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Abstract

The goal of supervised feature selection is to find a subset of input features
that are responsible for predicting output values. The least absolute shrinkage
and selection operator (Lasso) allows computationally efficient feature selection
based on linear dependency between input features and output values. In this pa-
per, we consider a feature-wise kernelized Lasso for capturing non-linear input-
output dependency. We first show that, with particular choices of kernel functions,
non-redundant features with strong statistical dependence on output values can
be found in terms of kernel-based independence measures such as the Hilbert-
Schmidt independence criterion (HSIC). We then show that the globally optimal
solution can be efficiently computed; this makes the approach scalable to high-
dimensional problems. The effectiveness of the proposed method is demonstrated
through feature selection experiments for classification and regression with thou-
sands of features.

1 Introduction
Finding a subset of features in high-dimensional supervised learning is an important
problem with many real-world applications such as gene selection from microarray
data (Xing et al., 2001; Ding and Peng, 2005; Suzuki et al., 2009; Huang et al., 2010),
document categorization (Forman, 2008), and prosthesis control (Shenoy et al., 2008).



1.1 Problem Description
Let X (⊂ Rd) be the domain of input vector x and Y(⊂ R) be the domain of output
data1 y. Suppose we are given n independent and identically distributed (i.i.d.) paired
samples,

{(xi, yi) | xi ∈ X , yi ∈ Y , i = 1, . . . , n},
drawn from a joint distribution with density px,y(x, y). We denote the original data by

X = [x1, . . . ,xn] ∈ Rd×n,

y = [y1, . . . , yn]> ∈ Rn,

where > denotes the transpose.
The goal of supervised feature selection is to find m features (m < d) of input

vector x that are responsible for predicting output y.

1.2 Lasso
The least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996) allows
computationally efficient feature selection based on the assumption of linear depen-
dency between input features and output values.

The Lasso optimization problem is given as

min
α∈Rd

1

2
‖y −X>α‖22 + λ‖α‖1,

where α = [α1, . . . , αd]
> is a regression coefficient vector, αk denotes the regression

coefficient of the k-th feature, ‖ · ‖1 and ‖ · ‖2 are the `1- and `2-norms, and λ > 0 is the
regularization parameter. The `1-regularizer in Lasso tends to produce a sparse solution,
which means that the regression coefficients for irrelevant features become zero. Lasso
is particularly useful when the number of features is larger than the number of training
samples (Tibshirani, 1996). Furthermore, various optimization software packages were
developed for efficiently computing the Lasso solution (Boyd and Vandenberghe, 2004;
Daubechies et al., 2004; Combettes and Wajs, 2005; Kim et al., 2007; Yin et al., 2008;
Wright et al., 2009; Tomioka et al., 2011).

However, a critical limitation of Lasso is that it cannot capture non-linear depen-
dency.

1.3 Instance-Wise Non-Linear Lasso
To handle non-linearity, the instance-wise non-linear Lasso was introduced (Roth,
2004), where the original instance x is transformed by a non-linear function ψ(·) :
Rd → Rd′ . Then the Lasso optimization problem is expressed as

min
β∈Rn

1

2
‖y −Aβ‖22 + λ‖β‖1,

1Y could be either continuous (i.e., regression) or categorical (i.e., classification). Structured outputs
can also be handled in our proposed methods.
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where Ai,j = ψ(xi)
>ψ(xj) = A(xi,xj), β = [β1, . . . , βn]> is a regression coefficient

vector, and βj is a coefficient of the j-th basis A(x,xj).
The instance-wise non-linear Lasso gives a sparse solution in terms of instances, but

not features. Therefore, it cannot be used for feature selection.

1.4 Feature-Wise Non-Linear Lasso (Feature Vector Machine)
To obtain sparsity in terms of features, the feature-wise non-linear Lasso was proposed
(Li et al., 2006).

The key idea is to apply a non-linear transformation in a feature-wise manner, not
in an instance-wise manner. More specifically, let us represent the sample matrix X in
a feature-wise manner as

X = [u1, . . . ,ud]
> ∈ Rd×n,

where uk = [xk,1, . . . , xk,n]> ∈ Rn is the vector of the k-th feature for all samples.
Then the feature vector uk and the output vector y are transformed by a non-linear
function φ(·) : Rn → Rp. The Lasso optimization problem in the transformed space is
given as

min
α∈Rd

1

2
‖φ(y)−

d∑
k=1

αkφ(uk)‖22 + λ‖α‖1, (1)

where α = [α1, . . . , αd]
> is a regression coefficient vector and αk denotes the regres-

sion coefficient of the k-th feature. By using the kernel trick (Schölkopf and Smola,
2002), Eq.(1) was shown to be equivalently expressed as the following quadratic pro-
gramming (QP) problem:

min
α∈Rd

1

2
α>Dα,

s.t. ∀k, |α>dk −D(uk,y)| ≤ λ

2
, (2)

where Dk,l = φ(uk)>φ(ul) = D(uk,ul) and D = [d1, . . . ,dd]. This formulation
is called the feature vector machine (FVM). Note, since FVM uses d × d dimensional
Hessian matrix D, it is especially useful when the number of training samples n is
much bigger than that of features d.

In the original FVM, mutual information (Cover and Thomas, 2006) was used as the
kernel function D(u,u′). However, the matrix D obtained from mutual information is
not necessarily positive definite (Seeger, 2002), and thus the objective function Eq.(2)
can be non-convex. Furthermore, when the number of training samples is smaller than
that of features (which is often the case in high-dimensional feature selection scenar-
ios), the matrix D is singular. This can cause numerical instability. Another restriction
of FVM is that, irrespective of regression or classification, output y should be trans-
formed by the same non-linear function φ(·) as feature vector u. This highly limits the
flexibility of capturing non-linear dependency. Finally, it is not statistically clear what
kind of features are found by this FVM formulation.
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Table 1: Feature selection methods.

Method Dependency Optimization Primal/Dual Scalability w.r.t. Structured output# of features
Lasso Linear Convex Primal Highly scalable Not available

mRMR Non-linear Greedy — Scalable Available
Greedy HSIC Non-linear Greedy — Scalable Available

HSFS Non-linear Non-convex — Not scalable Available
FVM Non-linear Non-convex† Dual Not scalable Available

QPFS/KTA Non-linear Non-convex† Dual Not scalable Available
SpAM Additive non-linear Convex Primal Scalable Not available

Proposed Non-linear Convex Primal Highly scalable Available

†In practice, positive constants may be added to the diagonal elements of the Hessian matrix to guarantee the convexity, although
the validity of selected features by this modification is not statistically clear.

1.5 Contribution of This Paper
To overcome the limitations of FVM, we propose an alternative feature-wise non-linear
Lasso. More specifically, we propose to use particular forms of universal reproducing
kernels (Steinwart, 2001) as feature and output transformations, and solve the optimiza-
tion problem in the primal space.

An advantage of this new formulation is that the global optimal solution can be
computed efficiently. Thus, it is scalable to high-dimensional feature selection prob-
lems. To the best of our knowledge, this is the first convex feature selection method that
is able to deal with high-dimensional non-linearly related features. Furthermore, this
new formulation has a clear statistical interpretation that non-redundant features with
strong statistical dependence on output values are found via kernel-based independence
measures such as the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al.,
2005) and the criterion based on the normalized cross-covariance operator (NOCCO)
(Fukumizu et al., 2008). Thus, the proposed methods can be regarded as a minimum
redundancy maximum relevance based feature selection method (Peng et al., 2005). In
addition, the proposed methods are simple to implement, which is a highly preferable
property for practitioners.

We also discuss the relation between the proposed method and existing feature se-
lection approaches such as minimum redundancy maximum relevance (mRMR) (Peng
et al., 2005), HSIC-based greedy feature selection (Song et al., 2012), quadratic pro-
gramming feature selection (QPFS) (Rodriguez-Lujan et al., 2010), kernel target align-
ment (KTA) (Shawe-Taylor and Kandola, 2002; Cortes et al., 2012), Hilbert-Schmidt
Feature Selection (HSFS) (Masaeli et al., 2010), and sparse additive models (SpAM)
(Ravikumar et al., 2009; Liu et al., 2009; Raskutti et al., 2012). See Table 1 for the
summary of feature selection methods.

Through experiments on real-world feature selection problems, we show that the
proposed methods compare favorably with existing feature selection methods.

2 Proposed Methods
In this section, we propose alternative implementations of the non-linear feature-wise
Lasso.
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2.1 HSIC Lasso
We propose a feature-wise non-linear Lasso of the following form, which we call the
HSIC Lasso2:

min
α∈Rd

1

2
‖L̄−

d∑
k=1

αkK̄
(k)‖2Frob + λ‖α‖1,

s.t. α1, . . . , αd ≥ 0, (3)

where ‖ · ‖Frob is the Frobenius norm, K̄(k) = ΓK(k)Γ and L̄ = ΓLΓ are centered
Gram matrices, K(k)

i,j = K(xk,i, xk,j) and Li,j = L(yi, yj) are Gram matrices, K(x, x′)

and L(y, y′) are kernel functions, Γ = In − 1
n
1n1

>
n is the centering matrix, In is the n-

dimensional identity matrix, and 1n is the n-dimensional vector with all ones. Note that
we employ non-negativity constraint for α so that meaningful features are selected (see
Section 2.2 for details). In addition, since we use the output Gram matrix L to select
features in HSIC Lasso, we can naturally incorporate structured outputs via kernels.
Moreover, we can perform feature selection even if the training data set consists of
input x and its affinity information L such as link structures between inputs.

Differences from the original formulation (1) are that we allow the kernel functions
K and L to be different and the non-negativity constraint is imposed. The first term in
Eq.(3) means that we are regressing the output kernel matrix L̄ by a linear combination
of feature-wise input kernel matrices {K̄(k)}dk=1.

2.2 Interpretation of HSIC Lasso
Here, we show that HSIC Lasso can be regarded as a minimum redundancy maximum
relevancy (mRMR) based feature selection method (Peng et al., 2005), which is a pop-
ular feature selection strategy in machine learning and artificial intelligence communi-
ties.

The first term in Eq.(3) can be rewritten as

1

2
‖L̄−

d∑
k=1

αkK̄
(k)‖2Frob =

1

2
HSIC(y,y)−

d∑
k=1

αkHSIC(uk,y)

+
1

2

d∑
k,l=1

αkαlHSIC(uk,ul), (4)

where HSIC(uk,y) = tr(K̄(k)L̄) is a kernel-based independence measure called the
(empirical) Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005) and
tr(·) denotes the trace. HSIC(y,y) is a constant and can be ignored. HSIC always takes
a non-negative value, and is zero if and only if two random variables are statistically
independent when a universal reproducing kernel (Steinwart, 2001) such as the Gaus-
sian kernel is used. Note that the empirical HSIC asymptotically converges to the true

2A MATLAB R© implementation of the proposed algorithm is available from http://www.
makotoyamada-ml.com/hsiclasso.html.
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HSIC with O(1/
√
n) (see Theorem 3 in Gretton et al. (2005)). In addition, HSIC can

be regarded as the centered version of the kernel target alignment (KTA) (Shawe-Taylor
and Kandola, 2002).

If the k-th feature uk has high dependence on output y, HSIC(uk,y) takes a large
value and thus αk should also take a large value so that Eq.(3) is minimized. On the
other hand, if uk is independent of y, HSIC(uk,y) is close to zero and thus such αk

tends to be eliminated by the `1-regularizer. This means that relevant features that have
strong dependence on output y tend to be selected by HSIC Lasso.

Furthermore, if uk and ul are strongly dependent (i.e., redundant features),
HSIC(uk,ul) takes a large value and thus either of αk and αl tends to be zero. This
means that redundant features tend to be eliminated by HSIC Lasso.

Overall, HSIC Lasso tends to find non-redundant features with strong dependence
on output y, which is the idea of minimum redundancy maximum relevancy (mRMR)
based feature selection methods (Peng et al., 2005). This is a preferable property in
feature selection.

Note that, it is possible to remove the non-negativity constraint in Eq.(3) and select
features that have non-zero coefficients α. However, if we allow negative values in
α, it is hard to interpret selected features. Indeed, interpretability is one of important
properties in feature selection, and thus we include the non-negativity constraint for
HSIC Lasso.

2.3 Kernel Selection
In theory, a universal kernel such as the Gaussian kernel or the Laplace kernel permits
HSIC to detect dependence between two random variables (Gretton et al., 2005). More-
over, it has been proposed to use the delta kernel for multi-class classification problems
(Song et al., 2012). Thus, in this paper, we employ the Gaussian kernel for inputs. For
output kernels, we use the Gaussian kernel for regression cases and the delta kernel for
classification problems.

For input x, we first normalize the input x to have unit standard deviation, and we
use the Gaussian kernel:

K(x, x′) = exp

(
−(x− x′)2

2σ2
x

)
,

where σx is the Gaussian kernel width.
In regression scenarios (i.e., y ∈ R), we normalize an output y to have unit standard

deviation, and we use the Gaussian kernel:

L(y, y′) = exp

(
−(y − y′)2

2σ2
y

)
,

where σy is the Gaussian kernel width.
In classification scenarios (i.e., y is categorical), we use the delta kernel for y,

L(y, y′) =

{
1/ny if y = y′,
0 otherwise,
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where ny is the number of samples in class y. Note that it is also possible to use the
Gaussian kernel in classification scenarios, but it tends to perform poorly (see Figure
4).

2.4 Computational Properties of HSIC Lasso
An important computational property of HSIC Lasso is that the first term in Eq.(3) can
be rewritten as

1

2
‖vec(L̄)− [vec(K̄(1)), . . . , vec(K̄(d))]α‖22,

where vec(·) is the vectorization operator. This is the same form as plain Lasso with n2

samples and d features.
If d > n2 (i.e., high-dimensional feature selection from a small number of train-

ing samples), the Lasso optimization technique called the dual augmented Lagrangian
(DAL)3 was shown to be computationally highly efficient (Tomioka et al., 2011). Be-
cause DAL can also incorporate the non-negativity constraint without losing its com-
putational advantages, we can directly use DAL to solve our HSIC Lasso problem. In
contrast, when n2 ≥ d, we may use the either cKTM or FVM (i.e., dual) formulation.

If the number of samples n is relatively large, the Gaussian kernel computation in
HSIC Lasso is expensive. Therefore, the overall computation cost of HSIC Lasso is
high. In addition, since naive implementation of HSIC Lasso requires n2d memory
space, it is not practical if both d and n are large (e.g., d > 10000 and n > 1000). Here,
we propose a table lookup approach to reduce the computation time and memory size.

More specifically, based on the fact that the Gaussian kernel values depend only on
the difference of two input values, we normalize every feature x to have mean zero and
unit standard deviation and discretize the difference of two input values into B values
(we use B = 4096 in our implementation). Then, we prepare in advance a lookup table
of B elements that contain Gaussian kernel values and refer to these values when we
compute the Gaussian kernels. The centered Gram matrix K̄ can be rewritten as

K̄ = (I − 1

n
11>)K(I − 1

n
11>)

= K − 1m> −m1> + s11>,

where m = 1
n
K1 ∈ Rn and s = 1

n2 1
>K1 ∈ R. Thus, to compute K̄, we only

need to store m and s. Namely, the required memory size for the table lookup based
approach is O(dn + B), which is much smaller than the memory size required for the
naive implementation, O(dn2).

Another approach to deal with large sample size would be using stability selection
which consists in running HSIC Lasso many times with subsampling and computing the
number of times each feature is selected across the runs (Meinshausen and Bühlmann,
2010; Bach, 2008).

3http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/
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2.5 Variation: NOCCO Lasso
Instead of K̄(k) and L̄, let us use K̃(k) = K̄(k)(K̄(k) + εnIn)−1 and L̃ = L̄(L̄ +
εnIn)−1, where ε > 0 is a regularization parameter. Then our optimization problem is
expressed as

min
α∈Rd

1

2

d∑
k,l=1

αkαlDNOCCO(uk,ul)−
d∑

k=1

αkDNOCCO(uk,y) + λ‖α‖1,

s.t. α1, . . . , αd ≥ 0,

where DNOCCO(uk,y) = tr(K̃(k)L̃) is the kernel-based dependence measure based
on the (empirical) normalized cross-covariance operator (NOCCO) (Fukumizu et al.,
2008). We call this formulation the NOCCO Lasso.

Because DNOCCO was shown to be asymptotically independent of the choice of ker-
nels, NOCCO Lasso is expected to be less sensitive to the kernel parameter choice than
HSIC Lasso, although ε needs to be tuned in practice.

2.6 Other Types of Regularizers
The proposed method is amenable to most of the popular regularizers such as group-
lasso and elastic-net regularizers (Meier et al., 2008; Zou and Hastie, 2005), as well
as to other feature selection problems. For example, the group-lasso regularizer can be
easily incorporated into our framework as

min
α∈Rd

1

2
‖L̄−

d∑
k=1

αkK̄
(k)‖2Frob + λ

G∑
g=1

‖αg‖2,

s.t. α1, . . . , αd ≥ 0,

where α = [α>1 , . . . ,α
>
G]>, αg is the gth group of variables, and G is the number of

groups. This group-lasso problem can also be efficiently solved by the DAL package
with the non-negativity constraint.

2.7 Relation to Two-Stage Multiple Kernel Learning
The proposed method is closely related to the two-stage multiple kernel learning (MKL)
method called centered kernel target alignment (cKTA) (Cortes et al., 2012), which
has been originally proposed for learning a kernel Gram matrix (not used for feature
selection problems).

If we adopt cKTA for supervised feature selection problems, the optimization prob-
lem of cKTA can be written as

min
α∈Rd

1

2

d∑
k,l=1

αkαlHSIC(uk,ul)−
d∑

k=1

αkHSIC(uk,y)

s.t. α1, . . . , αd ≥ 0.
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Differences from the HSIC Lasso are that cKTA solve the optimization problem in the
dual space and does not have the `1 regularization term.

An advantage of cKTA is that feature selection can be performed just by solving
a non-negative least-squares problem. Moreover, since cKTA has d × d dimensional
Hessian matrix (Dkl = HSIC(uk,ul)), cKTA is computationally efficient for feature
selection problems with large n and small d. However, the Hessian matrixD is not nec-
essarily positive definite (Seeger, 2002) and is singular in high-dimensional problems.
More specifically,D can be written as

D=[vec(K̄(1)),. . ., vec(K̄(d))]>[vec(K̄(1)),. . ., vec(K̄(d))],

and D is singular when d > n2 (i.e., high-dimensional feature selection from a small
number of training samples). Thus, solving the non-negative least-squares problem in
high-dimensional feature selection problems can be cumbersome in practice.

For the above reason, the proposed feature selection method is more suited than
cKTA for high-dimensional feature selection problems. In contrast, if we want to solve
a small d and large n feature selection problem, cKTA is more suited than the HSIC
Lasso.

3 Existing Methods
In this section, we review existing feature selection methods and discuss their relation
to the proposed approach. See Table 1 for the summary of feature selection methods.

3.1 Minimum Redundancy Maximum Relevance (mRMR)
Minimum redundancy maximum relevance (mRMR) (Peng et al., 2005) is a mutual
information based feature selection criterion.

Let V = [v1, . . . ,vm]> ∈ Rm×n be a sub-matrix of X = [u1, . . . ,ud]
> ∈ Rd×n,

where m features are extracted from d features. Then mRMR for V is defined as
follows:

mRMR(V ) =
1

m

m∑
k=1

M̂I(vk,y)− 1

m2

m∑
k,l=1

M̂I(vk,vl), (5)

where M̂I(v,y) is an empirical approximator of mutual information given as

M̂I(v,y) =

∫∫
p̂v,y(v,y) log

p̂v,y(v,y)

p̂v(v)p̂y(y)
dvdy.

p̂v,y,(v,y) denotes a Parzen window estimator of the joint density of v and y, and
p̂v(v) and p̂y(y) denotes Parzen window estimators of marginal densities of v and y,
respectively.

The first term in mRMR measures the dependency between chosen feature vk and
output y, while the second term is a penalty for selecting redundant features. Thus,
mRMR finds non-redundant features with strong dependence on outputs. A very fast
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implementation of mRMR available, and thus, it can deal with high-dimensional feature
selection problems.

mRMR-based feature selection is performed by finding a sub-matrix V that max-
imizes Eq.(5). However, since there are 2d possible feature subsets, the brute force
approach is computationally intractable. Hence, greedy search strategies such as for-
ward selection/backward elimination are used in practice (Peng et al., 2005). However,
the greedy approaches tend to produce a locally optimal feature set.

Another potential weakness of mRMR is that mutual information is approximated
by Parzen window estimation—Parzen window based mutual information estimation is
unreliable when the number of training samples is small (Suzuki et al., 2009).

3.2 Greedy Feature Selection with HSIC
The HSIC-based feature selection criterion (Song et al., 2012) is defined as

tr(M̄L̄), (6)

where M̄ = ΓMΓ is a centered Gram matrix, Mi,j = M(vi,vj) is a Gram matrix,
M(v,v′) is a kernel function, and (v1, . . . ,vm) = V ∈ Rm×n.

HSIC-based greedy feature selection is performed by finding a sub-matrix V that
maximizes Eq.(6). An advantage of HSIC-based feature selection is its simplicity; it can
be implemented very easily. However, since the maximization problem Eq.(6) is NP-
hard, forward selection/backward elimination strategies are used for finding a locally
optimal solution in practice (Song et al., 2012).

3.3 Hilbert-Schmidt Feature Selection (HSFS)
Hilbert-Schmidt feature selection (HSFS) (Masaeli et al., 2010) is defined as

min
W∈Rd×d

− HSIC(WX,y) + λ
d∑

j=1

‖wj‖∞,

where W = [w1, . . . ,wd] is a transformation matrix, λ > 0 is the regularization pa-
rameter, and ‖ · ‖∞ is the `∞-norm.

HSFS can be regarded as a continuously relaxed version of the HSIC-based feature
selection (Song et al., 2012). Thanks to this continuous formulation, the HSFS op-
timization problem can be solved by limited-memory BFGS (L-BFGS) (Nocedal and
Wright, 2003). However, since HSFS is a non-convex method, restarting from many
different initial points would be necessary to select good features, which is computa-
tionally expensive. Moreover, HSFS attempts to optimize a projection matrix which
has d2 parameters. That is, following the original HSFS implementation based on a
Quasi-Newton method, the total computational complexity of HSFS is O(d4), which
can be unacceptably large in high-dimensional feature selection problems. To reduce
the computational cost, it may be able to approximately solve the HSFS optimization
problem by reducing the size of the transformation matrix to d × q for q � d. How-
ever, this approximation leads to an additional tuning parameter that can not be chosen
objectively.
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3.4 Quadratic Programming Feature Selection (QPFS)
Quadratic programming feature selection (QPFS) (Rodriguez-Lujan et al., 2010) tries
to find features by solving a QP problem.

The QPFS optimization problem is defined as

min
θ∈Rd

(1− γ)

2
θ>Dθ − γθ>d,

s.t.
d∑

k=1

θk = 1, θ1, . . . , θd ≥ 0,

where θ = [θ1, . . . , θd]
>, Dk,l = D(uk,ul), d = [D(u1,y), . . . , D(ud,y)]>, D(·) is a

dependency measure, and γ ∈ [0, 1] is a tuning parameter. In QPFS, an empirical esti-
mator of mutual information is used as a dependency measure. Note that if we employ
HSIC as a dependency measure in QPFS and remove the sum-to-one constraint, QPFS
is equivalent to the centered KTA (cKTA) (Cortes et al., 2012), which is a multiple ker-
nel learning method and has been originally proposed for learning a kernel matrix (see
Section 2.7 for details).

Similar to cKTA, an advantage of QPFS is that feature selection can be performed
just by solving a QP problem. Moreover, since QPFS has d × d dimensional Hessian
matrix, QPFS is computationally efficient for feature selection problems with large n
and small d. However, the Hessian matrixD is not necessarily positive definite (Seeger,
2002) and is singular in high-dimensional problems.

3.5 Sparse Additive Models (SpAM)
The sparse additive models (SpAM) is useful for high-dimensional feature selection
(Ravikumar et al., 2009; Liu et al., 2009; Raskutti et al., 2012; Suzuki and Sugiyama,
2013).

The SpAM optimization problem can be expressed as

min
β1,...,βd∈Rn

‖y−
d∑

k=1

K(k)βk‖22 + λ

d∑
k=1

√
1

n
‖K(k)βk‖22,

where βk = [βk,1, . . . , βk,n]>, k = 1, . . . , d are regression coefficient vectors, βk,j is
a coefficient for [K(xk,1, xk,j), . . . , K(xk,n, xk,j)]

>, and λ > 0 is a regularization pa-
rameter. This problem can be efficiently solved by the back-fitting algorithm (Raviku-
mar et al., 2009). Note that SpAM is closely related to the hierarchical multiple ker-
nel learning (Bach, 2009), which employs a sparse additive model with an alternative
sparsity-inducing regularizer.

An advantage of SpAM is that it is a convex method and can be efficiently optimized
by the backfitting algorithm. Moreover, statistical properties of the SpAM estimator are
well studied (Ravikumar et al., 2009). A potential weakness of SpAM is that it can only
deal with additive models. That is, if data follows a non-additive model, SpAM may
not work well (see Figure 1(b)). Another weakness of SpAM is that it needs to opti-
mize nd variables, while the proposed methods contain only d variables. Thus, SpAM
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optimization tends to be computationally more expensive than the proposed methods.
Finally, an output y should be a real number in SpAM, meaning that SpAM cannot deal
with structured outputs such as multi-label and graph data.

4 Experiments
In this section, we experimentally investigate the performance of the proposed and ex-
isting feature selection methods using synthetic and real-world datasets.

4.1 Setup
We compare the performance of the proposed methods with mRMR (Peng et al., 2005),
QPFS (Rodriguez-Lujan et al., 2010), cKTA (Cortes et al., 2012), forward selection
with HSIC (FHSIC), FVM (Li et al., 2006), and SpAM4 (Ravikumar et al., 2009).
Note that, since it has been reported that the performance of FHSIC is comparable to
HSFS and HSFS is computationally expensive for high-dimensional data, we decided
to only compare the proposed method to FHSIC. For FVM, QPFS, and mRMR, the
C++ implementation of a mutual information estimator5 is used. Then, a QP solver
SeDuMi6 is used to solve the FVM and QPFS optimization problems. We observed
that the matrices D in FVM, QPFS, and cKTA tend not to be positive definite. In
our experiments, we added a small constant to the diagonal elements of D so that the
objective function becomes convex. For all experiments, we set λ = 1 in FVM, γ = 0.5
in QPFS and cKTA, and ε = 10−3 in NOCCO Lasso. For proposed methods, we
experimentally use σx = 1.

4.2 Synthetic Datasets
First, we illustrate the behavior of the proposed HSIC Lasso and NOCCO Lasso using
the following two synthetic datasets:

(a) Data1 (Additive model):

Y = −2 sin(2X1) +X2
2 +X3 + exp(−X4) + E,

where (X1, . . . , X256)
> ∼ N(0256, I256) and E ∼ N(0, 1). Here, N(µ,Σ) de-

notes the multi-variate Gaussian distribution with mean µ and covariance matrix
Σ.

(b) Data2 (Non-additive model):

Y = X1 exp(2X2) +X2
3 + E,

where (X1, . . . , X1000)
> ∼ N(01000, I1000) and E ∼ N(0, 1).

4We thank the authors of (Ravikumar et al., 2009) for providing us the code used in their paper.
5http://penglab.janelia.org/proj/mRMR/
6http://sedumi.ie.lehigh.edu/
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(b) Data2 (Non-additive model)
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(c) Computation time for Data2
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Figure 1: (a),(b): Feature selection results for artificial datasets over 30 runs. The
horizontal axis denotes the number of training samples, and the vertical axis denotes
the fraction of correctly selected features. In HSIC Lasso and NOCCO Lasso, the
regularization parameter λ is set so that the number of non-zero coefficients is in
{d∗, d∗ + 1, . . . , d∗ + 10} where d∗ is the number of true features. Then, we use top d∗

features by ranking regression coefficients. In QPFS, FVM, and SpAM, we use top d∗

features by ranking coefficients. (c): Comparison of computation time for Data2. The
horizontal axis denotes the number of entire features d, and the vertical axis denotes
the computation time in log-scale. (d): Comparison of computation time for Data2 for
HSIC Lasso. The horizontal axis denotes the number of training samples n, and the
vertical axis denotes the computation time in log-scale.

Figure 1 shows the feature selection accuracy of each method over 30 runs as func-
tions of the number of samples, where the accuracy is measured by the fraction of cor-
rectly selected features under the assumption that the number of true features is known.
As the figure clearly shows, the proposed HSIC Lasso and NOCCO Lasso methods se-
lect good features in both additive and non-additive model cases. SpAM also works
very well for Data1, but it performs poorly for Data2 because the additivity assumption
is violated in Data2. QPFS and FVM behave similarly, but they tend to be outperformed
by the proposed methods.

Next, we compare the computation time of each method. Here, we change the num-
ber of features in Data2 to d = 100, 200, . . . , 1000, while we fix the number of samples
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Table 2: Summary of real-world datasets.
Type Dataset # features (d) # samples (n) # Classes

Image AR10P 2400 130 10
PIE10P 2400 210 10
PIX10P 10000 100 10
ORL10P 10000 100 10

Microarray TOX 5748 171 4
CLL-SUB 11340 111 3

to n = 100. Figure 1-(c) shows the average computation time for each method over
30 runs. As can be observed, the computation time of HSIC Lasso and NOCCO Lasso
increases mildly with respect to the number of features compared to that of SpAM,
FVM, and QPFS. Figure 1-(d) shows the average computation time of HSIC Lasso for
30 runs. In this experiment, we use the table lookup trick for HSIC Lasso to deal with a
relatively large number of samples. This shows that the lookup trick allows us to handle
relatively large datasets.

4.3 Real-World Datasets
Next, we compare the performance of feature selection methods using real-world
datasets.

4.3.1 Multi-Class Classification

We use four image datasets and two microarray datasets7. Detailed information of the
datasets is summarized in Table 2.

In this experiment, we use 80% of samples for training and the rest for testing.
We repeat the experiments 100 times by randomly shuffling training and test samples,
and evaluate the performance of feature selection methods by the average classification
accuracy. We use multi-class `2-regularized kernel logistic regression (KLR) (Hastie
et al., 2001; Yamada et al., 2010) with the Gaussian kernel for evaluating the classifi-
cation accuracy when the top m = 10, 20, . . . , 50 features selected by each method are
used. In this paper, we first choose 50 features and then use top m = 10, 20, . . . , 50 fea-
tures having the largest absolute regression coefficients. In KLR, all tuning parameters
such as the Gaussian width and the regularization parameter are chosen based on 3-fold
cross-validation.

We also investigate the redundancy rate (RED) (Zhao et al., 2010)8,

RED =
1

m(m− 1)

∑
uk,uj ,k>l

|ρk,l|,

7http://featureselection.asu.edu/datasets.php
8The original redundancy rate was defined with a plain correlation coefficient (Pearson, 1920), not

the absolute correlation coefficient (Zhao et al., 2010). However, this is not appropriate as an error metric
because negative correlation decreases RED. For this reason, we decided to use the absolute correlation
coefficient.
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Figure 2: Mean classification accuracy for real-world data. The horizontal axis denotes
the number of selected features, and the vertical axis denotes the mean classification
accuracy.

Table 3: Mean classification accuracy (with standard deviations in brackets) for real-
world data.

Dataset HSIC NOCCO SpAM FVM mRMR QPFS cKTA FHSICLasso Lasso
AR10P .848 (.111) .846 (.111) .551 (.109) .795 (.121) .745 (.136) .743 (.137) .709 (.207) .773 (.122)
PIE10P .971 (.032) .972 (.031) .898 (.109) .955 (.062) .895 (.118) .952 (.067) .884 (.218) .908 (.091)
PIX10P .964 (.043) .964 (.042) .857 (.146) — (—) .769 (.124) .924 (.067) .920 (.090) .920 (.100)
ORL10P .938 (.068) .941 (.066) .669 (.120) — (—) .782 (.138) .884 (.096) .848 (.140) .788 (.132)
TOX .781 (.119) .788 (.113) .691 (.087) .686 (.085) .709 (.084) .769 (.077) .804 (.110) .715 (.087)
CLL-SUB .768 (.087) .769 (.084) .524 (.112) — (—) .640 (.098) .760 (.116) .709 (.104) .732 (.141)

where ρk,l is the correlation coefficient between the k-th and l-th features. A large RED
score indicates that selected features are more strongly correlated to each other, that
is, many redundant features are selected. Thus, as a feature selection method, a small
redundancy rate is preferable.

Results: Figure 2 shows the mean classification accuracy over 100 runs as functions
of the number of selected features. Table 3 shows the average classification accuracy
rates for the top m = 50 features selected by each method. In this experiment, since
the computation cost of FVM was too high for datasets with a large number of features,
we only included the FVM results for the datasets with a small number of features (i.e.,
AR10P, PIE10P, and TOX). The graphs in Figure 2 clearly show that HSIC Lasso and
NOCCO Lasso compare favorably with existing methods for the image datasets (i.e.,
AR10P, PIE10P, PIX10P, and ORL10P) in terms of the classification accuracy, and they
are comparable to existing methods for the microarray datasets (i.e., TOX and CLL-
SUB).

Table 4 shows the RED values for the topm = 50 features selected by each method.
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Table 4: Mean redundancy rate (with standard deviations in brackets) for real-world
data.

Dataset HSIC NOCCO SpAM FVM mRMR QPFS cKTA FHSICLasso Lasso
AR10P .196 (.028) .195 (.028) .255 (.036) .260 (.039) .268 (.038) .217 (.050) .235 (.034) .350 (.091)
PIE10P .135 (.014) .139 (.017) .250 (.042) .193 (.029) .225 (.036) .183 (.026) .155 (.021) .285 (.059)
PIX10P .177 (.023) .174 (.023) .388 (.105) — (—) .200 (.066) .286 (.057) .198 (.036) .348 (.064)
ORL10P .192 (.026) .191 (.025) .300 (.047) — (—) .294 (.095) .204 (.032) .191 (.034) .225 (.045)
TOX .382 (.027) .381 (.027) .391 (.028) .422 (.031) .386 (.032) .384 (.028) .371 (.040) .396 (.036)
CLL-SUB .344 (.034) .345 (.034) .403 (.058) — (—) .328 (.039) .322 (.033) .281 (.050) .352 (.061)
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Figure 3: Mean classification accuracy of HSIC Lasso with different Gaussian widths.
The horizontal axis denotes the number of selected features, and the vertical axis de-
notes the mean classification accuracy.

As can be observed, HSIC Lasso and NOCCO Lasso tend to have smaller RED values,
and thus they select less redundant features.

Role of the Gaussian Width and the Output Kernel: In the proposed methods, the
Gaussian width and the output kernel L(y, y′) must be chosen manually. We carried
out a set of experiments to show the sensitivity of choosing the Gaussian width and
the output kernel in Figures 3 and 4. Note that, since the performance of HSIC Lasso
and NOCCO Lasso are comparable, we here only evaluate HSIC Lasso. As can be
seen in Figure 3, the proposed method is not so sensitive to the Gaussian width. From
the output kernel comparison in Figure 4, we found that HSIC Lasso with delta kernel
clearly outperforms that with Gaussian kernel. Thus using different input and output
kernels is important for feature selection in classification scenarios.
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Figure 4: Mean classification accuracy of HSIC Lasso with different output kernels.
Here, we use the delta kernel and the Gaussian kernel. The horizontal axis denotes
the number of selected features, and the vertical axis denotes the mean classification
accuracy.

4.3.2 High-Dimensional Regression

We also evaluate our proposed method with the Affymetric GeneChip Rat Genome 230
2.0 Array data set (Scheetz et al., 2006). The data set consists of 120 rat subjects with
31098 genes which were measured from eye tissue. Similar to Huang et al. (2010), we
focus on finding genes that are related to the TRIM32 gene, which was recently found
to cause the Bardet-Biedl syndrome. Note that, since TRIM32 takes real values, this is
a regression problem.

In this experiment, we use 80% of samples for training and the rest for testing. We
repeat the experiments 100 times by randomly shuffling training and test samples, and
evaluate the performance of feature selection methods by the mean squared error. In
addition, we use the correlation coefficient between the predicted and the true TRIM32
values, which is a popular performance metric in biology community. We use kernel
regression (KR) (Schölkopf and Smola, 2002) with the Gaussian kernel for evaluating
the mean squared error and the mean correlation when the top m = 10, 20, . . . , 50
features selected by each method are used. We first choose 50 features and then use top
m = 10, 20, . . . , 50 features having the largest absolute regression coefficients. In KR,
all tuning parameters such as the Gaussian width and the regularization parameter are
chosen based on 3-fold cross-validation.

Results: Figure 5 shows the mean squared error and the mean correlation coefficient
over 100 runs as functions of the number of selected features. As can be observed, the
proposed HSIC Lasso and NOCCO Lasso compare favorably with existing methods.
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Figure 5: (a): Mean squared error for the biology data. The horizontal axis denotes the
number of selected features, and the vertical axis denotes the mean squared error. Here,
we use the kernel parameter σx = 1.0 for both HSIC Lasso and NOCCO Lasso. (b),(c):
Mean squared error of HSIC Lasso and NOCCO Lasso with respect to different kernel
parameters. (d): Mean correlation for the biology data. The horizontal axis denotes
the number of selected features, and the vertical axis denotes the mean correlation.
(e),(f): Mean correlation coefficient of HSIC Lasso and NOCCO Lasso with respect
to different kernel parameters. The average redundancy rate of HSIC Lasso, NOCCO
Lasso, mRMR, and Lasso are 0.44, 0.45, 0.42, and 0.43.

5 Conclusion
In this paper, we proposed novel non-linear feature selection methods called HSIC
Lasso and NOCCO Lasso. In the proposed methods, global optimal solutions can be ob-
tained by solving a Lasso optimization problem with a non-negativity constraint, which
can be efficiently performed by the dual augmented Lagrangian algorithm (Tomioka
et al., 2011). Furthermore, the proposed methods have clear statistical interpretation
that non-redundant features with strong statistical dependence on output values can be
found via kernel-based independence measures (Gretton et al., 2005; Fukumizu et al.,
2008). We applied the proposed methods to real-world image and biological feature
selection tasks, and experimentally showed that they are promising.

The usefulness of the proposed method will be further investigated on more real-
world applications such as computer vision, bioinformatics, and speech and signal pro-
cessing in the future work. Moreover, extending the proposed model to multi-task learn-
ing and prediction and investigating theoretical properties of the proposed formulation
are important issues to be investigated.
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