to Y ,  because it required at least 201 

samples per class. Test fields accuracy in Figures 4.14, 4.15, 4.16 and 4.17 show that 



the difference between DA 100-20 and Decision Boundary applied after Projection 

Pursuit based algorithms at 20 dimensions is small. Still the classifications with 

thresholds show that Projection Pursuit based preprocessing approaches have a 

better grounded assumption of normality. 

In this case there is no correlation between the minimum Bhattaclrlaryya distance 

and the petformance of Decision Boundary. Projection Pursuit optirr~~ization has the 

poorest petformance. The results in the ML and ECHO classifiers could be explained 

by the fact that Decision Boundary demands more samples than Discriminant 

Analysis. It is more sensitive to the number of training samples than the separation of 

statistical classes. PP-Opt-FS classification results were better because it is doing the 

computation in a 16 dimensional space. It shows how sensitive the Decision Boundary 

method is; to the number of label samples and the dimensionality parameters. The 

results suggest the use of a more relaxed threshold (> .005) with Dec~ision Boundary. 

These results are more a comparison between Decision Boundary and Discriminant 

Analysis. 

The ECHO classifier results confirm what had been said already with the ML 

results. One of the differences is that at an small dimensionality (2 features) PP-Opt- 

FS was able to obtain the maximum results, 85%. The second difference is that PP- 

Opt was able to maintain the data more in clusters in a small dimensionality (one 

feature)aa shown in Figure 4.17. 
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Fig. 4.14. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit (I'P, 
PP-Opt, PP-Opt-FS) for ML classifier. 
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Fig. 4.15. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit (!PP, 
PP-Opt, PP-Opt-FS) for ML with 2% threshold. 
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Fig. 4.16. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decislon 
Boundary after different methods based on Projection Pursuit (PP, 
PP-Opt, PP-Opt-FS) for ECHO classifier. 
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Fig. 4.17. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Decision 
Boundary after different methods based on Projection Pursuit (PP, 
PP-Opt, PP-Opt-FS) for ECHO with 2% threshold. 

Feature Selection 

Feature selection could not be used in the 200 dimensional space to project 

the data to the Y subspace. 'The reason is based on the fact that the number of 

calculations for feature selection in high dimensional space will be extremely high: 

200 !/((20!)(180!)) = 1027. Feature selection was applied, as previously done with 

Discrin~in~mt Analysis and Decision Boundary, after the use of Projection Pursuit 

based algorithms. The results in terms of classification accuracy, were compared with 

direct application of Discriminant Analysis (DA 100-20). 

Here almost all Projection Pursuit based algorithms after 4 features had better 

results than Discriminant Analysis. The reason for that behavior is that most of the 

information in DA100-20 is in the first 3 features (number of classes -1). That is a 

limitation of Discriminant Analysis. Having such small number of labeled samples, 

whatever process that reaches a maximum first at a small number of features will 

dominate the Hughes Phenomena. It could be inferred in this case that it is probably 

that at lovver dimensions, like three or four features, PP has a larger projection index 

than the other Projection Pursuit based algorithms. 
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Fig. 4.18. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit (IPP, 
PP-Opt, PP-Opt-FS) for ML classifier. 
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Fig. 4.19. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit (PP, 
PP-Opt, PP-Opt-FS) for ML with 2% threshold. 
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Fig. 4.20. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit (PP, 
PP-Opt, PP-Opt-FS) for ECHO classifier. 
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Fig. 4.21. Test fields classification accuracy comparison between direct luse 
of Discriminant Analysis (DA 100-20) and the use of Feature 
Selection after different methods based on Projection Pursuit (PP, 
PP-Opt, PP-Opt-FS) for ECHO with 2% threshold. 

4.6.3 Experiment 3 

The multispectral data used in these experiments is a segment of AVlRlS data 

taken of FdW Indiana's Indian Pine test site. From the original 220 spectral channels 

200 were used, discarding the atmospheric absorption bands. In the present 

experiment, eight classes were defined. The total number of training samples is 1790 

and the total number of test samples is 1630. Table 4.10 shows the defined classes 

and their respective number of training and test samples. 



Table 4.10 

C;lasses Training Samples Test Samples 

Total 1790 1630 

Four types of dimension reduction algorithms were used. The firsit is direct use of 

Decision Boundary Feature Extraction (DB 200-22) to reduce the dimensionality from 

200 bands to 22 features. The second is direct use of Discriminant Ar~alysis (DA 200- 

22) reducing the dimensionality again from 200 to 22. Both of these procedures 

perform a direct linear projection from Q, to Y. In the third and fourth methods 

Projectior~ Pursuit and Projection Pursuit Feature Selection were used to reduce the 

dimensionality from 200 to 22. These methods linearly project the data from Q, to r 
subspace. After the preprocessing methods were used a feature extr i~t ion algorithm 

follows in order to project the data once more from r to Y subspace. Decision 

Boundary and Discriminant Analysis were used with the advantag~e of doing the 

computation with the same number of training samples in less number of dimensions. 

Four types of classifiers were used: ML classifier, ML with 2% th~reshold, ECHO 

[45:1 [46] and ECHO with a 2% threshold. In the second and the fourth a threshold was 

applied to the standard classifiers whereby, in case of normal distributions of the class 

data, 2% of the least likely points will be thresholded. These 2% thresholds provide 

one indication of how well the data fit the normal model and how well the data is 

maintained in clusters. All of these classifiers performed a projection from Y to the 

resulted space SZ. All of these schemes of preprocessing, feature extraction, and data 

analysis are summarized in Table 4.1 1. 



Table 4.1 1 

Case Preprocessing Feature Extraction Classifier 

a+r  T + Y  Y + Q  

Direct use of Decision (i) ML 
Boundary (ii) h1L-2% 

1 N/A @ + Y  (iii) EfCHO 
(DB 200-22) (iv) ECHO-2% 

Direct use of (i) ML 
Discriminant Analysis (ii) NIL-2% 

2! N/A @ - + Y  (iii) EXHO 
(DA 200-22) (iv) ECHO-2% 

(a) Decision Boundary (i) ML 
Projection Pursuit (PPDBFE) (ii) NIL-2% 

(PP) (b) Discriminant Analysis (iii) EXHO 
(PPDAFE) (iv) ECHO-2% 

Projection Pursuit (a) Decision Boundary ( i )  ML 
4. Feature Selection (PPFSDBFE) (ii) WIL-2% 

(PPFS) (b) Discriminant Analysis (iii) EiCHO 
(PPFSDAFE) (iv) ECHO-2% 

Projection Pursuit 

Table 4.12 shows the process of building a partition of groups of adjacent bands 

in order to build A for Projection Pursuit. The algorithm used is hybrid II with 

thresholds z,-, =.025 and zD-, =.005. Table 4.13 shows the minirr~um Bhattacharyya 

distance c:orresponding to each partition. The algorithm stops at 22 features, because 

it did not grow more than the threshold 7,-,. 



Number of 
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12  
13 
14  
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19 
20 
2 1 
22 

Number of 
Features 

Table 4.12 

n 

Table 4.1 3 

PP1 - Minimum 
Bhattacharyya 

Distance 
.0158 
.0684 
.2730 
.4416 
.5783 
.7035 
.8950 
.9947 

1.1 033 
1.2690 
1.3986 
1.5594 
1.6481 
1.7704 
1.8561 
1.9477 
1.9949 
2.0598 
2.1387 
2.2000 
2.2584 
2.31 90 



Projection Pursuit Feature Selection 

Table 4.14 shows the process of building a partition of group of adjacent bands in 

order to build the projection matrix A. Since there is no numerical optimization stage 

A=A. The algorithm used is hybrid II with thresholds 7,-, =.025 and r,-, =.005. Table 

4.15 shows the minimum Bhattacharyya distance corresponding to each partition. 

Observe that the minimum Bhattacharyya distance for the A at each stage is less that 

with Projection Pursuit in table 4.13. That is expected since Projectio~i Pursuit has in 

its banks of initial choices i i l s  the same vectors than Projection 13ursuit Feature 

Selection in addition to others, as discussed in section 4.3. 

Table 4.14 
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Features 
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22 



Table 4.15 

Number of 
Features 

PP1 - Minimum 
Bhattacharyya 

Distance 
.0147 
.0741 
.2645 
.4056 
.5069 
.6202 
.7331 
.7483 
.8241 
.9272 
1.0058 
1.0697 
1.21 44 
1.2829 
1.3435 
1.421 4 
1.4749 
1.5246 
1.61 35 
1.6751 
1.7392 
1.81 45 
1.8728 
1 .go20 

Figure 4.22 shows how minimum Bhattacharyya distance in Deciision Boundary, 

Discriminant Analysis and the first stage of Projection Pursuit increases as the number 

of features increases. Observe that the first stage of Projection Purs~uit (PP1) is the 

maximum at almost every value. Discriminant Analysis increases fast from 6 to 7 

features. This is well explained by the fact that the first seven features (number of 

classes - 1) are estimated from the Fisher criterion, meanwhile the rest of ,the features 

are chosen randomly. Decision Boundary performs the poorest in the first fifteen 

features. From 16 to 20 is in the middle of Projection Pursuit first stage and 

Discriminant Analysis and at 22 features it becomes the best. At that n~~mber  PP1 stop 

to increase significantly. Projection Pursuit Feature Selection (PPFS) performs closely 

to PP1 in ,the first number of features. As expected PPI is an upper bound of PPFS. As 

the nurr~bler of used features increased, the differences between both methods 

increases as well. Still there is a range where PPFS is the second best option, better 

than direct application of feature extraction methods. The results suggest that this 

method is a good one to use in case of having a large separation among classes 

where the number of features required is small. 
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Fig. 4.22. Minimum Bhattacharyya distance. 

Figure 4.23 shows for each method the percentage of growth of their respective 

different projection indices. For PP1 and PPFS the minimum Bhattacharyya distance is 

shown, for Discriminant Analysis it is the cumulative value of the Fisher criterion 

eigenvalues, and for Decision Boundary it is the cumulative value of the eigenvalues 

of a Decision Boundary Feature matrix. Observe that Discriminant A~ialysis stops to 

increase significantly in terms of its percentage of grow, at 7 features. Decision 

Boundary, PP1 and PPFS stop to increase significantly at around 20 to 22 features. 

This implies an agreement of these last three methods of what is the dimensionality of 

the training data. 

I - PPFS I 
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Fig. 4.23. Percentage of grow of the different methods. 

In te~rms of their respective projection indices Figure 4.23 shows that Discriminant 

Analysis  could not extract more information after 7 dimensions, Decision Boundary 



after around 18 and PP1 and PPFS after 22. As a consequence no matter that 

Decision Boundary's minimum Bhattacharyya distance is larger after ;!I features than 

PP1 and PPFS, the analyst would choose as a final number of dimensions, a number 

around 18 dimensions. These results show that the first stage of Projection Pursuit and 

Projectior~ Pursuit Feature Selection are good estimators of the dimelisionality of the 

space r. For Projection Pursuit a second stage numerical optimization method was 

performetl, and its minimum Bhattacharyya distance was measured (PlP2). The results 

of the rr~inimum Bhattacharyya distances for Decision Boundary, Discriminant 

Analysis, PPI, PP2 and PPFS are shown in table 4.1 6 for r in 22 dimensions. 

Table 4.1 6 

Method DB D A PP1 PP2 PPFS 
Min. 

Bhatt. 2.64 1.52 2.32 2.75 1.90 
Dist. 

With the numerical optimization stage, Projection Pursuit was able to have a 

larger projection index than the other methods. The next sections will apply the feature 

extractiori techniques after the use of Projection Pursuit' based 'algorithms and 

compare their results with direct application of Decision Boundary and Discriminant 

Analysis in @. 

Feature Extraction Methods 

Decision Boundary Feature Extraction 

This part of the experiments has the objective of testing how Prlojection Pursuit 

based algorithms enhances test fields classification accuracy in the use of Decision 

Boundary at 22 dimensions in r in comparison with direct use of Dec:ision Boundary 

at full dirr~ensionality in @ space. Figures 4.24, 4.25, 4.26, and 4.27 show the results 

for ML classifications. In terms of training fields, Projection Pursuit (PPDBFE) and 

Projectior~ Pursuit Feature Selection (PPFSDBFE) increase in classification accuracy 

faster than direct use of Decision Boundary (DBFE). As expected in a significant range 

PPFSDBF'E results are in between PPDBFE and DBFE. At 22 dimen~sions PPDBFE 

and DBFti are close and both of them are superior than PPFSDBFE in accordance 

with the values of the minimum Bhattacharyya distance at 22 dimensiclns as shown in 

table 4.1 6. In terms of test fields classification accuracy PPDBFE perforlns better with a 

difference from 25% to 30% with respect to DBFE. PPFSDBFE results are closer to 



PPDBFE than DBFE. Observe in Figures 4.26 and 4.27 that PPDBFE and PPFSDBFE 

maintains the data more in clusters, and at the same time the assumption of normality 

is better supported. At 22 features there is a difference of 65% between Projection 

Pursuit based algorithms and direct application of Decision Boundary in the test fields 

classifical:ion accuracy with the use of a 2% threshold. 
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Fig. 4.24. Training fields classification accuracy comparison between direct 
use of Decision Boundary (DBFE) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(PPDBFE and PPFSDBFE) for ML classifier. 
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Fig. 4.25. Test fields classification accuracy comparison between direct use 
of Decision Boundary (DBFE) and the use of Decision Boundary 
after different methods based on Projection Pursuit (PPDBFE and 
PPFSDBFE) for ML classifier. 
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Fig. 4.26. Training fields classification accuracy comparison between direct 
use of Decision Boundary (DBFE) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(PPDBFE and PPFSDBFE) for ML with 2% threshold. 
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Fig. 4.27. Test fields classification accuracy compari 
of Decision Boundary (DBFE) and the use 
after different methods based on Projection 
PPFSDBFE) for ML with 2% threshold. 

.son between direct use 
of Decision Boundary 
Pursuit (PPDBFE and 

Figu~re 4.28, 4.29, 4.30, and 4.31 show the results for the ECHC) classifier. The 

values of PPFSDBFE is closer to PPDBFE than in the ML's results. 'The differences 

between both of the Projection Pursuit's methods and direct use of Decision Boundary 

increases. In this case it goes from 15% up to 35% at 22 features. Note with the ECHO 

classifier, PPDBFE and PPFSDBFE arrive at their maximum (95%) and stay there, 

meanwhile for DBFE, the Hughes Phenomena start to play its role after 7 features. 

With the use of a threshold there is a greater difference at 22 features between 



Projectior~ Pursuit's based procedures and direct use of Decision Boundary than with 

ML at 22 features. 
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Fig. 4.28. Training fields classification accuracy comparison between direct 
use of Decision Boundary (DBFE) and the use of Decision 
Boundary after different methods based on Projection Pursuit 
(PPDBFE and PPFSDBFE) for ECHO classifier. 
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Fig. 4.29. Test fields classification accuracy comparison between direct use 
of Decision Boundary (DBFE) and the use of Decision Boundary 
after different methods based on Projection Pursuit (PPDBFE and 
PPFSDBFE) for ECHO classifier. 
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Fig. 4.31. Test fields classification accuracy comparison between direct use 
of Decision Boundary (DBFE) and the use of Decision Boundary 
after different methods based on Projection Pursuit (PPDBFE and 
PPFSDBFE) for ECHO with 2% threshold. 

Discriminant Analysis 

data to a 22 In this experiment three procedures were used to project tha 

dimensior~al subspace. The first one was direct application of Discrirninant Analysis 

(DAFE) on the 200 dimensions at the Q space. The second procedure used was 

Projection Pursuit to project the data from Q to r. The third used is Projection Pursuit 

Feature Selection to project the data from @ to r. After Projection 13urs~~it's based 

algorithms were used Discriminant Analysis was applied in the r subspace in order to 



compare the test fields classification results (PPDAFE and PPFSDAFE) with direct use 

of Discriminant Analysis (DAFE). 

Figu~re 4.32, 4.33, 4.34 and 4.35 show the results with the ML classifier. In terms 

of the training fields, the classification results are very similar. In the test fields 

Projectior~ Pursuit's algorithms performs better. The difference there is significant. It is 

not as dramatic as in Decision Boundary because this last method of feature extraction 

requires rnore training samples per feature than Discriminant Analysis. Note in Figure 

4.33 that PPDAFE and PPFSDAFE are able to grow after 7 features. Tliis is due to tlie 

fact that tlie minimum Bhattacharyya distance, which is a bound of Bayes classification 

accuracy, is maximized for the entire r subspace. Independent of the fact that for K 

classes Discriminant Analysis only calculates K-1 independent features that maximize 

the Fisher criterion, the addition of more features of the r subspace will contribute 

more to the separation of classes. As expected PPDAFE has the best performance 

and reaches an accuracy above 90%. Meanwhile DAFE stop to grow after 7 features 

and stays at 85% accuracy. With the use of the 2% threshold the ML's results of test 

fields classification accuracy of Projection Pursuit's procedures are better than direct 

use of Discriminant Analysis. This is due to the fact that the assumptio~rl of normality is 

better supported with the Projection Pursuit' algorithms. 
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Fig. 4.32. Training fields classification accuracy comparison between direct 
use of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(PPDAFE and PPFSDAFE) for ML classifier. 
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Fig. 4.33. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(PPDAFE and PPFSDAFE) for ML classifier. 
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Fig. 4.34. Training fields classification accuracy comparison between direct 
use of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(PPDAFE and PPFSDAFE) for ML with 2% threshold. 
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Fig. 4.35. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(PPDAFE and PPFSDAFE) for ML with 2% threshold. 

The ECHO classification confirms the ML results. Projection Pursuit algorithms 

enable Discriminant Analysis to arrive at the maximum and maintain tlie data more in 

clusters. ,411 of this is based on the event that Projection Pursuit deals better with the 

Hughes Phenomena, high dimensional space characteristics and the assumption of 

normality 
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4.36. Training fields classification accuracy comparison between dilrect 
use of Discriminant Analysis (DAFE) and the use of Discrimir~ant 
Analysis after different methods based on Projection Pur:suit 
(PPDAFE and PPFSDAFE) for ECHO classifier. 
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Fig. 4.37. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(PPDAFE and PPFSDAFE) for ECHO classifier. 
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Fig. 4.38. Training fields classification accuracy comparison between direct 
use of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pursuit 
(PPDAFE and PPFSDAFE) for ECHO with 2% threshold. 
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Fig. 4.39. Test fields classification accuracy comparison between direct use 
of Discriminant Analysis (DAFE) and the use of Discriminant 
Analysis after different methods based on Projection Pur:juit 

(PPDAFE and PPFSDAFE) for ECHO with 2% threshold. 

4.7 Concclusion 

In this chapter two Projection Pursuit based algorithms have been proposed to 

preproce:ss the data before a feature extraction and classification algorithms are 

applied. They are regular Projection Pursuit and Projection Pursuit Feature Selection. 

The minimum Bhattacharyya distance among the classes was used a.s the projection 

index to maximize in the parametric version of Projection Pursuit. 'The purpose of 

these algorithms is to overcome the problem of training the classifi'er with a small 

number of labeled samples in a high dimensional space with its inherent 

characteristics. 

A fir.st stage of preprocessing has been proposed in order to estimate an a priori 

matrix A for the numerical optimization process that Projection Pursuit requires. The 

first stage preprocessing algorithm was based on binary tree techniques. Its purpose 

is to avoid arriving at a non-optimal maximum, and it helps preserve information from 

the high cjimensional space. 

The technique developed for the first stage pre-processing enables also the 

developrr~ent of a Projection Pursuit feature selection algorithm for high dimensional 

data where it overcomes the problem of large numbers of computations. Both of these 

techniques also estimate the dimensionality of the projected subspace. 

The experiments performed in this chapter show that Projection Pursuit enables 

feature extraction algorithm to extract more information from the training samples. That 

is shown in the enhancement of their training and test fields classification accuracy in 



the ML and ECHO classifiers. This is the case for small or relative Large nurr~ber of 

training samples and classes. 

This is due to the fact that Projection Pursuit fulfills the properties that a high 

dimensional reduction algorithm should have as explained in chapter 2. It eludes the 

difficulties of high dimensional data by making the computations at a lower 

dimensionality of the projected subspace, enabling the feature extraction algorithms to 

have more accurate estimations of the statistical parameters. At that feature subspace 

the assunrlption of normality is better supported, permitting the classifier to have better 

results in terms of classification accuracy. 



5. SU!.MMARY AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Surn~mary 

The present research is related with the problem that the optirnum number of 

features for feature extraction and classification purposes in supervised classification 

techniques is limited by the number of training samples. That c0nditio.n has restricted 

severely the practical applications of statistical pattern recognition procedures in high 

dimensional data. There is a need to reduce the dimensionality in a different way than 

using feature extraction techniques in order to avoid the problem sonietimes referred 

to as the curse of dimensionality. 

Chapter 2 studied the characteristics and properties of high dimensional space. It 

was suggested that use of a preprocessing step before the application of feature 

extractior~s methods and classification techniques, as shown in Figure 2.18 would be 

beneficial. That suggestion was based on some conclusions that came out of the 

study. Or~e  conclusion was that, because of problems with nonparametric schemes, a 

new parametric method was needed which performs the computation at a lower 

dimensional space instead at full dimensionality. Performing the computation in a 

lower dirr~ensional subspace that is a result of a linear projection from the original high 

dimensiolnal space will make the assumption of normality better supported, giving a 

better pa.rameter estimation, and better classification accuracy. Another important 

statement derived from the study is the need of taking into consideration first and 

second order statistics for measuring the distance among classes, as is done with 

Bhattacharyya distance. 

Chapter 3 developed a preprocessing method taking into cc~nsideration the 

characteristics studied in chapter 2. A modified schema of supervised classification 

was proposed. Such modification is the result of the addition of a preprocessing 

algorithm with the purpose of reducing the dimensionality of the data projecting it to a 

subspace where feature extraction or feature selection are more suitable. Projection 

Pursuit was the method used to develop the algorithms for accomplishing such 



preprocessing. A parametric version was developed and used based on the use of a 

projection index that uses a priori information such as labeled samples. Parametric 

Projectiori Pursuit fulfills the criteria established in chapter 2 for a. preprocessing 

method  s sing the min im~~m Bhattacharyya distance as the projection index to be 

minimized. This procedure, performing the computations at a lower dimensional 

subspace, makes the assumption of normality better supported with better estimations 

of parameters and features. All of this enables the algorithm to deal better with the 

Hughes phenomena, better maintaining the data in clusters, and resulting in better 

classif ica1:ion accuracy. 

Based on that concept, two approaches were developed, Parallel and Sequential 

Parametric Projection Pursuit. The Parallel approach has the advantage of being 

faster, but it does not guaranteed that it will perform better in terms of the optimization 

of the overall projection index. The Sequential approach had the disadvantage of 

being slow if it is directly implemented. Such disadvantage could be! overcome in a 

great exlend with an iterative version. The advantage that Sequential Projection 

Pursuit has to offer is a direct control of the projection index over the projected 

subspace. The optimization of the global projection index allows more control and 

better pelrformance against the problem of local maxima than local optimization in the 

Parallel approach. Still there was a need to compute an initial choice matrix A for the 

global optimization process. 

In chapter 4 a first stage of preprocessing was proposed in order to estimate an a 

priori matrix A for the numerical optimization process that Projection 13ursuit requires. 

The first stage preprocessing algorithm was based on binary decision tree techniques. 

Its purpose is to avoid arriving at a non-optimal local maximum, a~nd thus helping 

preserve more information from the high dimensional space. The technique developed 

for the first stage preprocessing enables also the development of a Projection Pursuit 

Feature Selection algorithm for high dimensional data that overcomes the problem of 

large numbers of computations. Both of these techniques also estimate the 

dimensionality of the projected subspace. The empirical results of training and test 

fields classification accuracy were better than direct use of feature extraction 

procedures at high dimensional space. This is due to the fact that Plrojection Pursuit 

fulfills the requirements that a high dimensional reduction algorithm should have, as 

explained in chapter 2. It eludes the difficulties of high dimensional data by making the 

computaitions at a lower dimensionality of the projected subspace, enabling the 

feature ctxtraction algorithms to have more accurate estimations of the statistical 

parameters. 



5.2 Suggestion for Further Work 

1. The exploration of Projection Pursuit's application in other areas of Statistical 

Pattern Recognition is highly encouraged. Among those areas is unsupervised 

learning, i.e. clustering. Most of the known clustering algorithms have problems in high 

dimensional space. It will be useful to design a scheme based on Projection Pursuit 

that performs the computations at a lower dimensional space. That will enable the 

clustering algorithm to extract more information about detailed classes from high 

dimensional data 

2. Another possible area of Projection Pursuit's application could be classification. The 

present classifiers estimate the parameters at full dimensionality. It will be important for 

analyzing high dimensional data to develop new classifiers based on well recognized 

theories and Projection Pursuit, i.e. doing the computation of the pararrleters at a lower 

dimensional space. 

3. In the present work a Parametric Projection Pursuit algorithm had been proposed in 

order to accomplish the objectives of a preprocessirlg method. A specific constraint to 

the matrix A was assumed and that resulted in the Parallel and Sequlential Projection 

Pursuit approaches. Both of them, assuming that adjacent features are highly 

correlated, combines groups of adjacent bands into one feature. Other types of 

constrictions could be explored. This could result in different lower dimensional 

computations for Parametric Projection Pursuit. The only requisite is that 

independently of what constraints are imposed on A, its rows should be linearly 

independent. 

4. In terrr~s of the present research, it is suggested that there is a need for research on 

different projection indices. In terms of feature extraction and classific:ation purposes, 

there is a need for parametric indices. Unsupervised classification requires a further 

developrr~ent of nonparanietric indices. It is suspected that different feature extraction 

algorithms, classifiers and clustering schemes will need different projection indices. 

There are other applications of remote sensing that could receive the benefits of 

Projection Pursuit and the development of a projection indices that irnply what is the 

interesting characteristic of the data that is required to be maximized. 

5. An empirical study is needed in order to estimate the optimum values of the 

thresholds z,., and 7,-,. These values are required in order to mak.e a comparison 

with equations (4.7) and (4.8). The values of the ni 's and the 'final number of 

dimensions are sensitive to these variables. 



6. Paramletric Projection Pursuit performs the computations at a lower diniensional 

space. It requires the use of a numerical optimization algorithm. A study of different 

numerical optimization methods will be useful for its application in high dimensional 

data. Bec,ause of the high dimensionality characteristic of the data, the number of local 

maxima could be high. 'The characteristic of being robust to the problem of local 

maxima should be the most relevant to be consider in the algorithm. 
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APPENDIX A 

The Bhattacharyya distance is the sum of the contribution of the difference of the 

means and the difference of the covariances. p = pM + p,, where 

and 

For ,the two class problem in a d-dimensional space assume, without generality, 

the following. 

then - 

2 
0 

E =  (A.4) 

0 ( 4 d  + 2 4 d  ) 

For that case, the computation of the mean and covariances components of 

Bhattacharyya distance are: 

1 Et2 
PM = 8 x 7  ;=I oj (A.5) 



APPENDIX B 

The amount of energy that real sensors receive and their bandwidth is finite. As a 

consequence we can model E; as a random variable that is defined over the range 

E , ~  E (Emin, Em,,) such that Em, < w, Vi .  

Under the assumption that the E ( E ; )  exist then: 

E,, 5 E(E:) 5 E,, (B.1) 

var (&;)  = E ( E ~ )  - E ~ ( E , ~ )  5 EL - Eiin (B.2) 

Both are 'finite quantities. 
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