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High-Dimensional Gene Expression and Morphology Profiles
of Cells across 28,000 Genetic and Chemical Perturbations

Marzieh Haghighi, Shantanu Singh, Juan Caicedo, Anne Carpenter

Broad Institute of MIT and Harvard

Abstract
Populations of cells can be perturbed by various chemical and genetic treatments and
the impact on the cells’ gene expression (transcription, i.e. mRNA levels) and
morphology (in an image-based assay) can be measured in high dimensions. The
patterns observed in this profile data can be used for more than a dozen applications in
drug discovery and basic biology research, but both types of profiles are rarely available
for large-scale experiments. We provide a collection of four datasets with both gene
expression and morphological profile data useful for developing and testing
multi-modal methodologies. Roughly a thousand features are measured for each of the
two data types, across more than 28,000 thousand chemical and genetic perturbations.
We define biological problems that can be investigated using the shared and
complementary information in these two data modalities, provide baseline analysis and
evaluation metrics for multi-omic applications, and make the data resource publicly
available (http://broad.io/rosetta).

Introduction
Biological systems can be quantified in many different ways. For example, researchers
can measure the morphology of a cell using microscopy and image analysis, or
molecular details such as the levels of mRNA or protein in cells. Historically, biologists
chose a single feature to measure for their cell samples, based on their prior knowledge
or hypotheses. Now, "profiling" experiments capture a high-dimensional profile of
features for each sample, and hundreds to thousands of samples can be quantified. This
allows the discovery of unexpected behaviors of the cell system.
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Profiling experiments carried out at large scale remain expensive, even for a single
profiling modality. We observed that no public dataset exists providing both genetic and
chemical perturbation of cells with two different kinds of profiling readouts. Such a
dataset would enable multi-modal (also known as multi-omic) analyses and
applications. Examples include integrating the two data sources to better predict a
compound’s activity in an assay 1, predicting the mechanism of action of a drug based
on its profile similarity to well-understood drugs 2, or predicting a gene’s function based
on its profile similarity to well-understood genes 3.

Observing a system from multiple perspectives is known to reveal patterns in data that
may not be visible in individual perspectives. Machine learning methods have been
explored in various fields to learn from multiple sources to make better inferences from
data 4. In biology, the advancement of technologies for measuring multi-omics data has
sparked research investigating the relationship and integration of different
high-dimensional readouts 5. For example, transcriptomics, proteomics, epigenomics
and metabolomics data can be combined to predict the mechanisms of action (MoAs) of
chemical compounds 6.

Here, we created a collection of gene expression and morphology datasets with the scale
and annotations needed for machine learning research in multi-modal data analysis and
integration. This Resource provides two different, rich views on the cells by providing
roughly a thousand mRNA levels and a thousand morphological features when
samples of cells are perturbed by hundreds to thousands of different conditions,
including chemical and genetic. Furthermore, we present a framework for thinking
about the utility of multi-modal data by defining applications where the shared
information, and the complementary information, across data types can be useful, using
terminology understandable to those new to the biological domain. We demonstrate
example applications within each group and provide baseline methods, code,
evaluation metrics, and benchmark results for each, as a foundation for future
biologically-oriented machine learning research.

Results
Data generation for gene expression and morphological profiles
All datasets were created at our institution (see Methods) and involved one of two types
of "inputs": chemical perturbations and genetic perturbations (Figure 1). There are also
two types of high-dimensional outputs measured: gene expression profiles and
morphological profiles, each with roughly 1000 features measured. We note that "genes"
are an input (individual genes are overexpressed as the perturbation in some datasets)
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and an output (gene expression profiles are comprised of the measured mRNA levels
for each gene); this can cause confusion for researchers new to the domain.

We captured gene expression (GE) profiles using the L1000 assay 7. Each cell’s DNA is
transcribed into various mRNA molecules which can be translated into proteins that
carry out functions in the cell. The levels of mRNA in the cell are often biologically
meaningful - collectively, mRNA levels for a cell are known as its transcriptional state;
each individual mRNA level is referred to as the corresponding gene’s "expression".
The L1000 assay reports a sample’s mRNA levels for 978 genes at high-throughput,
from the bulk population of cells treated with a given perturbation. These 978
"landmark" genes capture approximately 82% of the transcriptional variance for the
entire genome 7.

We captured morphological profiles using Cell Painting (CP) 8. This microscopy assay
captures fluorescence images of cells colored by six well-characterized fluorescent dyes
to stain the actin cytoskeleton, Golgi apparatus, plasma membrane, nucleus,
endoplasmic reticulum, mitochondria, nucleoli, and cytoplasmic RNA in five channels
of high-resolution microscopy images. Images are processed using CellProfiler software
9 to extract thousands of features of each cell’s morphology such as shape, intensity and
texture statistics, thus forming a high-dimensional profile for each single cell. The
profiles are then aggregated for all the single cells in the sample.

For both data types, aggregation of all the replicate-level profiles of a perturbation is
called a treatment-level profile. In our study, we used treatment-level profiles in all
experiments but have provided replicate-level profiles for researchers interested in
further data exploration. We note that of the eight datasets provided (four datasets x
two modalities), four have been the subject of previous research published by
researchers at our Institute 3,10,11; here we complete the matrix by providing the missing
data type for each pair, organize them, and provide benchmarks.

Information content of data modalities: Shared versus Complementary
Cell morphology and gene expression are two very different kinds of measurements
about a cell's state, and their relationship is known to be complex. For example, a
change in morphology can induce gene expression changes and gene expression
changes can induce a change in cell morphology, but neither is always the case. Even if
technical artifacts were non-existent, we do not expect a one-to-one map between these
two modalities. We therefore hypothesize that the information in each data type consists
of a shared subspace, a modality-specific complementary subspace, and noise (Figure
1). Both subspaces can be exploited for biological applications.
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Shared subspace
The shared subspace between gene expression and cell morphology is beginning to be
explored. For example, probabilistic canonical correlation analysis learned a shared
structure in paired samples of histology images and bulk gene expression RNA-seq
data, suggesting that shared latent variables form a composite phenotype between
morphology and gene expression that can be useful 12. In another study, cross-modal
autoencoders learned the shared latent space for single-cell RNA-seq and chromatin
images in order to integrate and translate across modalities 13.

The existence of a shared subspace enables multiple applications. Most prominently, if
sufficient shared information is present, one modality can be computationally predicted
(i.e. inferred, estimated) using another, saving significant experimental resources. For
example, one could predict the expression level of genes of interest given their
morphological profiles from already-available images, even from patients whose
samples are no longer available for mRNA testing. Or, one could generate images from
large libraries of mRNA profiles.

Another use of shared subspace is to identify relationships between specific features of
the two types. For example, a morphological feature and a specific gene's mRNA level
may be tightly linked, which can yield clues as to the biological mechanisms underlying
their relationship. As well, inspecting which genes can be well-predicted may shine light
on general relationships between mRNA levels and morphology for different classes of
genes14; enrichment analysis of these groups of genes could also lead to biological
pattern discoveries. Researchers have used linear regression and enrichment analysis to
explore the association between variations in cell morphology and transcriptomic
data15.

Modality-specific, complementary subspaces
Each modality will have a modality-specific subspace containing information unique to
that modality and unpredictable by the other. Although this property confounds
applications requiring a shared subspace, it enables other applications because the
fusion of two modalities should increase the overall information content, and therefore
predictive power, of a profiling dataset.

Data modality fusion and integration techniques are an active area of research in
machine learning 4 and could potentially yield a superior representation of samples for
many different biological profiling tasks on datasets where multiple profiling modalities
are available. For example, predicting assay activity might be more successful using
information about the impact of that compounds on cells' mRNA levels and
morphology, rather than either data source alone 1. Likewise, predicting the function of
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a gene based on similarities to other genes' profiles might be more successful using both
data types.

Figure 1. Multi-modal genetic and chemical perturbation datasets are valuable for many
applications. For each dataset, Cell Painting and L1000 assays were used to collect
morphological and gene expression representations (profiles), respectively.

Application 1: Predicting gene expression and morphology from each other
As a baseline for finding the correspondence between modalities and predicting one
from the other, we modeled the relationship using a regression model in which the
mRNA level of each landmark gene in the gene expression profile can be estimated as a
function of all the morphological features in the Cell Painting profile, ;𝑦𝑙 = 𝑓θ 𝑋𝑐𝑝( )+ 𝑒𝑙
in which is a vector of expression levels for the landmark gene across all the𝑦𝑙 𝑙
perturbations in a dataset and is the whole morphological data matrix representing𝑋𝑐𝑝
all morphological changes across all the perturbations. We use Lasso as a baseline linear
model and multilayer perceptron (MLP) as a baseline nonlinear model for the
regression problem.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.08.459417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459417
http://creativecommons.org/licenses/by/4.0/


Figure 2. An application using the shared subspace: cross-modality predictions from CP to GE.

(a) Distribution of prediction scores for all landmark genes for each Lasso and MLP model,𝑅2
grouped for each dataset. Many genes are well-predicted, especially using MLP. The random

shuffle models are negative controls. (b) The proportion of genes that are well-predicted ( > (𝑅2
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)) are reported as Percent Predictable for each dataset. (c) The overlap of genes𝑡99𝑡ℎ + 0. 2
predictable by the MLP model ( > ( )) are shown across the four datasets; 58 are𝑅2 𝑡99𝑡ℎ + 0. 2
well-predicted using data from any of the four datasets. (d) Network of functional categories of
all landmark genes in the L1000 assay, with the 58 highly predictable genes based on all datasets
highlighted in red; they fall into the phosphoprotein, acetylation and cytosol categories. (e)

Landmark genes that are well-predicted (more than 98% score) are shown along with their𝑅2
family names for the LUAD dataset. Multiple repetitions on the chart is due to multiple gene
family labels for some of the genes in the list. (f) Example of interpretable maps showing the
connection between the expression of each landmark gene and the activation of each category of
morphological features in the LUAD dataset: each point on the heatmap shows the predictive
power of a group of morphological features (on axis y) for predicting expression level of a

landmark gene (on axis x). “Predictive power” here means the scores generated by limiting𝑅2
the prediction to all the features in the y axis group. For example, STX4 is marked with a star

and discussed in the main text. Heatmap is limited to the genes that have >0.7 for at least one𝑅2
of y axis groups. The complete version is provided in the github repository as a xlsx file
(https://github.com/carpenterlab/2021_Haghighi_submitted/blob/main/results/SingleGene
Pred_cpCategoryMap/cat_scores_maps.xlsx) that can be loaded into Morpheus 16 or Python for
further exploration.
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Figure 3. An application using the shared subspace: cross-modality predictions from GE to CP.

(a) Distribution of prediction scores for all morphological features using the MLP model, for𝑅2
each dataset. (b) Categories of highly predictable CP features using GE profiles (median score𝑅2
across all datasets is more than 0.9). (c) Example output of explorative scripts available to
researchers to see what are the most relevant genes to a given morphological feature of interest
(and vice versa).

Some datasets showed excellent accuracy in predicting some mRNA levels from
morphology data, with MLP yielding superior results to Lasso (Figure 2a and b,
complete table in Appendices C and D). Machine learning methods that can improve
upon these benchmarks would be very useful to the biomedical community. Two of the
datasets (LUAD and LINCS) have a markedly higher performance than the other two
(TAORF and CDRP-bio), which suggests a likely poorer data quality or poorer
alignment of the modalities in the latter two of the modalities in the latter two.
Likewise, further preprocessing and denoising techniques such as batch effect
corrections to improve alignment are another target for future machine learning
research.

The shared information in the two modalities can be used in other ways. We can
identify the overlap in landmark genes that are highly predictable according to one or
more datasets (Figure 2c) and for the 58 well-predicted in all four, we can examine the
functional categories they fall into; mainly phosphoprotein, acetylation and cytosol
(Figure 2d). For the LUAD dataset (which has the highest cross-modal predictability)
we also examined the gene families for highly predictable genes (Figure 2e), finding a
diverse array represented, though we note the experiment contained only genes found
mutated in lung cancers.

Finally, we examined prediction scores for each category of image-based feature in the
experiment, to aid in understanding which features underlie prediction of which genes’
mRNA levels. To do this, we first sorted Cell Painting features into four categories
(intensity, texture, radial distribution, and shape) and the five fluorescent channels (DNA,
RNA, ER, AGP, Mito), then calculated and displayed feature-group-specific prediction
scores as a hierarchically-clustered heatmap of median prediction scores (Figure 2f). In
this view, genes with strong red columns are readily predicted using any of the
morphological categories of features, indicating that the genes are associated with
widespread morphological changes; several of these are cell cycle-related, which is
known to impact morphology dramatically. Others are more selective, such as STX4,
marked with a star, which is most strongly predictable by ER and AGP texture features;
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this is consistent with its role in trafficking of intracellular membranes and the plasma
membrane, per UniProt17.

Prediction can be run in the other direction as well, i.e. each morphological feature can
also be estimated using the 978 landmark genes as . We find a large𝑦𝑓 = 𝑓θ 𝑋𝐺𝐸( )+ 𝑒𝑙
portion of morphological features to be highly predictable especially for the LUAD and
LINCS datasets (Figure 3a). Grouping highly predictable morphological features
according to all the datasets reveals that they fall mainly in the texture features category
across all the channels (Figure 3b). We also provide a jupyter notebook for exploring the
list of top connections between any gene or morphological features of interest
(https://github.com/carpenterlab/2021_Haghighi_submitted/blob/main/3-exploreTh
eLink.ipynb). Users can input an L1000 landmark gene) and get the list of top
morphological features involved in the prediction of the input feature along with their
importance score. Likewise, one can query a morphological feature to find the
landmark genes whose mRNA levels are predictive. For example, the morphological
feature "Cells_Texture_InfoMeas1_RNA_3_0" relies on the levels of many genes in its
prediction, including several known to be involved in mRNA processing (Figure 3c).

Application 2: Integrating gene expression and morphology to predict the mechanism
of action of compounds
Discerning how a compound works is a major bottleneck in drug discovery 18. The task
is called mechanism of action (MoA) determination, and the goal is to determine the
mechanism by which the drug impacts the biological system. One promising method to
predict mechanisms of action is to collect a profile from cells and attempt to match it to
a library of profiles gathered from other chemical perturbations: a match, or close
similarity, can be helpful if the compound the query matches to is already well-known.
Likewise, a match to a genetic perturbation means that the gene, or another gene in the
same pathway, is a possible target of the query compound.

Several studies have reported success predicting the mechanism of action of
compounds using gene expression or cell morphology data individually 19–22 but none of
these integrated the two data types to test for improved predictive ability. We therefore
provide here the first benchmark for this, using the two chemical perturbation datasets
in our set, CDRP-bio and LINCS. Using logistic regression and multilayer perceptron
(MLP) classifiers as the baseline models, we applied each for predicting MoA labels
using each modality of data independently, using leave-one-compound-out
cross-validation on a filtered subset of compounds.

The two profile types, GE and CP, gave relatively comparable performance in predicting
MoA across the two datasets and two model types, with the exception that CP was
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much stronger on the CDRP-bio dataset using the MLP model (Figure 4a). We also
tested two trivial data fusion strategies (one early, one late) to combine both modalities
(Figure 4a). Our early fusion baseline is a representation-level concatenation of profiles
from the two modalities. Late fusion is at the decision level and averages predicted class
probabilities (based on single modality learned classifiers) for making the MoA class
decision for test compounds. Trivial early and late fusion of modalities show relatively
small improvements upon the performance of the better-performing modality,
highlighting the need for applying data fusion methods that better leverage the
complementarity of the modalities.

We also test how removing the complementary information of each modality impacts
MoA prediction; the yellow bars show the effect of performing Canonical Correlation
Analysis (CCA) across both modalities, projecting each modality into the common (ie.
shared) subspace, and then late fusion of the classifier decision trained on each
subspace-projected modality. As hypothesized, limiting the model to the shared
information and removing the modality-specific information reduces the performance
of the MoA prediction task.

Exploring MoA-class-specific F1-scores for the late fusion of modalities reveals high
variation in class specific prediction results (Figure 4b). As already seen more generally,
the simple fusion of modalities does not typically increase the performance of MoA
prediction task over the higher performing modality alone for individual MoA
categories.
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Figure 4. An application using the complementary subspaces: integrating multimodal data for
mechanism of action (MoA) prediction. MoA classification of the two compound datasets
(CDRP-bio and LINCS) using gene expression, morphology and their integration to predict the
mechanism of action of compounds. (a) Classification performance (weighted F1-score) for the
MLP and Logistic Regression classifiers using each data modality alone, as well as the two
trivial fusion strategies explained in the main text and late fusion of modalities after application
of CCA on the feature space of both modalities. Chance-level predictions for each dataset are
shown as a horizontal red line on each dataset plot. (b) Class-specific F1-scores are shown based
on the MLP model for 16 MoA categories of CDRP-bio (top) and for LINCS (bottom, where the
33 out of 57 MoA categories that resulted in zero F1-scores are excluded).
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Discussion and Limitations
We provide the research community a collection of multi-modal profiling datasets with
gene expression and morphology readouts, representing two cell types and two
perturbation types (genetic and chemical). We define useful biological applications for
this data in two categories: those using the shared information and those using
modality-specific, complementary information. We provide the data, code, metrics, and
benchmark results for one application in each category.

The results demonstrate that gene expression and morphology profiles contain useful
overlapping and distinct information about cell state. The results also demonstrate that
these applications are challenging enough to provide room for improvement. For
example, the variation in the performance for prediction tasks across different datasets
shows the necessity of machine learning techniques to further filter and preprocess the
profiles (e.g. to correct batch effects) to improve performance. Such techniques might
also sufficiently align the four datasets with each other, to explore generalized,
dataset-independent models. Nevertheless, we note that we do not expect anywhere
close to 100% accuracy for either application. For prediction across the two modalities,
we do not expect the modalities to be completely overlapping in their shared
information. In the case of MoA prediction, the ground truth is based on imperfect
human knowledge.

These data, and methods derived from them, can accelerate drug discovery and
therefore improve human health and reduce drug development costs. Nevertheless, we
note an ethical concern: the cell types are commonly used historical lines derived from
two white patients, one male (A549) and one female (U2OS). Therefore, conclusions
from this data may only hold true for the demographics or genomics of those persons
and not broader groups. They were chosen because the lines are both well-suited for
microscopy and they offer the advantage of connecting to extensive prior studies and
datasets using them.

There are multiple additional limitations for the presented datasets, aside from their
data quality as already noted. The number of gene perturbations captured in these
datasets are in the few hundreds whereas there are roughly 21,000 genes in the genome
and numerous variations within each. Likewise, a few thousand compounds are tested
here but pharmaceutical companies often have collections of compounds numbering in
the millions. The only limitation for expanding these datasets are the financial resources
to carry out the experiments. In terms of the assays themselves, the gene expression
profiles are captured by the L1000 assay, which is thought to capture 82% of full
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transcriptome variation 7, and the Cell Painting assay includes only six stains, which is
insufficient to capture the localization and morphological variation of all cellular
components.

Despite these limitations, these datasets may be used to pursue many other applications
of profiling in biology, as well as methods development. The complementary
information used here for MoA prediction can be used for any profiling application;
there are more than a dozen that can impact basic biology discovery and the
development of novel therapeutics23. Each application can also be validated in different
ways. For example, the prediction task might be extended to more complex systems,
such as human tissue samples, although such samples are more difficult to procure. In
the future, multimodal profiles at the single-cell level may become widely available. In
the presented datasets, single-cell information exists in one modality (images) but not in
the other modality (mRNA). Therefore, the variations in one cannot be explained by the
other, as we have a distribution in one space and point estimates in the other space.
Although still very rare, small, and labor-intensive to create, data sets with both gene
expression and morphology at single-cell resolution are beginning to become available
via in situ RNA-seq methods and could accelerate the field of multi-modal biological
data analysis.

Code and Data Availability
Preprocessed profiles that are augmented with gene and compound annotation are
available on a public AWS S3 bucket.
Documentation on the folder structure, dataset details, instructions for accessing the
data, and the source code to reproduce and build upon these results are available at
http://broad.io/rosetta. We license the source code as BSD 3-Clause, and license the
data, results, and figures as CC0 1.0.
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Online Methods

Dataset preprocessing

We gathered four available data sets that had both Cell Painting morphological (CP)
and L1000 gene expression (GE) profiles, preprocessed the data from different sources
and in different formats in a unified .csv format, and made the data publicly available at
amazon s3 bucket: s3://cellpainting-datasets/Rosetta-GE-CP
Each csv file contains a replicate level of profiles and is augmented with the metadata
available for that dataset.

Cell Painting and L1000 Profiles
Single-cell morphological (CP) profiles were created using CellProfiler software and
processed to form aggregated replicate profiles using the R cytominer package
(https://github.com/cytomining/cytominer).

We made the following three types of profiles available:
● Aggregated profiles which are the average of single-cell profiles in each sample.
● Normalized profiles which are the z-scored aggregated profiles, where the scores

are computing using the distribution of negative controls as the reference.
● Normalized variable-selected which are normalized profiles with features

selection applied.

For L1000, we use the previously processed 978 “landmark” genes as our input features
The complete processing details are provided in 7.

Data processing for Analysis
We have used treatment-level profiles for both the gene expression (GE, using L1000)
and morphology (CP, using Cell Painting) modalities for the analysis presented,
although replicate-level profiles are provided and could be used instead in other
formulations of the problem to create more advanced models.
Treatment-level profiles are the average of replicate-level profiles, and replicate-level
profiles are the average of single-cell measurements (in the case of CP; for GE the finest
granularity available is the bulk population replicate-level profile).
We standardized replicate-level profiles per plate to have zero mean and unit variance
before averaging them to form treatment-level profiles.

Measuring quality of profiles

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.08.459417doi: bioRxiv preprint 

http://paperpile.com/b/ZSGskb/iHkX
https://clue.io/
http://paperpile.com/b/ZSGskb/iHkX
https://github.com/cytomining/cytominer/blob/master/vignettes/cytominer-pipeline.Rmd
https://paperpile.com/c/ZSGskb/8mui
https://doi.org/10.1101/2021.09.08.459417
http://creativecommons.org/licenses/by/4.0/


There are inherent differences in the biological design (type of perturbation, cell line
used, and time point of exposure to perturbation) and experimental parameters
(different instrumentation, reagent batches, and personnel running the experiments
creating distinct technical artifacts such as batch effects) differences in the datasets.
Consistency of profiles of a single treatment across different batches of experiment is
considered a measure of data quality. We check this consistency as follows.
After standardization of the profiles per plate, we calculate the Pearson correlation
coefficient between each pair of profiles for the same perturbation. The distribution of
these coefficients for each dataset and modality are illustrated in Appendix B shown as
red curves. The corresponding blue curve to each red curve is the null distribution
showing the correlation coefficient between pairs of profiles that belong to different
perturbations. The non-zero dotted vertical line to the right shows the 90th percentile of
the null distribution. We consider the perturbations that have an average replicate
correlation more than the 90th percentile of the null distribution as high quality
samples.

Filtering samples
To remove noisy samples from the analysis, we used two filtering strategies for each
shared subspace and data integration analysis. For cross-modality prediction
experiments, we used the intersection of higher quality samples or higher quality
samples according to both modalities. For the analysis for data integration, we used
samples that are higher quality (i.e. > 90th percentile of the null distribution, as defined
above) in at least one of the modalities. Definition of higher quality samples is given in
the previous section. A comprehensive description of the number of samples in each
modality, number of overlapping perturbations across both modalities, size of
intersection and union sets of higher quality samples across both modalities are given in
Appendix A and highlights are summarized in Table 1.

One of the chemical datasets (CDRP-BBBC047-Bray) has a subset of compounds that are
known to be bioactive. We refer to this subset as CDRP-bio-BBBC036-Bray and report
the details independently for this dataset in Table 1 and Appendix A and B. We only use
CDRP-bio and not the full CDRP set for the analysis in this paper. We did so because we
believe that the quality of CDRP is insufficient for either of these analyses presented
given that very few samples remain after filtering for replicate reproducibility across
both modalities (see Appendix B).

Cross modality Predictions
For prediction of each single landmark gene using CP profiles or each single
morphological feature using GE profiles, we used two regression models of :
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CP to GE: ; in which is a vector of expression levels for the landmark𝑦𝑙 = 𝑓θ 𝑋𝑐𝑝( )+ 𝑒𝑙 𝑦𝑙
gene across all the perturbations in a dataset and is the whole morphological data𝑙 𝑋𝑐𝑝
matrix representing all morphological changes across all the perturbations.
GE to CP: ; in which is a vector of morphological feature across all𝑦𝑓 = 𝑓θ 𝑋𝑔𝑒( )+ 𝑒𝑙 𝑦𝑓 𝑓
the perturbations in a dataset and is the whole L1000 data matrix representing all𝑋𝑔𝑒
gene expression changes across all perturbations.

For each prediction direction (CP to GE, GE to CP) and each baseline linear (Lasso) and
nonlinear (MLP) model for this regression problem, we use the coefficient of

determination ( ) and -fold cross-validation over the perturbation samples to form a𝑅2 𝑘
distribution of values for each landmark gene (for CP to GE) or each morphological𝑘𝑅2
feature (for GE to CP). We also shuffle the vector for each gene across all the samples𝑦𝑙 𝑙
and apply the same cross-validation procedure to form a null distribution for each gene.
The same procedure on will result in the null distribution for each morphological𝑦𝑓
feature. Model parameters (regularisation parameter for Lasso model and number and
size of hidden layers, activation function and regularization parameter for the MLP
model)  are selected using grid-search and cross-validation inside each of outer folds.𝑘
In the Appendix D, the median prediction scores of each model for each landmark gene
for each dataset and according to each model is presented. Distribution of MLP model
prediction scores for the 50 landmark genes with the highest median scores in each
dataset is shown at Appendix C.
Percent Predictable
Percent predictable is defined as the percentage of landmark genes which have a

median of predictability score more than a defined threshold. The threshold is based𝑅2
on the null distribution of predictability scores for each dataset. The dataset-specific null
is formed using medians of single gene null distributions. We take the 99th percentile of
this null distribution plus a 0.2 margin ( ) as the threshold for calling a gene𝑡99𝑡ℎ + 0. 2
"predictable". We reported the Percent Predictable values for each dataset in the table in
Figure 2b.

MoA Prediction
For the analysis for MoA prediction, we used the samples that had high quality (i.e. >
90th percentile of the null distribution; see above) in either modality.

The LINCS dataset has MoA annotations for 1401 overlapping compounds across two
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modalities. Every compound is tested at six different doses, increasing the chances of
detecting the expected behavior of the compound at one of them. Each compound can
have multiple mechanisms, therefore we have multiple labels for a subset of
compounds. The set of labels comprises 478 unique MoAs. There are 568 unique
combinations of these labels present in the dataset. We start with the filtered union set,
and filter it again to keep MoA classes which have at least 4 samples in their class. It
results in a set of 1655 samples across 521 compounds in 57 MoA categories. One
multi-label MoA category was removed to keep the problem multi-class single label.

Two logistic regression and multilayer perceptron (MLP) classifiers were used as
baseline models; we apply each model for predicting MoA labels using each modality of
data independently as well as the baseline integration of the two. We performed
leave-one-compound-out cross-validation (all doses of a compound are left out) to
report F1-score as the classification performance. Model hyper-parameters were
optimized using grid search and cross-validation in each training fold.

Some MoAs have several tens of compounds whereas others have as few as two; to
address this imbalance in the data, we used weighted logistic regression by taking into
account the frequency of each class in the training set. For the MLP model, we
oversampled samples in class to the number of majority samples in the training set. The
leave-one-compound-out cross validation experiment results in a vector of predictions
for the 1655 samples. We then calculate weighted average F1 score of MoA predictions
(where we weight class-specific scores by the number of true samples in each MoA
class) for each model and each data modality.

For baseline fusion, we used trivial data fusion strategies (one early, one late) to
combine both modalities. Early fusion baseline is a representation-level concatenation of
modalities. Late fusion is at the decision level and averages predicted class probabilities
(based on single modality learned classifiers) for making the MoA class decision for test
compounds.

We applied the same procedure to the CDRP-bio dataset. This dataset has MoA
annotations for 1,327 out of 1,916 overlapping compounds across two modalities. After
passing samples from three filters of: union higher quality across modalities, available
MoA labels, being in an MoA class which have at least four compounds in the set, we
will get 123 compounds in 16 MoA categories.
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Supplementary information

Appendix A. Curated Datasets

Datasets List
The details of each dataset, including the type of perturbation, number of perturbations,
cell line, and number of replicates, are below.

CDRP-BBBC047-Bray-CP 24- GE 7:

Cell line used for chemical perturbation of cells in this dataset was U2OS.
There are 30,430 and 21,782 unique compounds for CP and GE datasets, respectively.

For CP dataset, the median number of replicates for each compound in the set is 4 and
there are 26,572 replicates for control wells (samples).

For GE dataset, the median number of replicates for each compound in the set is 3 and
there are 3,478 replicates for control wells (samples).

20,131 compounds are present in both datasets. 6\% percent of these compounds have
MoA annotations. Only 3/20,131 compounds have replicate correlation more than 90th
percentile of random distribution in both modalities.

CDRP-bio-BBBC036-Bray-CP24-GE 7:
This is a subset of the previous dataset, containing the bioactive subset of compounds.

There are 2,242 and 1,917 unique compounds for CP and GE datasets, respectively.

For CP dataset, The median number of replicates for each compound in the set is 8 and
there are 3,528 replicates for control wells (samples).

For GE dataset, The median number of replicates for each compound in the set is 2 and
there are 3,478 replicates for control wells (samples).

1,916 compounds are present in both datasets. 69\% percent of these compounds have
MoA annotations. 131/1,916 compounds have replicate correlation more than 90th
percentile of random distribution in both modalities.

LUAD-BBBC041-Caicedo-CP 25- GE 11:

Cell line used for genetic perturbation of cells in this dataset was A549.
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There are 593 and 529 unique alleles for CP and GE datasets, respectively.

For CP , GE datasets, the median number of replicates for each allele in the set is 8.

525 alleles are present in both datasets. 197/525 of these alleles have replicate
correlation more than 90th percentile of random distribution in both modalities.

TA-ORF-BBBC037-Rohban-CP 3 - GE:

Cell line used for genetic perturbation of cells in this dataset was U2OS.

There are 323 and 327 unique alleles for CP and GE datasets, respectively.

For CP dataset, the median number of replicates for each allele in the set is 5 and there
are 268 replicates for control wells (samples).

For GE dataset, the median number of replicates for each allele in the set is 2 and there
are 56 replicates for control wells (samples).

150 alleles are present in both datasets. 36/150 of these alleles have replicate correlation
more than 90th percentile of random distribution in both modalities.

LINCS-Pilot1-CP 26 - GE 27:

Cell line used for chemical perturbation of cells in this dataset was A549.

There are 1,570 unique compounds across 7 doses for CP dataset. There are 1,402 unique
compounds across 7 doses for GE dataset.

There are 9,394 and 8,369 unique compounds-dose for CP and GE datasets, respectively.

For CP dataset, the median number of replicates for each compound in the set is 5 and
there are 3,264 replicates for control wells (samples).

For GE dataset, the median number of replicates for each compound in the set is 3 and
there are 1,485 replicates for control wells (samples).

6984 compound-dose pairs are present in both datasets.
100% of these compounds have MoA annotations.

Among 6984 unique compounds-dose overlapping compounds, 1140 compounds have
replicate correlation more than 90th percentile of random distribution in both
modalities.
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Appendix B. Data Quality: Replicate reproducibility
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Figure 5. To inspect the quality of each dataset, we calculate the consistency of profiles across
different replicates of the same perturbation as follows. We standardized the profiles per plate to
have zero mean and unit variance. Next, we calculated the Pearson correlation coefficient
between each pair of profiles for the same perturbation (red curve) and for different
perturbations (blue curve). Dotted vertical lines are shown at zero and 90th percentile of the
random pairs (blue) distribution.
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Appendix C. Top 50 highly predictable L1000 genes by Cell Painting morphological
features
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Figure 6. Prediction of L1000 mRNA levels by Cell Painting features: for each dataset, the
distribution of MLP baseline prediction scores for the ordered top 50 landmark genes with the
highest R2 median prediction scores are provided. Each distribution consists of k, R2 values
corresponding to application of k-fold cross validation for each landmark gene in each dataset,
which is shown as blue boxes. We also shuffle the landmark gene vector across all the samples
and apply the same cross-validation procedure to form a null distribution for each gene which
is shown as green boxes in each plot.

Appendix D. Median Prediction scores for each landmark gene across each datasets
and models
Appendix_D.csv

Appendix E. Top 50 highly predictable Cell Painting morphological features by L1000
genes
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Figure 7. Prediction of each cell painting feature by L1000 mRNA levels: for each dataset, the
distribution of MLP baseline prediction scores for the ordered top 50 cell painting features with
the highest R2 median prediction scores are provided. Each distribution consists of k, R2 values
corresponding to application of k-fold cross validation for each single CP feature in each
dataset, which is shown as blue box plots. We also shuffle the CP feature vector across all the
samples and apply the same cross-validation procedure to form a null distribution for each gene
which is shown as green boxes in each plot.
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