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Abstract: We consider the use of Bayesian information criteria for se-
lection of the graph underlying an Ising model. In an Ising model, the
full conditional distributions of each variable form logistic regression mod-
els, and variable selection techniques for regression allow one to identify
the neighborhood of each node and, thus, the entire graph. We prove high-
dimensional consistency results for this pseudo-likelihood approach to graph
selection when using Bayesian information criteria for the variable selection
problems in the logistic regressions. The results pertain to scenarios of spar-
sity, and following related prior work the information criteria we consider
incorporate an explicit prior that encourages sparsity.
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1. Introduction

Let Z1, . . . , Zp be binary random variables with values in {−1, 1}, and let G =
(V,E) be an undirected graph with vertex set V = [p] := {1, . . . , p} and edge set
E whose elements are unordered pairs of distinct vertices that we denote by a
set of two nodes {v, w}. The (symmetric) Ising model associated to G postulates
that

Prob(Z1 = z1, . . . , Zp = zp) ∝ exp
{∑

{v,w}∈E θvwzvzw
}
, (1.1)

for values z1, . . . , zp ∈ {−1, 1} and interaction parameters θvw ∈ R. The Ising
model is a special case of more general graphical log-linear or Markov ran-
dom field models (Lauritzen, 1996) but it is of importance in its own right; see
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e.g. Roudi, Aurell and Hertz (2009) or the monograph of Kindermann and Snell
(1980). In this paper we will treat the problem of selecting the graph G based
on a random sample drawn from a distribution in such an Ising model, comple-
menting recent work on this problem by Anandkumar et al. (2012), Ravikumar,
Wainwright and Lafferty (2010), Santhanam and Wainwright (2012) and Loh
and Wainwright (2013).

The model selection procedure we consider uses a pseudo-likelihood approach
based on conditional distributions, as popularized by Besag (1972, 1974). Let

ne(v) = {w ∈ V \ {v} : {v, w} ∈ E}

be the set of neighbors of node v in the graph G = (V,E). Assuming (1.1), the
full conditional distributions satisfy

log

(
Prob(Zv = 1 |Zw = zw ∀ w 6= v)

1− Prob(Zv = 1 |Zw = zw ∀ w 6= v)

)
=

∑

w∈ne(v)

βvwzw, (1.2)

where βvw = 2θvw. Hence, for each variable Zv, the conditional distributions
form a logistic regression model with Zv as response and the remaining variables
Zw for all w 6= v as covariates. Selection of the graph G = (V,E) can thus be
achieved by identifying each neighborhood ne(v) by variable selection in each of
the p = |V | logistic regression problems given by (1.2).

Strictly speaking, we have βvw = βwv in the system of logistic regression mod-
els in (1.2). However, we will treat the neighborhood selection approach in the
version that uncouples the parameters, that is, we allow the pair (βvw , βwv) to
range freely in R2. This allows one to treat the p regression problems separately,
which brings about simplifications with regards to computation as well as the-
oretical analysis; compare the work on ℓ1-penalization methods by Ravikumar,
Wainwright and Lafferty (2010) and by Meinshausen and Bühlmann (2006) who
treat the Gaussian case. Höfling and Tibshirani (2009) demonstrated empirically
that this decoupling of βvw and βwv, when addressing inferential inconsistencies
as described in Section 4 below, does not lead to any important loss in statistical
efficiency for selection of the graph G in an Ising model (at least in the higher-
dimensional settings that these authors and also we have in mind here). Höfling
and Tibshirani (2009) also showed that, for selection of the graph underlying
an Ising model, pseudo-likelihood methods fare as well as computationally more
involved methods based on the actual joint distribution. We remark that while
we focus on ℓ1-penalization techniques in our later numerical experiments, the
problem of recovering the edges of G in a high-dimensional setting can also be
solved by greedy search methods (Jalali, Johnson and Ravikumar, 2011).

In this paper, we explore the use of Bayesian information criteria in the
logistic neighborhood selection approach. Consider a logistic regression model
that includes a subset J of a set of p covariates. For sample size n, and defined
for minimization, the classical Bayesian information criterion (BIC) of Schwarz
(1978) is the model score

BIC0(J) = −2 logL(β̂J) + |J | log(n),
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where β̂J is the maximum likelihood estimator in the model given by J . The BIC
is well-known to yield variable selection consistency in the asymptotic scenario
in which the sample size n grows large while the number of covariates p re-
mains constant. It has been observed, however, that the BIC tends to overselect
variables in regression problems in which p is of substantial size compared to n
(Broman and Speed, 2002). To address this problem, a number of extensions
have been proposed and analyzed (Bogdan, Ghosh and Doerge, 2004; Chen and
Chen, 2008, 2012; Frommlet et al., 2012). The main idea for these extensions is
to incorporate into the BIC an explicit prior on the set of considered models. The
priors specified in the mentioned earlier work are equivalent for our purposes,
as shown in Żak-Szatkowska and Bogdan (2011). Following Żak-Szatkowska and
Bogdan (2011), we will treat the criterion

BICγ(J) = −2 logL(β̂J) + |J |
(
log(n) + 2γ log(p)

)
, (1.3)

which is associated with a choice of γ ≥ 0. For a review and pointers to prior
work that suggests and evaluates defaults for γ, or a quantity corresponding
to γ, see Żak-Szatkowska and Bogdan (2011). In particular, the choice of γ = 1
is associated with assigning equal prior probability to each set

Jk = {J ⊂ [p] : |J | = k}, k = 0, . . . , q,

where q is an a priori bound on the size of the models; therefore for each k ≤ q,
any given model of size k has probability proportional to 1/|Jk| of being chosen.
The connection to this prior, which is also considered in Scott and Berger (2010),
is due to the fact that

|Jk| =
(
p

k

)

scales as pk for small k ≤ q ≤ p/2. In (1.3), this contribution of the prior on
models appears as the term |J | log(p). Note that (1.3) has the maximum of the
log-likelihood function multiplied by two and, hence, the additional factor of
two. This justifies the criterion (1.3) for model selection in regression.

Now we turn back to the graphical model setting. By analogy, the prior for
Ising model selection has to be specified on the set of graphs with p nodes and
there are ((p

2

)

k

)
∼ p2k

graphs with k edges. This suggests that for Ising model selection, γ should
be chosen roughly twice as large as for variable selection in a single logistic
regression model. The cutoffs for γ that appear in our theoretical analysis are
in agreement with this intuition (compare Corollary 2.1 and Theorem 3.1).

In this paper we show that using BICγ for variable selection in the logistic
neighborhood selection approach allows one to consistently estimate the graph
of an Ising model. Our focus is on higher-dimensional problems under sparsity,
that is, problems in which the number of variables p may be large, the sample
size n may be comparatively moderate, but the neighborhood sizes are bounded
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by an integer q that is small compared to p. Briefly put, under the conditions we
impose, BICγ can successfully identify the graph if n exceeds a constant multiple
of q3 log(p), which agrees with the rates found in Ravikumar, Wainwright and
Lafferty (2010) and Santhanam and Wainwright (2012).

Our work builds on ideas of Chen and Chen (2012) and Luo and Chen (2013)
who analyze the performance of BICγ for variable selection in generalized lin-
ear models. Their work makes assumptions on a sequence of fixed/deterministic
design matrices that ensure that the Hessian of the log-likelihood function is
well-behaved. In contrast, the conditional distributions in (1.2) have random
covariates. We thus develop suitable conditions on the joint distribution of ran-
dom covariates in logistic regression that, in particular, ensure that the deter-
ministic conditions imposed in Luo and Chen (2013) hold with high probability.
The conditions we give allow us to deduce consistency of BICγ in Ising model
selection. For growing p, this involves a growing number of logistic regression
problems and requires us to make some of the intermediate results in Luo and
Chen (2013) more explicit.

The paper is organized as follows. Section 2 provides finite-sample results for
logistic regression. The main technical result is Theorem 2.1, which considers the
setting with random covariates and gives conditions that provide control of the
Hessian of the log-likelihood function. Theorem 2.2 shows how a well-behaved
Hessian leads to bounds on likelihood ratios and is closely related to the prior
work of Chen and Chen (2012) and Luo and Chen (2013). The proofs for both
these theorems are deferred to parts B and C of the Appendix, where part D
contains technical lemmas. As a consequence of Theorems 2.1 and 2.2, we can
clarify in Section 2.4 the consistency of BICγ in logistic regression with random
covariates. In Section 3, we extend the consistency result to Ising models. Some
of the conditions imposed in our work involve third moments, and we show in
part A of the Appendix that those cannot be weakened to conditions on second
moments. We conclude with numerical experiments on simulated and real data,
see Sections 4 and 5, and a discussion in Section 6.

2. Logistic regression with random covariates

2.1. Setup

Let (X1, Y1), . . . , (Xn, Yn) be n observations that each pair a binary response
Yi ∈ {0, 1} and a covariate vector Xi ∈ Rp. Suppose that the pairs (Xi, Yi) are
independent and identically distributed, and that the responses follow a logistic
regression model conditional on the covariates. Let πi(x) be the conditional
probability that Yi = 1 given Xi = x. The logistic regression model states that

log

(
πi(x)

1− πi(x)

)
= x⊤β0

for some unknown parameter vector β0 ∈ Rp. Define the cumulant function
b(z) = log(1 + ez). Conditional on the Xi, the logistic regression model for the
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responses Yi has log-likelihood, score, and negative Hessian functions

log L(β) =

n∑

i=1

Yi ·X⊤
i β − b(X⊤

i β) ∈ R,

s(β) =

n∑

i=1

Xi

(
Yi − b′(X⊤

i β)
)

∈ Rp,

H(β) =

n∑

i=1

XiX
⊤
i · b′′(X⊤

i β) ∈ Rp×p,

with the derivatives of the cumulant function being

b′(z) =
ez

1 + ez
, b′′(z) =

ez

(1 + ez)
2 . (2.1)

We will be interested in scenarios in which β0 is sparse, and we wish to recover
the support of β0, that is, the set

J0 = supp(β0) := {j ∈ [p] : β0j 6= 0},

which gives the most parsimonious (most sparse) true model. We assume that
an upper bound q on the size of the support is given, that is, |J0| ≤ q. Later,
the bound q is allowed to grow in an asymptotic scenario in which the number
of covariates p may grow with the sample size n. To avoid triviality, we assume
n, p ≥ 2 throughout. Similarly, we assume q ≥ 1 without further mention.

The conditions we impose below are formulated in terms of the marginal
distribution of the covariate vectors Xi and pertain to the tail behavior of the
entries of Xi as well as the possible dependences among them. We will show
that our conditions entail that, with large probability, the covariates satisfy
deterministic Hessian conditions that Luo and Chen (2013) used to establish
consistency properties of BICγ for generalized linear models with fixed design.
These conditions concern sparse submodels of our logistic regression model given
by support sets J ⊆ [p].

Notation for submodels The parameters of the submodel given by a set J
are regression coefficients that form a vector of length |J |. We index such vectors
β by the elements of J , that is, β = (βj : j ∈ J), and similarly write RJ for
the parameter space comprising all these coefficient vectors. This way the index
of a coefficient always coincides with the index of the covariate it belongs to.
In other words, the coefficient for the j-th coordinate of covariate vector Xi is
denoted by βj in any model J with j ∈ J .

Furthermore, it is at times convenient to identify a vector β ∈ RJ with the
vector in Rp that is obtained from β by filling in zeros outside of the set J . As this
is clear from the context, we simply write β again when referring to this sparse
vector in Rp. Finally, sJ(β) and HJ (β) denote the subvector and submatrix of
s(β) and H(β), respectively, obtained by extracting entries indexed by J .
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2.2. Hessian conditions when covariates are random

Luo and Chen (2013) invoke conditions on a sequence of deterministic designs to
control the curvature and change of the Hessian of the log-likelihood function.
Specifically, the eigenvalues of 1

nHJ(β0) for all sparse J ⊇ J0 are assumed to be
bounded above and below, and furthermore for any ǫ > 0, there is a δ > 0 such
that

(1− ǫ)HJ(β0) � HJ(β) � (1 + ǫ)HJ(β0), (2.2)

for all sparse J ⊇ J0 and β ∈ RJ with ‖β − β0‖2 ≤ δ. The notation “�” refers to
the ordering in the positive semidefinite cone with A � B whenever 0 � B−A,
i.e., B − A is positive semidefinite. The above conditions are assumed to hold
uniformly for all large enough sample sizes n and associated values of p, q and β0,
which may change with n.

In this work, we begin instead with random and i.i.d. covariates X1, . . . , Xn

and derive stronger versions of these Hessian conditions from the below con-
ditions on the distribution of each covariate Xi. We refer to a vector u ∈ Rp

as q-sparse if | supp(u)| ≤ q. Let a1, a2, a3 > 0 be constants that are fixed
throughout the remainder of this section. Using X1 = (X11, . . . , X1p)

⊤ as a rep-
resentative, we will say that the i.i.d. covariates satisfy assumptions (A1)–(A3)
with respect to an integer q ≥ 1 if the following holds:

(A1) For any q-sparse unit vector u, E[(X⊤
1 u)

2] ≥ a1.

(A2) For any q-sparse unit vector u, E[|X⊤
1 u|3] ≤ a2.

(A3) For each j ∈ [p], the variable X1j is bounded as |X1j | ≤ a3.

Rephrased, (A1) states that for any subset J ⊂ [p] of cardinality |J | ≤ q the
smallest eigenvalue of the matrix E[X1JX

⊤
1J ] is at least a1. (Here, X1J = (X1j :

j ∈ J) is the subvector of X1 induced by J .) Assumption (A2) guarantees the
existence of third moments of linear combinations of q or fewer covariates. In
an Ising model all variables are bounded and thus (A3) always holds.1

According to the following theorem, our assumptions entail well-behaved Hes-
sians with large probability. In this theorem and throughout the rest of the
paper, the norm ‖H‖ of a matrix H is the spectral norm.

Theorem 2.1. Suppose that the covariates satisfy conditions (A1)–(A3) for
some sparsity level q and some constants a1, a2, a3 > 0. Then there exist con-
stants csample, cchange, cprob > 0, a decreasing function clower : [0,∞) → (0,∞)
and an increasing function cupper : [0,∞) → (0,∞), all depending only on
(a1, a2, a3), such that if

n ≥ csample · q3 log(p),
then the event that, simultaneously for all |J | ≤ q and all β, β′ ∈ RJ ,

clower(‖β‖2)IJ � 1

n
HJ (β) � cupper(‖β‖2)IJ (2.3)

1A weaker condition requiring only that each X1j is subgaussian was considered in a
preprint version of this paper (Foygel and Drton, 2014). The same results were obtained,
but at the cost of additional log factors in the sample size—specifically, with a sample size
requirement of n & q3 log3(np) instead of n & q3 log(p) as in the theorems in this paper.
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and
1

n
‖HJ(β)−HJ(β

′)‖ ≤ cchange · ‖β − β′‖2 (2.4)

has probability at least

1− exp

{
− cprob ·

n

q3

}
.

The proof of Theorem 2.1 is given in Appendix C.
If the inequalities (2.3) and (2.4) hold and β ∈ RJ for a set J ⊇ J0, then

1

n
HJ(β) � cchange · ‖β − β0‖2 · IJ +

1

n
HJ(β0)

�
(
1 +

cchange
clower(‖β0‖2)

· ‖β − β0‖2
)

1

n
HJ(β0).

We also have the analogous lower bound,

1

n
HJ(β) �

(
1− cchange

clower(‖β0‖2)
· ‖β − β0‖2

)
1

n
HJ(β0).

Combining these two bounds, we have proved the following version of the as-
sumption from (2.2):

Proposition 2.1. If the inequalities (2.3) and (2.4) hold for all J ⊇ J0 with
|J | ≤ q, then

(1− ǫ)HJ (β0) � HJ(β) � (1 + ǫ)HJ (β0)

holds for all such J and for all β ∈ RJ with

‖β − β0‖2 ≤ δ := ǫ · clower(‖β0‖2)
cchange

. (2.5)

Remark 2.1. Although this proposition only treats true models (i.e., models
J that contain the true support J0), it will be used also for proving that the
BIC will not select a false model (i.e., a model J 6⊃ J0). The connection lies in
observing that, for a model J 6⊃ J0, the proposition can be applied to analyze
the model given by the union J ∪ J0, which is a true model.

2.3. Bounds on likelihood ratios from Hessian conditions

The following theorem provides bounds on log-likelihood ratios for sparse mod-
els indexed by J versus the smallest true model indexed by J0. The result
concerns fixed values for the covariates X1, . . . , Xn that satisfy the Hessian con-
ditions (2.3) and (2.4) from Theorem 2.1. The statement of the result makes
reference to constants from Theorem 2.1. We also invoke an upper bound a0 on
the signal; some control of the norm of β0 is needed to avoid degeneracy of the
conditional distribution of the binary response variable.
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Theorem 2.2. Let β0 be the true parameter with J0 = supp(β0) and ‖β0‖2 ≤ a0
for a constant a0 > 0. Fix ǫ, ν > 0, and condition on the covariates X1, . . . , Xn

satisfying the Hessian conditions (2.3) and (2.4) for all J ⊇ J0 with |J | ≤ 2q,
where q ≥ |J0|. Then there exist constants Cfalse, Cdim, Csample,1, Csample,2 > 0,
depending only on (cchange, clower(a0), cupper(a0)) and on the chosen pair (ǫ, ν),
such that if

p ≥ Cdim and n ≥ max

{
Csample,1 · q3 log(p), Csample,2 ·

q log(p)

minj∈J0
|(β0)j |2

}
,

the following two statements hold simultaneously with conditional probability at
least 1− p−ν :

(a) For all |J | ≤ q with J ⊇ J0,

log L(β̂J)− log L(β̂J0
) ≤ (1 + ǫ)(|J\J0|+ ν) log(p).

(b) For all |J | ≤ q with J 6⊃ J0,

log L(β̂J0
)− log L(β̂J) ≥ Cfalse nmin

j∈J0

|(β0)j |2.

The proof of Theorem 2.2 is deferred to Appendix B. We remark that the
proof of claim (a) invokes the Hessian conditions only for J ⊇ J0 with |J | ≤ q.
The conditions for cardinality up to 2q are used for claim (b), which is proved
by considering the union J0 ∪ J for the given false model J 6⊃ J0.

2.4. Consistency of extended BIC in logistic regression

Having established bounds on Hessian and likelihood ratios via Theorem 2.1
and Theorem 2.2, respectively, we are able to give conditions that entail that
BICγ selects the most parsimonious true model with high probability.

Theorem 2.3. Let β0 be the true parameter with J0 = supp(β0) and ‖β0‖2 ≤ a0
for a constant a0 > 0. Fix γ ≥ 0 and ǫ, ν > 0. Then there exist constants
C0, C1, C2, C3 > 0, depending only on (a0, a1, a2, a3) and (ǫ, ν), such that if the
covariates satisfy (A1)–(A3) with respect to 2q for q ≥ |J0|, if

p ≥ C0, n ≥ max

{
C1 · q3 log(p), C2 ·

q log(np2γ)

minj∈J0
|(β0)j |2

}
,

and if √
n > p(1+ǫ)(1+ν)−γ , (2.6)

then the event that

J0 = argmin{BICγ(J) : J ⊂ [p], |J | ≤ q}

has probability at least
(
1− exp

{
−C3 ·

n

q3

})(
1− 1

pν

)
.
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Proof. First, examining the statements of Theorem 2.1 and Theorem 2.2, we see
that we can choose the constants C0, C1, C2, C3 large enough that the conditions
in Theorems 2.1 and 2.2 are satisfied. These theorems then imply that, with
the claimed probability, the following statement is true simultaneously for all
|J | ≤ q:

log L(β̂J)− log L(β̂J0
) ≤

{
(1 + ǫ)(|J\J0|+ ν) log(p) if J ⊇ J0,

−Cfalsenminj∈J0
|(β0)j |2 if J 6⊇ J0,

(2.7)

where Cfalse > 0 is a constant from Theorem 2.2. Condition on (2.7) being true
for all |J | ≤ q. We claim that under our assumptions

BICγ(J)− BICγ(J0) = −2
(
log L(β̂J )− log L(β̂J0

)
)

+ (|J | − |J0|)
(
log(n) + 2γ log(p)

)

is positive for any model given by a set J 6= J0 of cardinality |J | ≤ q.
If J 6⊇ J0, that is, if the model is false, then (2.7) yields the bound

BICγ(J)− BICγ(J0) ≥ 2Cfalsenmin
j∈J0

|(β0)j |2 − q log(np2γ).

Since we require that n ≥ C2 · q log(np2γ )
minj∈J0

|(β0)j |2 , this lower bound on BICγ(J) −
BICγ(J0) is positive for a sufficiently large choice of the constant C2.

For J ) J0 with |J | ≤ q, we have

BICγ(J)− BICγ(J0) ≥ −2(1 + ǫ)(|J\J0|+ ν) log(p)

+ |J\J0| (log(n) + 2γ log(p)) ,

which can be lower-bounded further as

BICγ(J)− BICγ(J0) ≥ |J\J0| ·
(
log(n) + 2

[
γ − (1 + ǫ)(1 + ν)

]
log(p)

)
.

This is positive by the assumed inequality from (2.6).

Based on Theorem 2.3, we can identify asymptotic scenarios under which
BICγ yields consistent variable selection. To this end, consider a sequence of
variable selection problems indexed by the sample size n, where the n-th problem
has pn covariates and true parameter β0(n) with support J0(n). Let qn be the
bound on the size of the considered models, and let

βmin(n) = min
j∈J0(n)

|β0(n)j |

be the smallest absolute value of any non-zero coefficient in β0(n).

Corollary 2.1. Suppose that pn → ∞ as n → ∞ with pn ≤ nκ for some
κ ∈ (0,∞] and log(pn) ≤ nτ for some 0 < τ < 1. Suppose further that qn ≤ nψ

for some 0 ≤ ψ < 1
3 (1 − τ), and that βmin(n) ≥ n−φ/2 for some 0 ≤ φ <
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1−ψ− τ . Assume that the covariates satisfy (A1)–(A3) with respect to 2qn for
some constants a1, a2, a3 > 0, and that |J0(n)| ≤ qn, and ‖β0(n)‖2 ≤ a0 for
a constant a0 > 0. Then for any γ > 1 − 1

2κ , variable selection with BICγ is
consistent in the sense that the event

J0(n) = argmin{BICγ(J) : J ⊂ [pn], |J | ≤ qn}

has probability tending to one as n→ ∞.

Proof. Since pn ≤ nκ, condition (2.6) in Theorem 2.3 holds for all n if

1

2κ
> (1 + ǫ)(1 + ν)− γ.

Having assumed γ > 1− 1
2κ here, the condition is satisfied for ǫ and ν sufficiently

small. Fix a suitable choice of (ǫ, ν) for the rest of the argument.
Our scaling assumptions for pn, qn and βmin(n) are such that the conditions

involving the constants C0, C1 and C2 in Theorem 2.3 are met for n large enough.
Hence, Theorem 2.3 applies for all large n. And, as n → ∞, the probability in
Theorem 2.3 tends to one.

Remark 2.2. Corollary 2.1 requires pn ≤ nκ and log(pn) ≤ nτ , for κ ∈ (0,∞]
and τ ∈ (0, 1). For κ < ∞, this means that pn grows polynomially with n. In
this case, τ can be chosen arbitrarily close to 0, and the conditions on ψ and
φ become 0 ≤ ψ < 1/3 and 0 ≤ φ < 1 − ψ. For κ = ∞, the growth of pn
can be faster than polynomial; the remaining condition log(pn) ≤ nτ allows for
subexponential growth. In this latter case, since κ = ∞, we require γ > 1 in
order to ensure consistency of BICγ .

3. Consistency of extended BIC for Ising models

Turning to neighborhood selection for Ising models, let Z1, . . . , Zn be an i.i.d. sam-
ple, where each Zi = (Zi1, . . . , Zip) is a vector of binary random variables with
values in {−1, 1}. Suppose the Zi follow an Ising model as in (1.1), with graph
G = (V,E) on the vertex set V = [p], and interaction parameters θvw ∈ R for
{v, w} ∈ E. Assume that G is minimal in that {v, w} ∈ E if and only θvw 6= 0.

We will consider selection of G by means of variable selection in the p logistic
regression models, where the v-th regression problem has response variable Zv
and the p − 1 covariates Zw, w ∈ [p] \ {v}. We write BICγ(J, v) for the BIC
score from (1.3) evaluated for the logistic regression model with response Zv
and covariates Zw, w ∈ J , with J ⊆ [p] \ {v}. Correct inference of G is achieved
if, for each v ∈ [p], the neighborhood

ne(v) = {w ∈ [p] \ {v} : θvw 6= 0} = {w ∈ [p] \ {v} : {v, w} ∈ E}

(uniquely) minimizes BICγ(·, v).
Using Z1 = (Z11, . . . , Z1p)

⊤ as a representative, we will say that Z1, . . . , Zn
satisfy assumptions (B1)–(B3) with respect to an integer q ≥ 1 if the following
holds for fixed constants b0, b1, b2 > 0:
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(B1) The interaction between a variable and its neighborhood is bounded as

√ ∑

w∈ne(v)

θ2vw ≤ b0 for all v ∈ [p].

(B2) For any q-sparse unit vector u, E[(Z⊤
1 u)

2] ≥ b1.
(B3) For any q-sparse unit vector u, E[|Z⊤

1 u|3] ≤ b2.

As explained in Santhanam and Wainwright (2012), the graph selection prob-
lem is ill-posed without some upper bound on the interaction between a variable
and its neighborhood, as we impose in (B1). Assumption (B2) constitutes a lower
bound on the eigenvalues of the q × q principal submatrices of the covariance
matrix E[Z1Z

⊤
1 ] and is akin to requirements in Ravikumar, Wainwright and

Lafferty (2010) and Loh and Wainwright (2013). As we clarify at the end of this
section, condition (B2) is implied by (B1) for asymptotic scenarios in which all
neighborhoods ne(v) have cardinality bounded by a constant, that is, the graph
G has bounded degree. Assumption (B3) is the final piece needed to invoke our
result on general logistic regression.

To formulate a consistency result for neighbor selection in Ising models, we
consider a sequence of neighborhood selection problems indexed by the sample
size n. The n-th problem has pn variables and interaction parameters θvw(n),
with associated neighorhoods nen(v) and edge set E(n). Let dn be the maximum
cardinality of any neighborhood nen(v), v ∈ [pn], and let

θmin(n) = min
{v,w}∈E(n)

|θvw(n)|

be the non-zero interaction of smallest magnitude.

Theorem 3.1. Suppose that pn → ∞ as n → ∞ with pn ≤ nκ for some
κ ∈ (0,∞] and log(pn) ≤ nτ for some 0 < τ < 1. Suppose further that qn ≤ nψ

for some 0 ≤ ψ < 1
3 (1−τ), and that θmin(n) ≥ n−φ/2 for some 0 ≤ φ < 1−ψ−τ .

Assume that the sample Z1, . . . , Zn satisfies (B1)–(B3) with respect to 2qn and
that dn ≤ qn. Then for any γ > 2− 1

2κ , Ising neighborhood selection with BICγ
is consistent in the sense that the event that, simultaneously for all v ∈ [pn],

nen(v) = argmin{BICγ(J, v) : J ⊂ [pn] \ {v}, |J | ≤ qn}

has probability tending to one as n→ ∞.

Remark 3.1. As in Corollary 2.1, this result allows for subexponential rather
than polynomial growth of pn relative to n, by setting κ = ∞.

Proof of Theorem 3.1. We will show that the result follows from Theorem 2.3
together with a union bound over the pn logistic regression problems.

First, we observe that with pn ≤ nκ, condition (2.6) in Theorem 2.3 holds
for all n if

1

2κ
> (1 + ǫ)(1 + ν)− γ.
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Having assumed γ > 2− 1
2κ here, the condition can be satisfied with a choice of

ǫ > 0 and ν > 1. We fix such a choice of (ǫ, ν) for the rest of the argument.
Next, note that Theorem 2.3 is applicable to each one of the pn logistic regres-

sion problems in neighborhood selection. Indeed, since Z1, . . . , Zn are bounded
assumption (A3) holds. Conditions (A1) and (A2) are ensured by (B2) and (B3),
respectively, and (B1) yields the bounded signal assumed in Theorem 2.3. More-
over, the scaling assumptions on pn, qn and θmin(n) are such that the assump-
tions on the corresponding quantities in Theorem 2.3 are met.

Applying Theorem 2.3 a total of pn times, we obtain that, separately for each
v ∈ [pn], the event that

nen(v) = argmin{BICγ(J, v) : J ⊂ [pn] \ {v}, |J | ≤ qn}

occurs with at least the probability from Theorem 2.3. Ignoring smaller terms
of higher order in 1/pn, this probability is

1− 1

npn
− 1

pνn
.

Since ν > 1, we have that

pn ·
(

1

npn
+

1

pνn

)
−→ 0

as n, and thus also pn, tends to infinity. Hence, a union bound yields the desired
claim that all events hold simultaneously with probability tending to one.

Finally, we observe that conditions (B2) and (B3) do not present a restriction
when considering problems in which there is a fixed bound on the degree of the
graph underlying the Ising model and a bound on the interaction parameters
as in (B1). Indeed, (B3) holds trivially in this case since the coordinate of the
random vectors are bounded by one in absolute value. The sparse eigenvalue
condition (B2) is addressed in the next lemma.

Lemma 3.1. Suppose the random vector Z = (Z1, . . . , Zp) follows an Ising
model with | ne(v)| ≤ q for all v ∈ [p]. If the interaction parameters θvw for Z
satisfy (B1) then it holds for any q-sparse unit vector u that

E
[
(Z⊤u)2

]
≥ 4

q
· e2b0

√
q

(
1 + e2b0

√
q
)2 .

Proof. Without loss of generality, we consider a q-sparse unit vector u that has
supp(u) = {1, . . . , q} and

|u1| ≥ |u2| ≥ · · · ≥ |uq|.

Then u21 ≥ 1/q. Let Z−1 = (Z2, . . . , Zp)
⊤. For a random variable X with finite

variance,
Var[X ] = min

a∈R

E
[
(X − a)2

]
.
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Therefore,

E
[
(Z⊤u)2 |Z−1

]
≥ Var [Z1u1 |Z−1] ≥ 1

q
Var [Z1 |Z−1] .

Since Z1 takes values in {−1, 1}, we rescale to (Z1 + 1)/2 for values in {0, 1}.
Then the conditional distribution of (Z1 + 1)/2 given Z−1 is a Bernoulli distri-
bution with success probability

exp
{
2
∑
w∈ne(1) θ1wZw

}

1 + exp
{
2
∑
w∈ne(1) θ1wZw

} ;

recall (1.2). We obtain that

Var [Z1 |Z−1] = 4Var [(Z1 + 1)/2 |Z−1] =
4 exp

{
2
∑
w∈ne(1) θ1wZw

}

(
1 + exp

{
2
∑
w∈ne(1) θ1wZw

})2 .

By assumption (B1),

−b0
√
q ≤

∑

w∈ne(1)

θ1wZw ≤ b0
√
q.

It follows that

E
[
(Z⊤u)2

]
= E

[
E
[
(Z⊤u)2 |Z−1

]]
≥ 4

q
· e2b0

√
q

(
1 + e2b0

√
q
)2 .

4. Practical considerations when applying information criteria

Theorem 3.1 shows that, with sufficient data, application of BICγ allows one
to identify the correct set of edges, simultaneously at each node, with high
probability. Application of the information criterion in practice, however, faces
two issues:

(i) At an individual node, in order to find the sparse model that minimizes
BICγ , we must fit a large number of models. With sparsity bounded by q,
there are on the order of pq models, preventing an exhaustive search when
the number of variables p is large.

(ii) After performing neighborhood selection for each node, our results may be
asymmetrical, that is, we might find that our estimates of the coefficients
in (1.2) satisfy β̂vw 6= 0 but β̂wv = 0 for some pair of nodes v, w.

To resolve the issue of the large number of possible models at each node, it is
common to use a computationally efficient procedure to first produce a short
list of candidate models, and then apply BICγ to select from this list. For each
node, we use an ℓ1-penalized logistic likelihood (Ravikumar, Wainwright and
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Lafferty, 2010) with varying levels of penalization ρ to produce the candidate
models:

β̂(ρ)
v = arg min

β∈RV \{v}



−

n∑

i=1

log Prob

(
Ziv

∣∣∣∣
∑

w 6=v
Ziwβw

)
+ ρ‖β‖1



 (4.1)

where the probability term is given by the logistic model, i.e.

log Prob

(
Ziv

∣∣∣∣
∑

w 6=v
Ziwβw

)
= Ziv ·

∑

w 6=v
Ziwβw − b

(∑

w 6=v
Ziwβw

)
.

As in Section 3, Ziv refers to the v-th coordinate of the binary vector Zi =
(Zi1, . . . , Zip), which is the i-th vector in a sample Z1, . . . , Zn.

To account for potential asymmetries when we compile information across
nodes, we follow the work of Meinshausen and Bühlmann (2006) and draw an
edge connecting nodes v and w based on either an and rule (requiring both

β̂vw 6= 0 and β̂wv 6= 0) or an or rule (requiring only that either β̂vw 6= 0 or

β̂wv 6= 0); recall the discussion from the introduction and, in particular, the
empirical study of Höfling and Tibshirani (2009).

5. Experiments

We study the performance of the extended BIC on both simulated and real
data. The real data consists of precipitation measurements from weather stations
across the midwest, where we aim to recover a graph that is consistent with the
true geographical layout of the weather stations. For this data set, we compare
BICγ (with a range of values for the parameter γ) with cross-validation as well
as with the stability selection method of Meinshausen and Bühlmann (2010).
Our simulations replicate those of Ravikumar, Wainwright and Lafferty (2010),
including three different sparse graph structures. For the simulated data, we
compare different values of the γ parameter for BICγ .

5.1. Simulated data

5.1.1. Data and methods for model selection

We generate data from sparse Ising models associated to lattice graphs and
star graphs on p nodes for p ∈ {64, 100, 225}. For each graph structure, the
sample size n is chosen based on the settings that produced moderately high
success rates in the simulations of Ravikumar, Wainwright and Lafferty (2010).
We consider the following three graph types:

4-nearest neighbor lattice: Arranging the nodes in a lattice of size
√
p×√

p, each
node is connected to the nodes directly above, below, left or right, giving
maximal degree d = 4. For adjacent nodes v and w, we either set θvw = 0.5
(attractive couplings) or draw θvw at random from {+0.5,−0.5} (random
couplings). The sample size is n = ⌈15d log(p)⌉.
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8-nearest neighbor lattice: Analogous to the above but also connecting nodes
along diagonals. The maximal degree is d = 8. For edges {v, w}, we ei-
ther set θvw = 0.25 (attractive couplings), or draw θvw at random from
{+0.25,−0.25} (random couplings). The sample size is n = ⌈25d log(p)⌉.

Star graph: Edges are drawn from a designated “hub” node to q other nodes,
where either q = ⌈log(p)⌉ (logarithmic sparsity) or q = ⌈0.1p⌉ (linear
sparsity). For edges {v, w}, we set θvw = +0.25. The sample size is n =
⌈10d log(p)⌉, where d = q is the maximal degree of the graph.

These three graph structures are illustrated in Figure 1 of Ravikumar, Wain-
wright and Lafferty (2010).

For each of the three settings, we simulate 100 data sets. Each time, we
perform nodewise ℓ1-penalized logistic regressions as in (4.1), where we consider
a wide range of penalty parameters ρ in order to produce a ‘path’ of candidate
models for that node. To this end, we used the glmnet package for R (Friedman,
Hastie and Tibshirani, 2010). For each node, we then optimize BICγ in order to
select a model from the path. Evaluating BICγ involves refitting each candidate
model without ℓ1-penalization, which was done using the function glm in R.
We then symmetrized the neighborhoods inferred by applying the or rule. The
resulting graph is compared to the underlying true graph. This procedure was
carried out for five choices for γ, namely, γ ∈ {0, 0.25, 0.5, 0.75, 1}.

We note that the and rule for symmetrization led to qualitatively similar
conclusions, and we do not report the results here.

5.1.2. Results

Results for the 4- and 8-nearest neighbor lattices as well as the star graph
are shown in Figures 1, 2, and 3, respectively. For each scenario, we plot the
positive selection rate (proportion of true edges that are identified) and the false
discovery rate (the proportion of selected edges that are false positives). In each
case, we observe a tradeoff between positive selection rate and false discovery
rate as the parameter γ for BICγ varies. Most notably, for nearly every setting
considered, we see that increasing γ from 0 to a positive value can significantly
reduce the false discovery rate without much detriment to the positive selection
rate, demonstrating a clear benefit to using the extended BIC with γ > 0 as
opposed to the ordinary BIC = BIC0 for this high-dimensional setting.

5.2. Real data: Regional weather patterns

5.2.1. Data and methods for model selection

We apply BICγ , and other competing methods, to the task of inferring depen-
dencies among binary indicators of precipitation at p = 92 weather stations
across four states in the Midwest region of the U.S. The four states are Illinois,
Indiana, Iowa, and Missouri. We fit models without taking the geographical
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Fig 1. Results for the 4-nearest neighbor graph with (a) attractive couplings and (b) random
couplings.

locations of the 92 stations into account, but then assess the performance of
different methods by referring to the distance between weather stations. Our
rationale is that plausible graphs should primarily link neighboring stations.
(One could argue that longer links in East-West direction might be more rea-
sonable than longer North-South links but it seems difficult to quantify this and
we did not attempt to make such refined distinctions.)

The binary variables we consider indicate the existence of precipitation at
each station on a given day. We model their joint distribution with an Ising
model as in (1.1) such that the precipitation indicator at each node (weather
station), conditional on the observations from the other nodes, follows the logis-
tic regression model from (1.2). Following the same steps as in our simulation
study, we compute a set of candidate models for each node using the ℓ1-penalized
logistic regression and then select a model from the set using either the ordi-
nary BIC = BIC0 or BICγ with γ ∈ {0.25, 0.5}. In addition, we considered
cross-validation and stability selection (Meinshausen and Bühlmann, 2010). For
cross-validation, we select the model that minimizes average error on test sets
over 10 folds. For stability selection, we used the stabsel function in the mboost
package for R (Hothorn et al., 2013), setting the expected support size to 10.2

As noted by Meinshausen and Bühlmann (2010), changing the settings within

2Parameters for the stabsel function were set at q = 10, the expected support size, and
cutoff = 0.75, the midpoint of the suggested range.
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Fig 2. Results for the 8-nearest neighbor graph with (a) attractive couplings and (b) random
couplings.
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Fig 3. Results for the star neighbor graph with (a) linear sparsity and (b) logarithmic sparsity.
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Fig 4. Delaunay triangulation for 92 weather stations in Illinois, Indiana, Iowa, and Mis-
souri.

a reasonable range did not have a large effect on the output. For each of the
mentioned methods, the node-wise edge selections are compiled across all nodes
to form a graph. Performance is measured relative to the true geographical lay-
out of the weather stations, which as mentioned above is “unknown” to the
procedures we compare.

To give more specifics, we used data from the United States Historical Cli-
matology Network (Menne, Williams Jr. and Vose, 2011).3 The data consists
of weather-related variables that were recorded on a daily basis. We specifically
gathered the precipitation data, which gives the total amount of precipitation
for each day. Seasonality effects on precipation are not as pronounced in the
Midwest as in other parts of the U.S., and we thus simply consider data from
the entire year. However, to limit the effects of temporal dependencies between
successive observations, we took data from only the 1st and 16th day of each
month. The resulting multivariate observations are then treated as independent.
We removed weather stations where data availability was low and discarded ob-
servations with missing values for any of the remaining weather stations. A total
of n = 370 days and p = 92 stations remained in the final data set. Figure 4
shows a map of the 92 stations, along with an undirected graph representing
the Delaunay triangulation of the 92 locations.

5.2.2. Results

To evaluate the model selection methods, we first compare the inferred graphs to
the geographic layout of the 92 stations by treating the Delaunay triangulation
as a “true” underlying graph for the considered Ising model. Table 1 shows
the results we obtain for each method, stated in terms of positive selection
rate (PSR) and false discovery rate (FDR), relative to the “true” Delaunay

3Available at http://cdiac.ornl.gov/ftp/ushcn_daily/.

http://cdiac.ornl.gov/ftp/ushcn_daily/
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Table 1

Positive selection rate (%) and false discovery rate (%) in the weather data experiment,
where the true graph is defined via the Delaunay triangulation

and rule or rule
PSR FDR PSR FDR

BIC0 41.98 32.93 55.73 46.72
BIC0.25 37.40 27.94 52.67 42.02
BIC0.5 34.73 26.61 50.38 38.89

Cross-validation 59.16 57.65 71.37 75.65
Stability selection 45.04 38.54 53.05 45.28
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Fig 5. Graphs recovered under each method. Black edges indicate true positives, red edges
indicate false positives, and light gray edges indicate false negatives, i.e. true edges that were
not recovered by the method, where the true graph is defined via the Delaunay triangulation.

triangulation graph. Figure 5 shows the recovered graphs under the and and
or combination rules.

We see that cross-validation leads to a somewhat higher PSR than the other
methods, under either an and or an or rule. However, this comes at the cost
of a drastically higher FDR. For BICγ , as we increase γ, we reduce the FDR
at a cost of a lower PSR, as expected. Stability selection performs similarly to
BIC0, but is computationally more expensive.

While it does not seem unreasonable to assume that the edges of the Delau-
nay triangulation capture most of the strongest dependencies, there might be
additional dependencies that are not captured by the edges in the triangulation.
For a different comparison of the methods that more directly uses the geographic
distances between the weather stations, we apply Gaussian smoothing (scale:
standard deviation = 10 miles) to estimate, as a function of d, the probability
that a method will infer an edge between two nodes that are d miles apart.
The resulting functions are plotted in Figure 6, which also includes the same
smoothed function calculation for the graph from the Delaunay triangulation.

We observe that the smoothed function for the cross-validation methods
(under either the or or the and rule) does not decay to zero as distance
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Fig 6. Smoothed probability of selecting edges as a function of distance, for each method
under the or rule and the and rule.

increases. That is, in this experiment, cross-validation selects a nonnegligible
proportion of edges between nodes that are arbitrarily far apart, which is un-
desirable. To a lesser extent, the same problem occurs for stability selection
combined with the or rule. The other methods, in contrast, yield functions
that do decay to zero relatively quickly as distance increases. Comparing the
methods that show the decay to zero, we see that for two nearby weather sta-
tions, the BICγ methods combined with the or rule are more likely to select
an edge than any of the remaining methods. Overall, we find that the informa-
tion criteria perform well while requiring the least amount of computation, and
increasing γ provides a useful trade-off between PSR and FDR.

6. Discussion

As suggested by our numerical experiments and supported by our theoretical
analysis, Bayesian information criteria extended to include a penalization term
involving the number of covariates are useful tools for variable selection in logis-
tic regression as well as neighborhood selection for Ising models. The additional
penalty term can be motivated via a particular class of prior distributions on
the set of considered models. We aim to discuss the formal connection between
fully Bayesian approaches and BICγ in a subsequent paper; preliminary results
under bounded sparsity are described in the Ph.D. thesis of the first author
(Foygel, 2012) and in a preprint (Foygel and Drton, 2011).

At the heart of this paper is an analysis of logistic regression with random
covariates. While logistic regression has special properties, our technical results
can be extended to other generalized linear models. The main challenge for such
generalizations is control of the third derivative of the cumulant function which
might no longer be bounded. Preliminary results under bounded sparsity can
again be found in Foygel (2012) and Foygel and Drton (2011).
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Appendix A: Why are second moments not sufficient?

Returning to the setup of Section 2, we recall that our results on general logis-
tic regression rely on assumption (A2), which places an upper bound on third
moments. In contrast, the lower bound in assumption (A1) concerns second
moments (or, put differently, eigenvalues of small submatrices of the covari-
ance matrix). It is tempting to try and weaken our condition (A2) to a sparse
eigenvalue upper bound:

(A2′) For any q-sparse unit vector u, E[(X⊤
1 u)

2] ≤ a′2.

However, we now show that (A2′) is not sufficient for the desired results in
any asymptotic scenario where q grows with n, no matter how slow the growth is
assumed to be. In particular, we construct an example where, even though sparse
eigenvalues are bounded above and below, the Hessian conditions assumed by
Luo and Chen (2013) do not hold at β0 = 0 (i.e. J0 = ∅), recall (2.2).

For simplicity, let p = q, and let Z be a random vector that follows a uniform
distribution on {±1}q. Let 1q = (1, . . . , 1)⊤. Then define a random vector X by
setting

X =





1q with prob. 1
2q ,

−1q with prob. 1
2q ,

Z with prob. 1− 1
q .

Clearly, E[Z] = E[X ] = 0, and E[ZZ⊤] = Iq. Therefore,

E
[
XX⊤] = 1

q
· 1q1⊤

q +

(
1− 1

q

)
· Iq,

has minimal and maximal eigenvalue equal to

λmin(E
[
XX⊤]) = 1− 1

q
, λmax(E

[
XX⊤]) = 2− 1

q
,

respectively. We observe that the eigenvalues are bounded above and below by
positive constants that are independent of q (for all q ≥ 2), as required by (A1)
and (A2′).

Now take the unit vector u = 1√
q1q. We see that |X⊤u| = √

q with prob-

ability at least 1/q. For independent random vectors X1, . . . , Xn that all have
the same distribution as X , it follows that #{i : |X⊤

i u| =
√
q} is at least as

large as a Binomial(n, 1/q) random variable. Assume for simplicity that n/q is
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an integer. Then n/q is the median of the Binomial(n, 1/q) distribution, and so
with probability at least 1

2 ,

#{i : |X⊤
i u| =

√
q} ≥ n

q
.

In the remainder of this section, we prove that this property contradicts the
inequalities in (2.2), which for β0 = 0 state that

H(β) � (1 + ǫ)H(0) for all ‖β‖2 ≤ δ.

More precisely, for any ǫ > 0 there should be some δ = δ(ǫ) > 0 such that
the statement holds, and the relationship between δ and ǫ (given by δ = δ(ǫ))
should not depend on the dimensions of the problem. Note that since we have
simplified the problem by setting p = q, we do not need to make reference to
submatrices of H(0).

Next take β = u · 1√
q = 1

q1q; then ‖β‖2 = 1√
q . Since b′′(0) ≥ b′′(z) and

b′′(z) = b′′(−z) for all z ∈ R, we have

u⊤ (H(0)−H(β)) u =

n∑

i=1

(X⊤
i u)

2
(
b′′(0)− b′′(X⊤

i β)
)

≥
∑

i:|X⊤
i
u|=√

q

(X⊤
i u)

2
(
b′′(0)− b′′(X⊤

i β)
)
=

∑

i:|X⊤
i
u|=√

q

q (b′′(0)− b′′(1))

≥ n (b′′(0)− b′′(1)) > 0.05n,

where the next-to-last step holds with probability at least 1
2 by the work above.

Now, in accordance with the conditions used by Luo and Chen (2013), sup-
pose that (2.2) holds and that the Hessian is bounded from above as H(0) �
n · c2Iq, where c2 is a constant that is independent of the dimensions (n, q) of
the problem. Then for the choice ǫ = 0.05/c2, we require that there exists some
δ > 0, not depending on the dimensions (n, q) of the problem, such that

H(β) � (1 − ǫ)H(0) � H(0)− n · ǫc2Iq,
with high probability, for all β ∈ Rq with ‖β‖2 ≤ δ. In particular, this implies
that for the vector u chosen above, with high probability, for all β ∈ RJ with
‖β‖2 ≤ δ,

0.05n = n · ǫc2 ≥ u⊤ (H(0)−H(β)) u. (A.1)

In particular, this must be true for β = u · δ′ for any δ′ ≤ δ. But from the work
above, the bound (A.1) is not true for β = u · 1√

q , and so we must have δ < 1√
q .

This contradicts the requirement that the relationship between ǫ and δ should
not depend on the dimensions of the problem.

Appendix B: Proofs for likelihood and score results

This appendix is devoted to the proof of Theorem 2.2, which gives bounds
on likelihood ratios for models postulating sparsity in the coefficient vector β.
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The bounds are for fixed values of the covariates X1, . . . , Xn that satisfy the
Hessian conditions from Theorem 2.1. All probability statements in this section
are tacitly understood to be conditional on X1, . . . , Xn.

B.1. Bounding the score function

In this section, we prove bounds on the score function at the true parameter
β0 that hold with high probability. These bounds concern the score function of
true sparse models given by sets J ⊇ J0 with |J | ≤ q.

Let ǫ′ < ǫ be a positive value that will be specified later. For integer r ≥ 1,
let τr , τ̃r > 0 be defined via

τ2r :=
2

(1− ǫ′)3
·
[
(|J0|+ r) log

(
3

ǫ′

)
+ log(4pν) + r log(2p)

]

and

τ̃2r :=
2

(1− ǫ′)3
·
[
r log

(
3

ǫ′

)
+ log(4pν) + r log(2p)

]
,

respectively. Assume that

τr ≤
ǫ′
√
n clower(‖β0‖2)3
(1− ǫ′)cchange

(B.1)

for r ≤ q−|J0|. This assumption can be guaranteed to hold by choosing Csample,1

in the statement of Theorem 2.2 appropriately.

Lemma B.1. Fix values for the observations X1, . . . , Xn that satisfy the Hes-
sian conditions (2.3) and (2.4) from Theorem 2.1. Assume further that the
inequality in (B.1) holds. Then with conditional probability at least 1− p−ν , we
have for all J ⊇ J0 with |J | ≤ q that both

∥∥∥HJ(β0)
− 1

2 sJ (β0)
∥∥∥
2
≤ τ|J\J0| (B.2)

and ∥∥∥ProjS⊥
J

(
HJ(β0)

− 1
2 sJ(β0)

)∥∥∥
2
≤ τ̃|J\J0|, (B.3)

where the projection is onto the orthogonal complement of the subspace

SJ =
{
HJ (β0)

1
2 z : z ∈ RJ0

}
⊂ RJ .

To be clear, in the definition of SJ , we use RJ0 to denote the coordinate
subspace of vectors z ∈ RJ with zj = 0 for all j ∈ J \ J0.
Proof. We will establish the bounds in (B.2) and (B.3) by using an ǫ-net argu-
ment based on the fact that for any vector z ∈ Rp,

‖z‖2 = sup
{
u⊤z : u ∈ Rp, ‖u‖2 = 1

}
.
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To prepare for the argument, fix a superset J ⊇ J0, a vector u ∈ RJ , and a
scalar τ > 0. Observe that

Prob
{
u⊤HJ (β0)

− 1
2 sJ(β0) > τ

∣∣∣X
}

≤ E
[
exp

{
τ · u⊤HJ(β0)

− 1
2 sJ (β0)− τ2

} ∣∣∣X
]
. (B.4)

By definition,

sJ(β0) =

n∑

i=1

XiJ(Yi − b′(X⊤
i β0)), (B.5)

and since the conditional distribution of Yi given Xi belongs to an exponential
family, we have

E [exp{sYi}|Xi] = exp
{
b(X⊤

i β0 + s)− b(X⊤
i β0)

}
. (B.6)

Plugging (B.5) into (B.4) and using (B.6), we obtain that

log Prob
{
u⊤HJ (β0)

− 1
2 sJ(β0) > τ

∣∣∣X
}

≤
n∑

i=1

[
b
(
X⊤
i (β0 + τHJ (β0)

− 1
2u)
)
− b

(
X⊤
i β0

)]

−
n∑

i=1

[
b′(X⊤

i β0) · τX⊤
iJHJ (β0)

− 1
2 u
]
− τ2

=
1

2

n∑

i=1

[
b′′
(
X⊤
i (β0 + ξ · τHJ (β0)

− 1
2 u)
)
·
(
τX⊤

iJHJ(β0)
− 1

2u
)2]

− τ2,

where the last equation is a 2nd-order Taylor expansion with ξ ∈ [0, 1]. We may
rewrite the inequality just obtained as

log Prob
{
u⊤HJ (β0)

− 1
2 sJ(β0) > τ

∣∣∣X
}

≤ τ2

2
u⊤HJ(β0)

− 1
2HJ

(
β0 + ξ · τHJ (β0)

− 1
2 u
)
HJ(β0)

− 1
2u − τ2.

Now, for τ = τ ′r := τr(1 − ǫ′) with r = |J \ J0| and a vector u ∈ RJ with
‖u‖2 ≤ 1, it holds that

∥∥∥ξ · τ ′rHJ(β0)
− 1

2u
∥∥∥
2
≤ τr(1− ǫ′) ·

√
1

n clower(‖β0‖2)
≤ ǫ′ · clower(‖β0‖2)

cchange
;

recall (B.1). Via (2.2) and (2.5), the assumed Hessian conditions imply that

HJ(β0)
− 1

2HJ

(
β0 + ξ · τ ′r ·HJ(β0)

− 1
2u
)
HJ (β0)

− 1
2

� HJ(β0)
− 1

2

[
(1 + ǫ′)HJ(β0)

]
HJ(β0)

− 1
2 = (1 + ǫ′) · IJ ,
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and thus

Prob
{
u⊤HJ(β0)

− 1
2 sJ(β0) > τ ′r

∣∣∣X
}

≤ exp

{
τ ′r

2

2
(1 + ǫ′)− τ ′r

2

}
= exp

{
−τ

′
r
2

2
(1− ǫ′)

}
. (B.7)

Next, let UJ be an ǫ′-net for the unit sphere in RJ with respect to the Eu-
clidean norm, that is, UJ is a subset of the sphere such that for any unit vector
v there exists a (unit) vector u ∈ UJ such that ‖u− v‖2 < ǫ′. In particular, for
the unit vector

v =
HJ (β0)

− 1
2 sJ(β0)∥∥∥HJ(β0)−
1
2 sJ(β0)

∥∥∥
2

and corresponding u ∈ UJ with ‖u− v‖2 ≤ ǫ′, we see that

u⊤v = v⊤v + (u− v)⊤v ≥ ‖v‖22 − ‖u− v‖2 · ‖v‖2 ≥ 1− ǫ′,

and so
u⊤HJ (β0)

− 1
2 sJ(β0) ≥ (1 − ǫ′)

∥∥∥HJ(β0)
− 1

2 sJ (β0)
∥∥∥
2
. (B.8)

We can take the ǫ-net such that

|UJ | ≤
(
1 +

2

ǫ′

)|J|
≤
(
3

ǫ′

)|J|
; (B.9)

see Proposition 1.3 in Chapter 15 of Lorentz, Golitschek and Makovoz (1996)
or Lemma 14.27 in Bühlmann and van de Geer (2011). Inequality (B.8) and a
union bound yield that

Prob
{∥∥∥HJ(β0)

− 1
2 sJ (β0)

∥∥∥
2
> τr

}

≤ Prob
{
u⊤HJ(β0)

− 1
2 sJ(β0) ≥ τ ′r for some u ∈ UJ

}

≤ |UJ | · Prob
{
u⊤HJ(β0)

− 1
2 sJ (β0) ≥ τ ′r for any single u ∈ UJ

}
.

Applying inequalities (B.7) and (B.9), and plugging in the definition of τ ′r, we
obtain that

Prob
{∥∥∥HJ (β0)

− 1
2 sJ(β0)

∥∥∥
2
> τr

}
≤
(
3

ǫ′

)|J|
· exp

{
−τ

′
r
2

2
(1− ǫ′)

}

= exp {− log(4pν)− r log(2p)} =
1

4(2p)r
· 1

pν
. (B.10)

Finally, to consider all sets J ⊇ J0 with |J | ≤ q simultaneously, we apply the
union bound

Prob
{∥∥∥HJ (β0)

− 1
2 sJ(β0)

∥∥∥
2
> τ|J\J0| for some J ⊇ J0, |J | ≤ q

}
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≤
q−|J0|∑

r=0

Prob
{∥∥∥HJ (β0)

− 1
2 sJ(β0)

∥∥∥
2
≥ τr for some J ⊇ J0 with |J\J0| = r

}
.

Using the fact that there are at most
(
p
r

)
≤ pr sets J ⊇ J0 with |J\J0| = r,

inequality (B.10) and another union bound imply that

Prob
{∥∥∥HJ(β0)

− 1
2 sJ(β0)

∥∥∥
2
> τ|J\J0| for some J ⊇ J0, |J | ≤ q

}

≤
q−|J0|∑

r=0

pr · 1

4(2p)r
· 1

pν
≤ 1

4pν

∞∑

r=0

1

2r
=

1

2pν
.

To prove the analogous statement about the projection operator, we instead
take UJ to be an ǫ′-net of the unit sphere in the orthogonal complement S⊥

J ⊂
RJ , which has dimension |J\J0|. Consequently, we have |UJ | ≤ (3/ǫ′)|J\J0|.
The rest of the argument proceeds identically with a bound of 1/(2pν) for the
probability of the considered event. A union bound over the two cases gives the
claimed bound of 1/pν for the probability of both inequalities holding.

B.2. Bounding the likelihood function

In this subsection we analyze the log-likelihood ratios of sparse models given by
sets |J | ≤ q, proving Theorem 2.2. It suffices to show that the two statements
(a) and (b) in Theorem 2.2 are implied by the bounds (B.2) and (B.3) from
Lemma B.1. The probability of the latter bounds holding was shown to be large
in the previous subsection. In our proof we consider a fixed vector β0. The
statement being true uniformly for vectors with ‖β0‖2 bounded by a0 follows
from the monotonicity of the functions clower and cupper.

Fix any J ⊇ J0 with |J | ≤ q. Consider any β ∈ RJ and let γ = β − β0. Let

γ̃ = HJ(β0)
− 1

2 · ProjSJ

(
HJ (β0)

1
2 γ
)
∈ RJ0 ,

where SJ ⊂ RJ is the |J0|-dimensional subspace defined in Lemma B.1. By

definition, HJ(β0)
1
2 γ̃ = ProjSJ

(HJ (β0)
1
2 γ), and thus

∥∥∥HJ (β0)
1
2 γ
∥∥∥
2

2
=
∥∥∥HJ(β0)

1
2 γ̃
∥∥∥
2

2
+
∥∥∥HJ(β0)

1
2 (γ − γ̃)

∥∥∥
2

2
. (B.11)

Using (2.3), we obtain that

‖γ̃‖2 ≤ 1√
nclower(‖β0‖2)

∥∥∥ProjSJ

(
HJ(β0)

1
2 γ
)∥∥∥

2

≤ 1√
nclower(‖β0‖2)

∥∥∥HJ(β0)
1
2 γ
∥∥∥
2

≤
√
cupper(‖β0‖2)
clower(‖β0‖2)

‖γ‖2. (B.12)
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We now compare the values of the log-likelihood function at β0, β0 + γ, and
β0 + γ̃, using Taylor-expansions. Using Proposition 2.1, we calculate

log L(β0 + γ)− log L(β0) = sJ(β0)
⊤γ − 1

2
γ⊤HJ (β0 + ξ · γ)γ

≤ sJ (β0)
⊤γ − 1

2

(
1− cchange

clower(‖β0‖2)
· ‖γ‖2

)
γ⊤HJ(β0)γ (B.13)

and

log L(β0 + γ̃)− log L(β0) = sJ(β0)
⊤γ̃ − 1

2
γ̃⊤HJ (β0 + ξ̃ · γ̃)γ̃

≥ sJ (β0)
⊤γ̃ − 1

2

(
1 +

cchange
clower(‖β0‖2)

· ‖γ̃‖2
)
γ̃⊤HJ(β0)γ̃, (B.14)

where ξ, ξ̃ ∈ [0, 1]. Subtracting (B.14) from (B.13) and using (B.11), we find
that

log L(β0 + γ)− log L(β0 + γ̃) ≤ sJ (β0)
⊤(γ − γ̃)

− 1

2

∥∥∥HJ(β0)
1
2 (γ − γ̃)

∥∥∥
2

2
+
cchange

(
‖γ‖2γ⊤HJ (β0)γ + ‖γ̃‖2γ̃⊤HJ(β0)γ̃

)

2clower(‖β0‖2)
.

Inequalities (2.3) and (B.12) yield that

log L(β0 + γ)− log L(β0 + γ̃) ≤ sJ (β0)
⊤(γ − γ̃)

− 1

2

∥∥∥HJ(β0)
1
2 (γ − γ̃)

∥∥∥
2

2
+ n · cchange

(
cupper(‖β0‖2)
clower(‖β0‖2)

) 3
2

‖γ‖32. (B.15)

Writing

sJ (β0)
⊤(γ − γ̃) =

(
HJ (β0)

− 1
2 sJ(β0)

)⊤ (
HJ(β0)

1
2 (γ − γ̃)

)

and noting that HJ (β0)
1
2 (γ − γ̃) ∈ S⊥

J , we see that the first two terms of the
bound in (B.15) can be bounded as

sJ(β0)
⊤(γ − γ̃)− 1

2

∥∥∥HJ(β0)
1
2 (γ − γ̃)

∥∥∥
2

2
≤ sup

z∈S⊥
J

(
HJ(β0)

− 1
2 sJ (β0)

)⊤
z − 1

2
‖z‖22

=
1

2

∥∥∥ProjS⊥
J

(
HJ (β0)

− 1
2 sJ(β0)

)∥∥∥
2

2
,

which is at most τ̃2|J\J0|/2 by the assumed inequality (B.3).

Consider now the MLE β = β̂J = β0 + γ, and define γ̃ ∈ RJ0 as before. Then
log L(β̂J0

) ≥ log L(β0+γ̃) because β0+γ̃ ∈ RJ0 , and so applying the calculations
above, we have

log L(β̂J )− log L(β̂J0
) ≤ log L(β̂J )− log L(β0 + γ̃)
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≤ 1

2
τ̃2|J\J0| + n · cchange

(
cupper(‖β0‖2)
clower(‖β0‖2)

) 3
2

· ‖β̂J − β0‖32.
(B.16)

We can thus bound the difference between the maxima of the log-likelihood
functions if we can bound the distance ‖β̂J − β0‖2.

To bound ‖β̂J − β0‖2, we return to (B.13). The assumed inequality (B.2)
implies that

sJ (β0)
⊤γ =

(
HJ (β0)

− 1
2 sJ(β0)

)⊤ (
HJ(β0)

1
2 γ
)

≤
√
ncupper(‖β0‖2) · τ|J\J0|‖γ‖2.

Therefore, for ‖γ‖2 ≤ clower(‖β0‖2)
cchange

, the inequality (B.13) with another applica-

tion of (2.3) gives

log L(β0 + γ)− log L(β0) ≤
√
ncupper(‖β0‖2) · τ|J\J0|‖γ‖2

− nclower(‖β0‖2)(1 − clower(‖β0‖2)−1cchange · ‖γ‖2)
2

‖γ‖22.

In particular, for ‖γ‖2 ≤ clower(‖β0‖2)
2cchange

, we have

log L(β0 + γ)− log L(β0)

≤ ‖γ‖2
(√

ncupper(‖β0‖2) · τ|J\J0| −
nclower(‖β0‖2)

4
‖γ‖2

)
,

and so by concavity of the log-likelihood function, for all γ ∈ RJ ,

log L(β0 + γ)− log L(β0) ≤ ‖γ‖2
(√

ncupper(‖β0‖2) · τ|J\J0|

− nclower(‖β0‖2)
4

min

{
‖γ‖2,

clower(‖β0‖2)
2cchange

})
. (B.17)

Since log L(β̂J)− log L(β0) ≥ 0, this shows that

‖β̂J − β0‖2 ≤ 4
√
cupper(‖β0‖2) · τ|J\J0|√
nclower(‖β0‖2)

,

as long as we assume that

4
√
cupper(‖β0‖2) · τ|J\J0|√
nclower(‖β0‖2)

≤ clower(‖β0‖2)
2cchange

.

Taking up (B.16), we get
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log L(β̂J)− log L(β̂J0
) ≤ 1

2
τ̃2|J\J0|

+ n · cchange
(
cupper(‖β0‖2)
clower(‖β0‖2)

) 3
2

(
4
√
cupper(‖β0‖2) · τ|J\J0|√
nclower(‖β0‖2)

)3

.

If

√
n ≥ 2cchange

ǫ′

(
cupper(‖β0‖2)
clower(‖β0‖2)

) 3
2

(
4
√
cupper(‖β0‖2)

clower(‖β0‖2)

)3

·
τ3|J\J0|
τ̃2|J\J0|

, (B.18)

then we get

log L(β̂J )− log L(β̂J0
) ≤ 1

2
τ̃2|J\J0| · (1 + ǫ′)

=
(1 + ǫ′)

(1− ǫ′)3
·
(
|J\J0| log

(
6p

ǫ′

)
+ log(4pν)

)
. (B.19)

Hence, this inequality holds whenever (B.18) holds. Now, to determine a simpler
lower bound on n, we calculate

τ2|J\J0|
τ̃2|J\J0|

=

2
(1−ǫ′)3 ·

[
|J | log

(
3
ǫ′

)
+ log(4pν) + |J\J0| log(2p)

]

2
(1−ǫ′)3 ·

[
|J\J0| log

(
3
ǫ′

)
+ log(4pν) + |J\J0| log(2p)

] ≤ |J |
|J\J0|

≤ q.

Hence, (B.18) holds as long as n exceeds a constant multiple of q2τ2|J\J0|. For p
large enough, which we can ensure by choice of the constant Cdim, we have that
τ2|J\J0| is no larger than a constant times q log(p). So, by choosing the constant

Csample,1 appropriately, (B.18) holds as long as

n ≥ Csample,1 · q3 log(p).

Now fix ǫ′ ∈ (0, ǫ) such that

(1 + ǫ′)2

(1− ǫ′)3
< 1 + ǫ. (B.20)

Choosing the constant Cdim to ensure that p is large enough, we have that

|J\J0| log
(
6p
ǫ′

)
+ log(4pν)

(|J\J0|+ ν) log(p)
= 1 +

|J\J0| log
(
6
ǫ′

)
+ log(4)

(|J\J0|+ ν) log(p)
≤ 1 + ǫ′,

which implies, by (B.19) and (B.20), that

log L(β̂J)− log L(β̂J0
) ≤ (1 + ǫ)(|J\J0|+ ν) log(p).

This proves statement (a) of Theorem 2.2.
To show the remaining claim (b) of Theorem 2.2, we first note that for any

J 6⊃ J0, it holds that
‖β̂J − β0‖2 ≥ min

j∈J0

|(β0)j |.
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Having assumed that the Hessian conditions hold for true models with up to 2q
covariates, we may apply (B.17) to the model given by (J ∪J0) ⊇ J . We deduce
that

log L(β̂J)− log L(β0) ≤ min
j∈J0

|(β0)j |
(√

ncupper(‖β0‖2) · τ|J\J0|

− nclower(‖β0‖2)
4

min

{
min
j∈J0

|(β0)j |,
clower(‖β0‖2)

2cchange

})
,

as long as the term in the parentheses is non-positive. However, this can be
guaranteed to be the case, by appropriate choice of the constant Csample,2. In
particular, for appropriate choice of Csample,2, we get

log L(β̂J)− log L(β0)

≤ −min
j∈J0

|(β0)j |
nclower(‖β0‖2)

8
min

{
min
j∈J0

|(β0)j |,
clower(‖β0‖2)

2cchange

}
.

Since minj∈J0
|(β0)j | is also upper bounded by a constant, namely

minj∈J0
|(β0)j | ≤ ‖β0‖2 ≤ a0, this is sufficient to prove claim (b) of Theo-

rem 2.2.

Appendix C: Proof of Hessian conditions (Theorem 2.1)

This part of the appendix provides the proof of Theorem 2.1, according to which
the assumptions (A1)–(A3) from Section 2 yield a well-behaved Hessian matrix
for the log-likelihood function of all sparse submodels of a logistic regression
model. The proof is split into three parts. First, we address the inequality (2.4),
next the upper bound in (2.3) and then the lower bound in (2.3). In each case
we provide an explicit probability for an event that ensures the desired con-
clusion. A union bound over the three cases implies that all inequalities hold
simultaneously with a probability large enough to conform with the assertion of
Theorem 2.1.

C.1. Upper bound on change in Hessian

Define the constant
cchange = 1 + a2 + 12

√
2 a33. (C.1)

We claim that if n ≥ q3 log(2p), then with probability at least

1− exp

{
− n

2a63q
3

}
, (C.2)

we have

sup
J⊆[p],|J|≤q

sup
β 6=β′∈RJ

‖HJ(β)−HJ (β
′)‖

‖β − β′‖2
≤ cchange · n.
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To show this claim, take any set J with |J | ≤ q, any unit vector u ∈ RJ and
any pair of distinct vectors β 6= β′ ∈ RJ . Then we have

∣∣u⊤ (H(β)−H(β′))u
∣∣ ≤

n∑

i=1

(X⊤
i u)

2 ·
∣∣b′′(X⊤

i β) − b′′(X⊤
i β

′)
∣∣

≤
n∑

i=1

(X⊤
i u)

2 ·
∣∣X⊤

i β −X⊤
i β

′∣∣ · max
t∈[0,1]

∣∣b′′′(X⊤
i (tβ + (1− t)β′)

∣∣ .

Define the unit vector v = β−β′

‖β−β′‖2
∈ RJ . In logistic regression, |b′′′(z)| ≤ 1 for

all z ∈ R. Using this fact4, we obtain that

∣∣u⊤ (H(β)−H(β′)) u
∣∣ ≤ ‖β − β′‖2 · n

(
1

n

n∑

i=1

(X⊤
i u)

2 ·
∣∣X⊤

i v
∣∣
)

≤ ‖β − β′‖2 · n
(
1

n

n∑

i=1

|X⊤
i u|3

) 2
3
(
1

n

n∑

i=1

|X⊤
i v|3

) 1
3

≤ ‖β − β′‖2 · n ·
(

sup
q-sparse unit w

1

n

n∑

i=1

|X⊤
i w|3

)
.

Applying Corollary D.1 for exponent k = 3, we find that with at least the
claimed probability from (C.2),

sup
q-sparse unit w

1

n

n∑

i=1

|X⊤
i w|3 ≤ 1 + a2 + 12

√
2 a33 = cchange,

as long as n ≥ q3 log(2p). Since H(β)−H(β′) is symmetric, this implies that

‖HJ(β) −HJ(β
′)‖

‖β − β′‖2
≤ sup

q-sparse unit u

∣∣u⊤(H(β)−H(β′))u
∣∣

‖β − β′‖2
≤ cchange · n

for all sets J of cardinality |J | ≤ q and all β 6= β′ ∈ RJ , as claimed.

C.2. Upper bound on Hessian

In this subsection, we prove that if inequality (2.4) holds, then with probability
at least

1− exp

{
− n

2a43q
2

}
, (C.3)

it also holds that
HJ(β) � n · cupper(‖β‖2) · IJ

4For other exponential families, one could bound the b′′′(·) term by taking q to be constant
and only considering β and β′ of bounded norm.
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for all J with |J | ≤ q and all β ∈ RJ . Here, we define

cupper(r) := b′′(0) ·
(
1 + a2 + 8

√
2 a23

)
+ cchange · r

where cchange is the constant from (C.1) and b′′(0) = 1/4 for logistic regression.
The idea for our proof is to show that, on a suitable event, sup|J|≤q‖HJ(0)‖ =
O(n). Then, combined with the bounded change condition (2.4), we will be able
to bound ‖HJ(β)‖ for any β ∈ RJ .

First, for any q-sparse unit u, we have

E
[
(X⊤u)2

]
≤ E

[
|X⊤u|3

] 2
3 ≤ a

2
3

2 .

Then we have, with at least the probability in (C.3),

sup
|J|≤q

‖HJ(0)‖ = sup
|J|≤q

∥∥∥∥∥

n∑

i=1

XiJX
⊤
iJb

′′(X⊤
i 0)

∥∥∥∥∥

= b′′(0) · sup
|J|≤q

∥∥∥∥∥

n∑

i=1

XiJX
⊤
iJ

∥∥∥∥∥

= b′′(0) · sup
|J|≤q, unit u∈RJ

n∑

i=1

(X⊤
i u)

2

≤ b′′(0) · n
(
1 + a2 + 8

√
2 a23

)
,

where for the last step we apply Corollary D.1 with k = 2, using the assumption
that n ≥ q2 log(2p). The bounded change condition from (2.4) now implies the
desired conclusion, namely, that for all J with |J | ≤ q and all β ∈ RJ ,

‖HJ(β)‖ ≤ ‖HJ(0)‖+ ‖HJ(0)−HJ(β)‖ ≤ n · cupper(‖β‖2).

C.3. Lower bound on Hessian

Finally, we prove that with probability at least

1− 2 exp

{
−n
2
·
(

a31
512a22

)2
}
, (C.4)

it holds for all |J | ≤ q, for all |J | ≤ q and for all β ∈ RJ that

HJ(β) � n · clower(‖β‖2) · IJ ,

where

clower(r) :=
a41

2048a22
· min
|z|≤r·2 3

√
256a2/a1

b′′(z)
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=
a41

2048a22
· exp{r · 2 3

√
256a2/a1}(

1 + exp{r · 2 3
√
256a2/a1}

)2

for the case of logistic regression; recall (2.1). We show this for triples (n, p, q)
that have n larger than the product of q log(2p) and a constant that is deter-
mined through (C.8) below.

For a proof, since

HJ(β) =

n∑

i=1

XiJX
⊤
iJ b

′′(X⊤
i β),

we consider the quantity
n∑

i=1

(X⊤
i u)

2b′′(X⊤
i β)

where u ∈ RJ is a unit vector. For any choice of w1, w2 ≥ 0, we have

n∑

i=1

(X⊤
i u)

2b′′(X⊤
i β) ≥

n∑

i=1

w2
1 min

|z|≤‖β‖2w2

b′′(z) · 1{|X⊤
i
u|≥w1,|X⊤

i
β|≤‖β‖2w2}.

Using the symmetry and monotonicity of b′′ for logistic regression we find

n∑

i=1

(X⊤
i u)

2b′′(X⊤
i β) ≥ n · w2

1 b
′′(‖β‖2w2)

×
(
1− #{i : |X⊤

i u| < w1}
n

− #
{
i : |X⊤

i β|/‖β‖2 > w2

}

n

)
. (C.5)

We now show how to choose w1 and w2 such that the two relative frequencies
are sufficiently small, with high probability, for any choice of u and β.

By Lemma D.3, for any t > 0, with probability at least 1 − 2e−nt
2/2, for all

q-sparse unit vectors u,

#{i : |X⊤
i u| < w1}
n

≤ Prob

{
|X⊤

1 u| < w1 +
1

t

√
32a23q log(2p)

n

}
+ 2t (C.6)

and

#{i : |X⊤
i u| > w2}
n

≤ Prob

{
|X⊤

1 u| > w2 −
1

t

√
32a23q log(2p)

n

}
+ 2t. (C.7)

Now set

w1 =

√
a1
8
, w2 =

2 3
√
256a2
a1

, t =
a31

512a22
,



600 R. F. Barber and M. Drton

and assume
1

t

√
32a23q log(2p)

n
≤ min

{√
a1
8
,

3
√
256a2
a1

}
. (C.8)

Then, for shorter notation, define the two scalars

w′
1 = w1 +

1

t

√
32a23q log(2p)

n
, w′

2 = w2 −
1

t

√
32a23q log(2p)

n
.

Assume now that (C.6) and (C.7) hold. We begin by simplifying the bound
in (C.6). By (C.8), w′

1
2 ≤ a1

2 , and so applying Lemma D.5 with Z = (X⊤
1 u)

2,

h(Z) =
√
Z and a = w′

1
2 yields that for all q-sparse unit vectors u,

Prob
{
|X⊤

1 u| < w′
1

}
≤ 1− E

[
(X⊤

1 u)
2
]
− w′

1
2

inf

{
x ≥ 0 :

√
x >

E[|X⊤
1 u|3]

E[(X⊤
1 u)

2]−w′
1
2

}

≤ 1− a1 − w′
1
2

inf

{
x ≥ 0 :

√
x >

E[|X⊤
1 u|3]

E[(X⊤
1 u)

2]−w′
1
2

} .

The term involving the supremum satisfies

a1 − w′
1
2

inf
{
x ≥ 0 :

√
x > a2

a1−w′
1
2

} =
a1 − w′

1
2

(
a2

a1−w′
1
2

)2 =
(a1 − w′

1
2)3

8a22
≥ a31

64a22
,

and so

sup
q-sparse unit u

#{i : |X⊤
i u| < w1}
n

≤
(
1− a31

64a22

)
+ 2t ≤ 1− 3a31

256a22
.

Next, we simplify the bound in (C.7). By (C.8), for any u,

Prob
{
|X⊤

1 u| > w′
2

}
≤ Prob

{
|X⊤

1 u| >
3
√
256a2
a1

}
= Prob

{
|X⊤

1 u|3 >
256a32
a31

}
.

By Markov’s inequality,

Prob
{
|X⊤

1 u| > w′
2

}
≤ E

[
|X⊤

1 u|3
]

256a32/a
3
1

≤ a2
256a32/a

3
1

=
a31

256a22
.

We obtain that

sup
q-sparse unit u

#{i : |X⊤
i u| > w2}
n

≤ a31
256a22

+ 2t ≤ a31
128a22

.

Returning to (C.5), we conclude that, with at least the probability from (C.4),
for all |J | ≤ q and all unit u ∈ RJ and all β ∈ RJ ,

n∑

i=1

(X⊤
i u)

2 b′′(X⊤
i β) ≥ n · w2

1b
′′(‖β‖2w2) ·

[
1−

(
1− 3a31

256a22

)
− a31

128a22
}
]
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≥ n · a1
8

· a31
256a22

b′′
(
‖β‖2 ·

2 3
√
256a2
a1

)

= n · clower(‖β‖2).

Appendix D: Technical lemmas

This section of the appendix provides the lemmas that were used in previous
parts of the paper to control the behavior of sparse linear combinations of the
covariates.

D.1. Concentration bound and subgaussian maxima

The lemmas we establish subsequently make use of the following general con-
centration bound.

Lemma D.1. Let X,X1, . . . , Xn be i.i.d. random variables drawn from a set X ,
and let F be a class of functions f : X → R. Consider an L-Lipschitz function
g : R → R with g(0) = 0 and |g(f(X))| ≤M almost surely. Then, for any t ≥ 0,

with probability at least 1− e−t
2/2,

sup
f∈F

∣∣∣∣∣

n∑

i=1

(
g(f(Xi)) − EX [g(f(X))]

)∣∣∣∣∣

≤ 4LEν1,...,νn,X1,...,Xn

[
sup
f∈F

∣∣∣∣∣

n∑

i=1

νif(Xi)

∣∣∣∣∣

]
+ t ·M√

n,

where ν1, . . . , νn ∈ {±1} are independent Rademacher random variables that are
also independent of X1, . . . , Xn.

Proof. The claim follows by combining known bounded difference, symmetriza-
tion, and contraction results. Specifically, it is a consequence of Theorems 2.5,
2.1, and 2.3 in Koltchinskii (2011).

The next lemma states a well-known property of subgaussian random vari-
ables (Koltchinskii, 2011, Prop. 3.1). Recall that a random variable Z is σ-
subgaussian if, for all t ∈ R,

E
[
etZ
]
≤ et

2σ2/2.

Lemma D.2. Suppose Z1, . . . , Zm are, not necessarily independent, random
variables with a common distribution that is σ-subgaussian for σ > 0. Then

E

[
max

1≤i≤m
|Zi|
]

≤ σ ·
√
2 log(2m).

D.2. Sparse unit linear combinations falling in an interval

We return to the setting where X,X1, . . . , Xn are i.i.d. random vectors in Rp

and satisfy assumptions (A1)–(A3).
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Lemma D.3. Fix any a > 0 and t > 0. With probability at least 1 − e−t
2n/2,

for all q-sparse unit vectors u,

1

n
#{i : |X⊤

i u| < a} ≤ Prob

{
|X⊤u| < a+

1

t

√
32a23q log(2p)

n

}
+ 2t.

Similarly, with probability at least 1− e−t
2n/2, for all q-sparse unit vectors u,

1

n
#{i : |X⊤

i u| > a} ≤ Prob

{
|X⊤u| > a− 1

t

√
32a23q log(2p)

n

}
+ 2t.

Proof. The proofs of the two statements are essentially identical, so we prove
only the first one. Let

c := t−1

√
32a23q log(2p)

n
,

and define the piece-wise linear function

g(z) =





1 if |z| ≤ a,

0 if |z| ≥ a+ c,

(a+ c− |z|)/c if a ≤ |z| ≤ a+ c.

Then g is 1/c-Lipschitz, has values in [0, 1], and satisfies1{|z|<a} ≤ g(z) ≤ 1{|z|<a+c}.

By the concentration bound from Lemma D.1, with probability at least 1 −
e−t

2n/2,

sup
q-sparse unit u

∣∣∣∣∣

n∑

i=1

(
g(X⊤

i u)− E
[
g(X⊤u)

] )
∣∣∣∣∣

≤ 4c−1Eν,X

[
sup

q-sparse unit u

∣∣∣∣∣

n∑

i=1

νiX
⊤
i u

∣∣∣∣∣

]
+ nt. (D.1)

Assume from now on that this event occurs.
We may bound the expectation appearing in (D.1) as

Eν,X

[
sup

q-sparse unit u

∣∣∣∣∣

n∑

i=1

νiX
⊤
i u

∣∣∣∣∣

]
≤ Eν,X

[
sup
|J|≤q

∥∥∥∥∥

n∑

i=1

νiXiJ

∥∥∥∥∥
2

]

≤ √
qEν,X

[
sup

1≤j≤p

∣∣∣∣∣

n∑

i=1

νiXij

∣∣∣∣∣

]
. (D.2)

By assumption (A3), |Xij | ≤ a3 for all i, j, and therefore
∑n

i=1 νiXij is (a3
√
n)-

subgaussian because, by independence of the Xi’s,
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E
[
et

∑n
i=1 νiXij

]
=

n∏

i=1

E
[
etνiXij

]
≤

n∏

i=1

E
[
E
[
etνiXij | Xij

]]

=
n∏

i=1

1

2
E
[
etXij + e−tXij

]
≤

n∏

i=1

E
[
et

2X2
ij/2
]
≤ ent

2a23/2.

Applying Lemma D.2 to (D.2), we obtain that

Eν,X

[
sup

q-sparse unit u

∣∣∣∣∣

n∑

i=1

νiX
⊤
i u

∣∣∣∣∣

]
≤ √

q · a3
√
n ·
√
2 log(2p). (D.3)

We deduce that

sup
q-sparse unit u

∣∣∣∣∣

n∑

i=1

g(X⊤
i u)− E

[
g(X⊤u)

]
∣∣∣∣∣

≤ 4c−1√q · a3
√
n ·
√
2 log(2p) + nt = 2nt,

by our choice of c. Returning to (D.1), we have shown that, as desired,

sup
q-sparse unit u

#{i : |X⊤
i u| < a} ≤ sup

q-sparse unit u

n∑

i=1

g(X⊤
i u)

≤ nE
[
g(X⊤u)

]
+ 2nt ≤ nProb{|X⊤u| < a+ c}+ 2nt.

D.3. Bounding functions of sparse unit linear combinations

Lemma D.4. Suppose f : [0,∞) → [0,∞) is a nondecreasing function with

f(z) ≤M, |f(z)− f(z′)| ≤ L|z − z′|,

for all 0 ≤ z, z′ ≤ a3
√
q. If E[f(|X⊤u|)] ≤ a2 for all q-sparse unit vectors u,

then under assumption (A3), it holds with probability at least 1−e−n/(2M2) that

sup
q-sparse unit u

n∑

i=1

f(|X⊤
i u|) ≤ n

(
1 + a2 + 4La3

√
2 log(2p)

n

)
.

Proof. Define h(z) = f(|z|) for z ∈ R. By our assumptions on f , the function h
is M -bounded and L-Lipschitz over z ∈ [−a3√q, a3√q] ⊂ R.

Applying the concentration bound from Lemma D.1 to h, with t =
√
n/M ,

we obtain that with probability at least 1− e−n/(2M
2),

sup
|J|≤q, unit u∈RJ

∣∣∣∣∣

n∑

i=1

(
h(X⊤

i u)− E
[
h(X⊤u)

] )
∣∣∣∣∣
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≤ n+ 4LEν,X

[
sup

|J|≤q, unit u∈RJ

∣∣∣∣∣

n∑

i=1

νiX
⊤
i u

∣∣∣∣∣

]

≤ n+ 4L
√
q · a3

√
n ·
√
2 log(2p),

where the second inequality follows from (D.3) using the same reasoning as in
the proof of Lemma D.3. Since h(z) = f(|z|) for all z ∈ R, we have

E
[
h(X⊤u)

]
= E

[
f(|X⊤

i u|)
]
≤ a2.

Hence, with probability at least 1− e−n/(2M
2),

sup
|J|≤q, unit u∈RJ

n∑

i=1

h(X⊤
i u) ≤ n

(
1 + a2 + 4La3

√
2q log(2p)

n

)
. (D.4)

We obtain the following corollary about moments of sparse unit linear com-
binations.

Corollary D.1. Let k > 0. If E[|X⊤u|k] ≤ a2 for all q-sparse unit vectors u,
then

sup
|J|≤q, unit u∈RJ

n∑

i=1

|X⊤
i u|k ≤ n

(
1 + a2 + 4

√
2 · kak3

√
qk log(2p)

n

)

holds with probability at least

1− exp

{
− n

2a2k3 q
k

}
.

Proof. Apply Lemma D.4 to f(|z|) = |z|k, setting

M = f (a3
√
q) = (a3

√
q)
k
,

L = f ′ (a3
√
q) = k (a3

√
q)
k−1

,

and collecting terms to find the upper bound.

D.4. Bounding a variable away from zero using expectations

Lemma D.5. Let h : [0,∞) → [0,∞) be a continuous and nondecreasing func-
tion such that z 7→ z · h(z) is convex. Let Z ≥ 0 be a random variable with
E[Z] <∞ and E[Z · h(Z)] <∞. Then for any a ≤ E[Z],

Prob{Z > a} ≥ E [Z]− a

inf
{
x ≥ 0 : h(x) > E[Z·h(Z)]

E[Z]−a

} .
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Remark D.1. This inequality is an extension of the Paley-Zygmund inequality
(Shorack, 2000, Inequality 4.9), which makes the same statement for h(z) = z.

Proof. First, we have

E [Z · 1Z>a] = E [Z]− E [Z · 1Z≤a] ≥ E [Z]− a. (D.5)

Now, let Y be a random variable whose distribution is equal to the distribution
of Z conditional on Z > a, that is,

Prob {Y ≤ y} =

{
0, y ≤ a,
Prob{a<Z≤y}
Prob{Z>a} , y > a.

Next, write g(z) = z · h(z), which by assumption is convex, continuous, and
strictly increasing, with g(0) = 0. We can then define the inverse g−1 : R+ 7→
R+, which is also strictly increasing. Then, by Jensen’s inequality,

E [Z · 1Z>a] = E [Y ] · Prob {Z > a}
≤ g−1 (E [g(Y )]) · Prob {Z > a}
= g−1 (E [g(Z) | Z > a]) · Prob{Z > a}

= g−1

(
E [g(Z) · 1Z>a]
Prob{Z > a}

)
· Prob {Z > a}

≤ g−1

(
E [g(Z)]

Prob{Z > a}

)
· Prob{Z > a}

and so

g−1

(
E [g(Z)]

Prob {Z > a}

)
≥ E [Z · 1Z>a]

Prob{Z > a} ≥ E [Z]− a

Prob {Z > a} ,

which implies
E [g(Z)]

Prob{Z > a} ≥ g

(
E [Z]− a

Prob{Z > a}

)
.

Rewriting this last conclusion in terms of h gives

E [Z · h(Z)]
Prob {Z > a} ≥ E [Z]− a

Prob{Z > a} · h
(

E [Z]− a

Prob {Z > a}

)

and thus
E [Z · h(Z)]
E [Z]− a

≥ h

(
E [Z]− a

Prob{Z > a}

)
.

We conclude that for any x such that

h(x) >
E [Z · h(Z)]
E [Z]− a

,

we must have E[Z]−a
Prob{Z>a} ≤ x because h is nondecreasing. This proves that

Prob {Z > a} ≥ E [Z]− a

inf
{
x ≥ 0 : h(x) > E[Z·h(Z)]

E[Z]−a

} .
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