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Abstract

We consider the problem of high-dimensional non-linearalde selection for supervised
learning. Our approach is based on performing linear seleeimong exponentially many ap-
propriately defined positive definite kernels that chardtenon-linear interactions between
the original variables. To select efficiently from these mkernels, we use the natural hierar-
chical structure of the problem to extend the multiple kéleerning framework to kernels that
can be embedded in a directed acyclic graph; we show thatieispossible to perform kernel
selection through a graph-adapted sparsity-inducing niorpolynomial time in the number of
selected kernels. Moreover, we study the consistency @dblarselection in high-dimensional
settings, showing that under certain assumptions, outlaggation framework allows a num-
ber of irrelevant variables which is exponential in the nemiif observations. Our simulations
on synthetic datasets and datasets from the UCI repostiory state-of-the-art predictive per-
formance for non-linear regression problems.
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1 Introduction

High-dimensional problems represent a recent and impottgic in machine learning, statistics
and signal processing. In such settings, some notion osigpas a fruitful way of avoiding over-
fitting, for example through variable or feature selectidrhis has led to many algorithmic and
theoretical advances. In particular, regularization bgrsity-inducing norms such as tiig-norm
has attracted a lot of interest in recent years. While eadykwhas focused on efficient algo-
rithms to solve the convex optimization problems, receseagech has looked at the model selec-
tion properties and predictive performance of such methodbe linear case (Zhao and Yu, 2006;
Yuan and Lin, 2007; Zou, 2006; Wainwright, 2009; Bickel ef 2009; Zhang, 2009a) or within
constrained non-linear settings such as the multiple kdeaening framework (Lanckriet et al.,
2004b; Srebro and Ben-David, 2006; Bach, 2008a; Koltcliiasid Yuan, 2008; Ying and Campbell,
2009) or generalized additive models (Ravikumar et al.820th and Zhang, 2006).
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However, most of the recent work dealt withear high-dimensionaVariable selection, while
the focus of much of the earlier work in machine learning atadistics was omon-linear low-
dimensionaproblems: indeed, in the last two decades, kernel methogskeen a prolific theoret-
ical and algorithmic machine learning framework. By usipp@priate regularization by Hilber-
tian norms, representer theorems enable to consider ladypaentially infinite-dimensional fea-
ture spaces while working within an implicit feature spacelarger than the number of obser-
vations. This has led to numerous works on kernel designtadap specific data types and
generic kernel-based algorithms for many learning tasés,(ge.g., Scholkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004). However, while novedrity is required in many domains
such as computer vision or bioinformatics, most theorktiesults related to non-parametric meth-
ods do not scale well with input dimensions. In this paper,gnal is to bridge the gap between
linear and non-linear methods, by tacklihigh-dimensional non-linegproblems.

The task of non-linear variable section is a hard problenh fétv approaches that have both
good theoretical and algorithmic properties, in particutahigh-dimensional settings. Among
classical methods, some are implicitly or explicitly basedsparsity and model selection, such
as boosting (Freund and Schapire, 1997), multivariatetisddiegression splines (Friedman, 1991),
decision trees (Breiman et al., 1984), random forests (Baaij 2001), Cosso (Lin and Zhang, 2006)
or Gaussian process based methods (see, e.g., Rasmus&#iiliants, 2006), while some others
do not rely on sparsity, such as nearest neighbors or kerettlads (see, e.g., Devroye et al., 1996;
Shawe-Taylor and Cristianini, 2004).

First attempts were made to combine non-linearity and ggamslucing norms by considering
generalized additive modelwhere the predictor function is assumed to be a sparse looeabi-
nation of non-linear functions of each variable (Bach et2004a; Bach, 2008a; Ravikumar et al.,
2008). However, as shown in Section 5.3, higher orders efactions are needed for universal
consistency, i.e., to adapt to the potential high compjendtthe interactions between the relevant
variables; we need to potentially alld¥ of them forp variables (for all possible subsets of the
variables). Theoretical results suggest that with appigmrassumptions, sparse methods such as
greedy methods and methods based orfth@orm would be able to deal correctly widh features
if p is of the order of the number of observatiangWainwright, 2009; Candés and Wakin, 2008;
Zhang, 2009b). However, in presence of more than a few doaeables, in order to deal with that
many features, or even to simply enumerate those, a cedain df factorization or recursivity is
needed. In this paper, we propose to use a hierarchicatwsteusased on directed acyclic graphs,
which is natural in our context of non-linear variable sétat

We consider a positive definite kernel that can be expresseallarge sum of positive defi-
nite basisor local kernels This exactly corresponds to the situation where a largeifeaspace is
the concatenation of smaller feature spaces, and we aim $eldotion among these many kernels
(or equivalently feature spaces), which may be done thrangtiple kernel learning (Bach et al.,
2004a). One major difficulty however is that the number oséhemaller kernels is usually expo-
nential in the dimension of the input space and applying iplaltkernel learning directly to this
decomposition would be intractable. As shown in Section fd2non-linear variable selection, we
consider a sum of kernels which are indexed by the set of wib$all considered variables, or
more generally by{0,...,¢}?, forq > 1.

In order to perform selection efficiently, we make the exssumption that these small kernels
can be embedded indirected acyclic grapi(DAG). Following Zhao et al. (2009), we consider
in Section 2 a specific combination 6f-norms that is adapted to the DAG, and that will restrict
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the authorized sparsity patterns to certain configurationsur specific kernel-based framework,
we are able to use the DAG to design an optimization algoritirich has polynomial complexity
in the number of selected kernels (Section 4). In simulati®ection 6), we focus odirected
grids, where our framework allows to perform non-linear variabddection. We provide some
experimental validation of our novel regularization framoek; in particular, we compare it to the
regular/s-regularization, greedy forward selection and non-kebasled methods, and shows that
it is always competitive and often leads to better perforcearboth on synthetic examples, and
standard regression datasets from the UCI repository.

Finally, we extend in Section 5 some of the known consisteasylts of the Lasso and multiple
kernel learning (Zhao and Yu, 2006; Bach, 2008a), and givarégb answer to the model selection
capabilities of our regularization framework by giving eesary and sufficient conditions for model
consistency. In particular, we show that our framework iapaeld to estimating consistently only
thehull of the relevant variables. Hence, by restricting the dteispower of our method, we gain
computational efficiency. Moreover, we show that we canialdgaalings between the number of
variables and the number of observations which are sinoldhe linear case (Wainwright, 2009;
Candes and Wakin, 2008; Zhao and Yu, 2006; Yuan and Lin, ;2B0U, 2006; Wainwright, 2009;
Bickel et al., 2009; Zhang, 2009a): indeed, we show that egularization framework may achieve
non-linear variable selection consistency even with a remobvariables which is exponential in
the number of observations Since we deal witR? kernels, we achieve consistency with a number
of kernels which igloublyexponential im. Moreover, for general directed acyclic graphs, we show
that the total number of vertices may grow unbounded as lsigeamaximal out-degree (number
of children) in the DAG is less than exponential in the numifasbservations.

This paper extends previous work (Bach, 2008b), by prowgiditore background on multiple
kernel learning, detailing all proofs, providing new catsincy results in high dimension, and com-
paring our non-linear predictors with non-kernel-basedhwods.

Notation. Throughout the paper we consider Hilbertian norjirfd for elementsf of Hilbert
spaces, where the specific Hilbert space can always beadfénom the context (unless otherwise
stated). For rectangular matricels we denote by|A||,, its largest singular value. We denote by
Amax (@) and A\pin (Q) the largest and smallest eigenvalue of a symmetric mgrixThese are
naturally extended to compact self-adjoint operators ZBre1980; Conway, 1997).

Moreover, given a vectos in the product spacg; x --- x F, and a subset of {1,...,p},
vy denotes the vector iiF;);c; of elements ofv indexed byI. Similarly, for a matrixA defined
with p x p blocks adapted t¢F, ..., F,, Ar; denotes the submatrix of composed of blocks
of A whose rows are id and columns are iy. Moreover,|J| denotes the cardinal of the sét
and|F| denotes the dimension of the Hilbert spa€eWe denote byl,, the n-dimensional vector
of ones. We denote bfu), = max{0,a} the positive part of a real number Besides, given
matricesAy, ..., A,, and a subsef of {1,...,n}, Diag(A); denotes the block-diagonal matrix
composed of the blocks indexed by Finally, we let denot& andE general probability measures
and expectations.
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Lossy;(u;) Fenchel conjugate; (5;)
Least-squares regressiort (y; — u;)? 507 + By
1-norm support (lyi — wil — )+ Biyi + |Bile if 18] < 1
vector regression (SVR +o00 otherwise
2-norm support sy —wi| —e)% 187+ Biyi + |Bile
vector regression (SVR
Hilber regression Sy —u) 2 if Jyi—wi| <e| 362 + By if [Bi] < e
ely; — wi| — % otherwise | +oo otherwise
Logistic regression log(1 + exp(—y;ui)) (14 Biyi) log(1+ Biy:) — Biyi log (—Bivi)
if B;y; € [—1,0], 00 otherwise
1-norm support max (0,1 — y;u;) yi3i If Biy; € [—1,0]
vector machine (SVM) +o0 otherwise
2-norm support s max(0, 1 — yu;)? 367 + By if By <0
vector machine (SVM) +oo otherwise

Table 1: Loss functions with corresponding Fenchel conpgafor regression (first three losses,
y; € R) and binary classification (last three lossgss {—1,1}.

2 Review of Multiple Kernel Learning

We consider the problem a predictingesponseY” € R from a variableX € X, whereX may
be any set of inputs, referred to as theut space In this section, we review the multiple kernel
learning framework our paper relies on.

2.1 Loss Functions

We assume that we are givenobservations of the coupleX,Y), i.e., (z;,y;) € X x Y for
i =1,...,n. We define theempirical riskof a functionf from X to R as

LS Uy )
i=1

where/ : R x R — RT is aloss function We only assume thatis convex with respect to the
second parameter (but not necessarily differentiable).

Following Bach et al. (2004b) and Sonnenburg et al. (200&)rder to derive optimality condi-
tions for all losses, we need to introduce Fenchel conjsgatee examples in Table 1 and Figure 1).
Lety; : R — R, be the Fenchel conjugate (Boyd and Vandenberghe, 2008 afdnvex function
i = u; — L(y;, u;), defined as

Vi(Bi) = max wiBi — pi(ui) = max w;iBi — £(yi, ui)-
The functiony; is always convex and, because we have assumeg{limtonvex, we can represent
; as the Fenchel conjugate ©f, i.e., for allu; € R,

Cyi, wi) = i(u;) = max wifBi — Vi(5s)-

k3
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Figure 1: (Left) Losses for binary classification (plotteithay; = 1). (Right) Losses for regression
(plotted withy; = 0).

Moreover, in order to include an unregularized constamhteve will need to be able to solve with
respect td € R the following optimization problem:

Igﬁ;z«pz (ui +b). @)
Foru € R", we let denote by*(u) any solution of Eqg. (1). It can either be obtained in closedfo
(least-squares regression), using Newton-Raphson filogegression), or by ordering the values
u; € R,i=1,...,n (all other piecewise quadratic losses). In Section 4, waysi details losses
for which the Fenchel conjugatg is strictly convex, such as for logistic regression, 2-n@WM,
2-norm SVR and least-squares regression.

2.2 Single Kernel Learning Problem

In this section, we assume that we are given a positive defieitnelk(x, z’) on X. We can then
define a reproducing kernel Hilbert space (RKHS) as the cetigpl of the linear span of functions
x — k(z,2') for 2/ € X (Berlinet and Thomas-Agnan, 2003). We can definefdaure map

¢ : X — Fsuchthatforalk € X, f(z) = (f, ®(z)) and for allz, 2’ € X, ®(x)(2') = k(z,2');
we denote by f|| the norm of the functiorf € F. We consider the single kernel learning problem:

A
¢ (y; +0)+ Z|IfII 2
er}_ugeRnZ (i, f(2i) +0) + S £l 2

The following proposition gives its dual, providing a corvimstance of the representer theo-
rem (see, e.g. Shawe-Taylor and Cristianini, 2004; Sdmflknd Smola, 2002, and proof in Ap-
pendix A.2):

Proposition 1 (Dual problem for single kernel learning problem) The dual of the optimization
problem in Eq. (2) is

1 o A
max —— Z; i(—nAay) — §aTK0z, 3

aeR™, 1, a=0
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where K € R™*" is the kernel matrix defined &s;; = k(x;,x;). The unique primal solutiorf
can be found from an optimal as f = >""" | o;®(z;), andb = b* (K ).

Note that if the Fenchel conjugate is strictly convex or & Kernel matrix is invertible, then the dual
solutiona is also unique. In Eq. (3), the kernel matfik may be replaced by itsenteredversion

_ | 1
K= <1— Eml)K(t— E1,112),

defined as the kernel matrix of the centered observed feafsee, e.g. Shawe-Taylor and Cristianini,
2004; Scholkopf and Smola, 2002). Indeed, we haldla = o T K« in Eq. (3); however, in the
definition ofb = b*(K«), K cannot be replaced b .

Finally, the duality gap obtained from a vecterc R" such thatl,) o = 0, and the associated
primal candidates from Proposition 1 is equal to

gaPyernel (K, @) = ngz (Ka); + b (Ka)] + Aa Ka + — sz —nAoy). 4
i=1 i=1

2.3 Sparse Learning with Multiple Kernels

We now assume that we are givedifferent reproducing kernel Hilbert spacgs on X', associated
with positive definite kernelé; : X x X — R, j = 1,...,p, and associated feature maps :
X — F;. We consider generalized additive models (Hastie and irdosih 1990), i.e., predictors
parameterized by = (f1,..., fp) € F = F1 x --- x F, of the form

p p
fl@)+b=>"fi( Z fi, @ b,
j=1 j=1

where eacly’j € Fjandb € Risa constant term. We let dendi¢|| the Hilbertian norm off €
Fix - x Fy, defined ag{f|2 = Y0_, || 5]

We consider regularizing by the sum of the Hilbertian norﬁ%’k1 || f;]l (which is not itself
a Hilbertian norm), with the intuition that this norm will pb some of the functiong; towards
zero, and thus provide data-dependent selection of theréeapacesr;, j = 1,...,p, and hence
selection of the kernels;, j = 1, ..., p. We thus consider the following optimization problem:

n

1 P
19 7 b )¢ 5
heF1, PEF,, beR n (y ny xi) + > (;HJZH (5)

Note that using the squared sum of norms does not change ghlanieation properties: for all
solutions of the problem regularized @?;1 || f;1l, there corresponds a solution of the problem
in Eqg. (5) with a different regularization parameter, ancevwersa (see, e.g., Borwein and Lewis,
2000, Section 3.2). The previous formulation encompassesiety of situations, depending on
how we set up the input spacas, ..., &):

e Regular ¢/;-norm and group ¢;-norm regularization: if eachX; is the space of real num-
bers, then we exactly get back penalization by theorm, and for the square loss, the
Lasso (Tibshirani, 1996); if we consider finite dimensiomettor spaces, we get back the
block ¢,-norm formulation and the group Lasso for the square lossuif¥and Lin, 2006).
Our general Hilbert space formulation can thus be seen agrafiarametric group Lasso”.

6
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e “Multiple input space, multiple feature spaces”. In this section, we assume that we have a
single input spac&” and multiple feature spacés, . . . , 7, defined on the same input space.
We could also consider that we haveifferent input space&’; and one feature spadg per
X;, j = 1,...,p, asituation common in generalized additive models. We cafram the
“single input space, multiple feature spaces” view to theittiple input space/feature space
pairs” view by considering identical copiesty, ..., &), or X, while we can go in the other
direction using projections from’ = X} x - - x X),.

The sparsity-inducing norm formulation defined in Eg. (5) ba seen from several points of views
and this has led to interesting algorithmic and theoretitealelopments, which we review in the
next sections. In this paper, we will build on the approacisettion 2.4, but all results could be
derived through the approach presented in Section 2.5 arth8&.6.

2.4 Learning convex combinations of kernels
Pontil and Micchelli (2005) and Rakotomamonjy et al. (2088)w that
p 2
Hfg
1 mln
() = Z

H2

FolpC

where the minimum is attained & = ||f;|/>_%_; ||f&ll. This variational formulation of the
squared sum of norms allows to find an equivalent problem tq&gnamely:

Hfj
min min ,
CeRL, 1J¢=1 fi€F1,... prfp,beR n (yl Zfﬂ ) Z

||2

(6)

Given¢ € R% such thatl] ¢ = 1, using the change of variablg = fjg“j_l/2 and ®;(z) =
C;/chj(m),j =1,...,p, the problem in Eq. (6) is equivalent to:

A~
mln min Z€ Yis f x;)) + b) + EHJCHQv

CE ) pC 1 f€.7'— bGRn

with respect tof. Thus is the solution of the single kernel learning problem withrie

k(C)(,2") = (B(x) = (¢ 0(@), ¢ 0 (2) ch

J=1

This shows that the non-parametric group Lasso formulatioounts in fact to learning implicitly a
weighted combination of kernels (Bach et al., 2004a; Rakatnonjy et al., 2008). Moreover, the
optimal functionsf; can then be computed #5-) = ¢; > ; a;k;(-, z;), where the vectos € R”

is commorto all feature space%;, j =1,...,p.
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2.5 Conic convex duality

One can also consider the convex optimization problem inBcand derive the convex dual using
conic programming (Lobo et al., 1998; Bach et al., 2004aH32608a):

max {——sz —nAq;) —é max « Ka} (7)

2 je{1,...p}

wheref(j is the centered kernel matrix associated with ttth kernel. From the optimality condi-
tions for second order cones, one can also get that thers @dsitive weightg that sum to one,
such thatf;(-) = ;> i, aik;(-,z;) (See Bach et al., 2004a, for details). Thus, both the kernel
weights¢ and the solutionx of the correspond learning problem can be derived from thaiso of

a single convex optimization problem based on second-@alees. Note that this formulation may
be actually solved for smatl with general-purpose toolboxes for second-order conerpnogning,
although QCQP approaches may be used as well (Lanckriet 20aka).

2.6 Kernel Learning with Semi-definite Programming

There is another way of seeing the same problem. Indeed,uhlepdoblem in Eq. (7) may be
rewritten as follows:

QGR%OCER?H;U{"Z% “mai) = g0 (Z@ Jep @

and by convex duality (Boyd and Vandenberghe, 2003; Rotkafd970) as:
ST B> DUC SRS R OaTo)H N

If we denoteG(K) = max,ern, 17aco 1~ 2oy Yi(—n0ai) — %an(a} , the optimal value of
the single kernel learning problem in Eq. (2) with Idsand kernel matrix<’ (and centered kernel
matrixf(), then the multiple kernel learning problem is equivalentinimizing G(K') over convex
combinations of the kernel matrices associated with alkernels, i.e., equivalent to minimizing
B(¢) = G( ?:1 GiK;)-

This functionG (K), introduced by several authors in slightly different cotg€Lanckriet et al.,
2004b; Pontil and Micchelli, 2005; Ong et al., 2005), leawla more general kernel learning frame-
work where one can learn more than simply convex combinatmnkernels—in fact, any ker-
nel matrix which is positive semi-definite. In terms of thetizal analysis, results from gen-
eral kernel classes may be brought to bear (Lanckriet e2@04b; Srebro and Ben-David, 2006;
Ying and Campbell, 2009); however, the special case of coneenbination allows the sparsity
interpretation and some additional theoretical anal\B#&k, 2008a; Koltchinskii and Yuan, 2008).
The practical and theoretical advantages of allowing mereegal potentially non convex combina-
tions (not necessarily with positive coefficients) of kdsnis still an open problem and subject of
ongoing work (see, e.g., Varma and Babu, 2009, and refesgheeein).

Note that regularizing in Eqg. (5) by the sum of squared no@&1 | f;]1? (instead of the
squared sum of norms), is equivalent to considering the $lkarpels matrices, i.el{ = ZJ 1 K.

8
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Moreover, if all kernel matrices have rank one, then the élel@arning problem is equivalent to
an /;-norm problem, for which dedicated algorithms are usuallycmmore efficient (see, e.g.,
Efron et al., 2004; Wu and Lange, 2008).

2.7 Algorithms

The multiple facets of the multiple kernel learning probleave led to multiple algorithms. The
first ones were based on the minimization Bf¢) = G(Z§:1 ¢;K;) through general-purpose
toolboxes for semidefinite programming (Lanckriet et alQ£b; Ong et al., 2005). While this al-
lows to get a solution with high precision, it is not scalatdenedium and large-scale problems.
Later, approaches based on conic duality and smoothing adegieed (Bach et al., 2004a,b). They
were based on existing efficient techniques for the suppastov machine (SVM) or potentially
other supervised learning problems, namely sequentiainminoptimization (Platt, 1998). Al-
though they are by design scalable, they require to recoditirex learning algorithms and do
not reuse pre-existing implementations. The latest foaths based on the direct minimiza-
tion of a cost function that depends directly ¢rallow to reuse existing code (Sonnenburg et al.,
2006; Rakotomamonjy et al., 2008) and may thus benefit froeitkensive optimizations and
tweaks already carried through. Finally, active set methoalve been recently considered for fi-
nite groups (Roth and Fischer, 2008; Obozinski et al., 2089 approach we extend to hierarchical
kernel learning in Section 4.4.

3 Hierarchical Kernel Learning (HKL)

We now extend the multiple kernel learning framework to kégnwhich are indexed by vertices in a
directed acyclic graph. We first describe examples of suaptgstructured positive definite kernels
from Section 3.1 to Section 3.4, and defined the graph-adapisam in Section 3.5.

3.1 Graph-Structured Positive Definite Kernels

We assume that we are givempasitive definite kernet : X x X — R, and that this kernel can be
expressed as the sum, over an indexisedf basis kernelg,, v € V, i.e., forallz, 2’ € X:

k(z,z') = Z ky(z,2').
veV
For eachw € V, we denote byF, and ¢, the feature space and feature mapkofi.e., for all
z, @ € X, ky(z,2') = (Py(x), Py (2))).

Our sum assumption corresponds to a situation where theréeaiap® («) and feature spacgé
for k are theconcatenation®f the feature map$,(x) and feature spaces, for each kernek,,
i.e., F = [[,cv Fo and®(z) = (®,(x))vev. Thus, looking for a certairf € F and a predictor
function f(x) = (f, ®(x)) is equivalent to looking jointly forf, € F,, forallv € V', and

fl@) = (f, @) =Y (fo, Pu(2)).
veV

As mentioned earlier, we make the assumption that th& s=tn be embedded intodirected
acyclic graph. Directed acyclic graphs (referred to as DAGs) allow to ralty define the notions

Throughout this paper, for simplicity, we use the same fanab refer to the graph and its set of vertices.
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of parents children descendantandancestorqDiestel, 2005). Given a node € V', we denote
by A(w) C V the set of its ancestors, and byfw) C V/, the set of its descendants. We use the
convention that anyv is a descendant and an ancestor of itself, ieg A(w) andw € D(w).
Moreover, forlW C V, we let denotesources(1V') the set ofsources(or roots) of the graphV’
restricted tdV, that is, nodes i} with no parents belonging .

Moreover, given a subset of nod&8 C V, we can define thaull of W as the union of all
ancestors ofv € W, i.e.,

hull(W) = | A(w).
weW

Given a sef?/, we define the set axtreme pointgor sinkg of W as the smallest subsétc W
such thathull(7") = hull(W); it is always well defined, as (see Figure 2 for examples afehe
notions):
sinks(W) = ﬂ T.
TCV, hull(T)=hull(W)

The goal of this paper is to perform kernel selection amoedémnels:,, v € V. We essentially
use the graph to limit the search to specific subsets.dlamely, instead of considering all possible
subsets of active (relevant) vertices, we will consideivactets of vertices which are equal to their
hulls, i.e., subsets that contain the ancestors of all #leinents, thus limiting the search space (see
Section 3.5).

3.2 Decomposition of Usual Kernels in Directed Grids

In this paper, we primarily focus on kernels that can be esqwé as “products of sums”, and on
the associateg-dimensional directed grids, while noting that our framewis applicable to many
other kernels (see, e.g., Figure 4). Namely, we assumetibanput spaceX factorizes intop
componentst’ = X; x --- x A&, and that we are givep sequences of length + 1 of kernels
kij(zs,x%), 1 € {1,...,p}, 7 € {0,...,¢}, such that (note the implicit different conventions for

indices ink; andk;;):

P p q q P
7=0

i=1 i=1 F1seenrfip=0 i=1

Note that in this section and the next section,refers to thei-th component of the tuple =
(x1,...,zp) (While in the rest of the papet;,; is thei-th observation, which is itself a tuple). We
thus have a sum ofy + 1)? kernels, that can be computed efficiently as a produgt sfims of

q + 1 kernels. A natural DAG o/ = {0,...,¢}”? is defined by connecting eadh, ..., j,)
respectively to(j1 +1,j2,...,4p), ---» (J1,---+Jp—1,Jp+1) @aslong asj; < ¢q,...,Jjp, < g, re-
spectively . As shown in Section 3.5, this DAG (which has ajlgirsource) will correspond to
the constraint of selecting a given product of kernels offifgraall the subproducts are selected.
Those DAGs are especially suited to non-linear variablecsi®in, in particular with the polyno-
mial, Gaussian and spline kernels. In this context, prada€kernels correspond to interactions
between certain variables, and our DAG constraint implegwe select an interaction only after
all sub-interactions were already selectedconstraint that is similar to the one used in multivariate
additive splines (Friedman, 1991).

10
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>O—>O
>O—>0)
>O—>O

O—0
50
%0
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Figure 2. Examples of directed acyclic graphs (DAGs) and@ated notions: (top left) 2D-grid
(number of input variables = 2, maximal order in each dimensign= 4); (top right) example of
sparsity pattern which is not equal to its hud (n light blue) and (bottom left) its hullX in light
blue); (bottom right) dark blue pointx({) are extreme points of the set of all active points (biJe
dark red points ) are the sources of the complement of the hull (set of all4@dBest seen in
color.
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Figure 3: Directed acyclic graph of subsets of size 4: (IBAG of subsets)f = 4, ¢ = 1); (right)
example of sparsity pattern (light and dark blue), dark lpamts are extreme points of the set of
all active points; dark red points are the sources of thefsgt ted points. Best seen in color.

Polynomial kernels. We considerX; = R, k;(z;,z}) = (1 4+ z;2;)? and for allj € {0,...,q},
kij(wi,x}) = (9) (2:2})7; the full kernel is then equal to

P

k(z,a') = [[( + ziaf)? = zq: ﬁ (j) (i)

i=1 J14--Jp=0 i=1

Note that this is not exactly the usual polynomial kerfieh- 2 "2')7 (whose feature space is the
space of multivariate polynomials tdtal degree less thag), since our kernel considers polynomi-
als ofmaximaldegree;.

Gaussian kernels (Gauss-Hermite decomposition). We also considet; = R, and the Gaussian-
RBF kernele—2@i=2)* with b > 0. The following decomposition is the eigendecompositiothef
non centered covariance operator corresponding to a nafistabution with variance /4a (see,
e.g., Williams and Seeger, 2000; Bach, 2008a):

) 2\ —1/2 oo j )
ot (12 S A oot g e b ), (1)
=0 <

wherec? = a? + 2ab, A = a + b + ¢, andH; is the j-th Hermite polynomial (Szego, 1981). By
appropriately truncating the sum, i.e., by considering the firstq basis kernels are obtained from
the firstg Hermite polynomials, and thg; + 1)-th kernel is summing over all other kernels, we
obtain a decomposition of a uni-dimensional Gaussian kénteeq + 1 components (the first of
them are one-dimensional, the last one is infinite-dimeradjdout can be computed by differenc-
ing). The decomposition ends up being close to a polynongaiéd of infinite degree, modulated
by an exponential (Shawe-Taylor and Cristianini, 2004)e @ray also use aamdaptivedecomposi-
tion using kernel PCA (see, e.g. Shawe-Taylor and Cristia@D04; Scholkopf and Smola, 2002),
which is equivalent to using the eigenvectors of the emaliiovariance operator associated with
the data (and not the population one associated with thedizadistribution with same variance).
In prior work (Bach, 2008b), we tried both with no significatifferences.

All-subset Gaussian kernels. Wheng = 1, the directed grid is isomorphic to the power set (i.e.,
the set of subsets, see Figure 3) with the DAG defined as thecHtiagram of the partially ordered

12
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he> CBAD
&606®®@®®@@&

Figure 4: Additional examples of discrete structures. Lpftramid over an image; a region is se-
lected only after all larger regions that contains it areseld. Right: set of substrings of size 3 from
the alphabef A, B}; in bioinformatics (Scholkopf et al., 2004) and text presieg (Lodhi et al.,
2002), occurence of certain potentially long strings is mpadrtant feature and considering the
structure may help selecting among the many possible string

set of all subsets (Cameron, 1994). In this setting, we caordpose the all-subset Gaussian
kernel (see, e.g., Shawe-Taylor and Cristianini, 2004) as:

p

H(1+ae_b($i_x§)2): Z Hae—b(xi—mg)zz Z a‘J|e—bII$J_${IH27

i=1 JcA{1,....p}i€J Jc{1,....,p}

and our framework will select the relevant subsets for thegsian kernels, with the DAG presented
in Figure 3. A similar decomposition is considered by Lin atichng (2006), but only on a subset
of the power set. Note that the DAG of subsets is differentnftbe “kernel graphs” introduced for
the same type of kernel by Shawe-Taylor and Cristianini 4200r expliciting the computation of
polynomial kernels and ANOVA kernels.

Kernels on structured data. Although we mainly focus on directed grids in this paper, ynan
kernels on structured data can also be naturally decomlosmafyh a hierarchy (see Figure 4), such
as the pyramid match kernel and related kernels (Graumaan@ll, 2007; Cuturi and Fukumizu,
2006), string kernels or graph kernels (see, e.g., ShawieiTand Cristianini, 2004). The main
advantage of using;-norms inside the feature space, is that the method will taith@&complexity
to the problem, by only selecting the right order of complekiom exponentially many features.

3.3 Designing New Decomposed Kernels

As shown in Section 5, the problem is well-behaved numdyicaid statistically if there is not too
much correlation between the various feature mapsv € V. Thus, kernels such as the the all-
subset Gaussian kernels may not be appropriate as eaclefepace contains the feature spaces
of its ancestors Note that a strategy we could follow would be to remove soomributions of

all ancestors by appropriate orthogonal projections. We design specific kernels for which the
feature space of each node is orthogonal to the feature spéds ancestors (for well-defined dot
products).

2More precisely, this is true for the closures of these spatasmctions.
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Spline kernels. In Eq. (10), we may chose, with= 2:

]{?Z‘Q(.%'i,.%';) =1

ki (xi,2)) =z

kio(zi ap) = min{|z], |25} (3max{|ay, [o7]} — min{|a,], [27]}) /6, if w5z} > 0
= 0, otherwise

leading to tensor products of one-dimensional cubic spMareels (Wahba, 1990; Gu, 2002). This
kernel has the advantage of (a) being parameter free andglgidy starting with linear features
and essentially provides a convexification of multivariatigitive regression splines (Friedman,
1991). Note that it may be more efficient here to use natutialespin the estimation method (Wahba,
1990) than using kernel matrices.

Hermite kernels. We can start from the following identity, valid far < 1 and from which the
decomposition of the Gaussian kernel in Eq. (11) may be obth{Szego, 1981):

o .
o no_ 2\—1/2 —2a(z; —x})* (27 + (2)*)a
> o) = (1t ey (2GE S 4 ()

We can then define a sequence of kernel which also startsinétérlkernels:

k:lg(acz,x;) = HO(:U)HO(:CI):l
kijlai2y) = graHi@H@)orje{l,....q -1}
/ — o !
kig(wi, x}) = ZﬁHj(wi)Hj(wi)'
i=q

Most kernels that we consider in this section (except thgrmuhial kernels) are universal ker-
nels (Micchelli et al., 2006; Steinwart, 2002), that is, oncnpact set oRP, their reproducing
kernel Hilbert space is dense Ir?(RP). This is the basis for the universal consistency results in
Section 5.3. Moreover, some kernels such as the spline anmditeekernels explicitly include the
linear kernels inside their decomposition: in this sitoafithe sparse decomposition will start with
linear features. In Section 5.3, we briefly study the uniziiss of the kernel decompositions that
we consider.

3.4 Kernels or Features?

In this paper, we emphasize tkernel view i.e., we assume we are given a positive definite ker-
nel (and thus a feature space) and we explore it uéjiagorms. Alternatively, we could use the
feature viewi.e., we would assume that we have a large structured setatifires that we try to
select from; however, the techniques developed in thismpagsume that (a) each feature might
be infinite-dimensional and (b) that we can sum all the loeah&ls efficiently (see in particu-
lar Section 4.2). Following the kernel view thus seems $ljgmore natural, but by no means
necessary—see Jenatton et al. (2009) for a more genertlréedaew” of the problem.

14
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In order to apply our optimization techniques in the featuimv, as shown in Section 4, we
simply need a specifiapper boundon the kernel to be able to be computed efficiently. More

—2
precisely, we need to be able to compdte, ., (Zz;eA(w)ﬂD(t) dy,)] KyforallteV,oran
upper bound thereof, for appropriate weights (see Sectio4 further details).

3.5 Graph-Based Structured Regularization

Given f € [],cy Fu, the natural Hilbertian nornij f|| is defined through|f[|? = > oy [1fo]1*
Penalizing with this norm is efficient because summing alh&ts &, is assumed feasible in poly-
nomial time and we can bring to bear the usual kernel macgyihexvever, it does not lead to sparse
solutions, where many, will be exactly equal to zero, which we try to achieve in thigpr.

We use the DAG to limit the set of active patterns to certainfigoirations, i.e., sets which are
equal to their hulls, or equivalenty sets which contain attestors of their elements. If we were
using a regularizer such as ., | f»|| we would get sparse solutions, but the set of active kernels
would be scattered throughout the graph and would not leagtimization algorithms which are
sub-linear in the number of verticég|.

All sets which are equal to their hull can be obtained by reimgall the descendants of certain
vertices. Indeed, the hull of a skfis characterized by the set of such thaD(v) C I¢, i.e., such
that all descendants ofare in the complement of I:

hull(7) = {v € V, D(v) C I°}°.

Thus, if we try to estimate a sétsuch thathull(/) = I, we thus need to determine whiche V'
are such thab(v) C I¢. In our context, we are hence looking at selecting verticesV’ for which
o) = (fw)wepw) = 0. We thus consider the following structured blo¢knorm defined on
F=F x---xF,as

1/2
00 =S duliowl =S d (X 1517) (12)

veV veV weD(v)

where(d, ),y are strictly positive weights. We assume that for all vedibut the sources of the
DAG, we haved, = $4Pth() with 3 > 1, wheredepth(v) is the depth of node, i.e., the length of
the smallest path to the sources. We denotd,by (0, 1] the common weights to all sources. Other
weights could be considered, in particular, weights insideblocksD(v) (see, e.g. Jenatton et al.,
2009), or weights that lead to penalties closer to the Lassq®g < 1), for which the effect of the
DAG would be weaker. Note that when the DAG has no edges, weagitthe usual block; -norm
with uniform weightsd,., and thus, the results presented in this paper (in partithiéaalgorithm
presented in Section 4.4 and non-asymptotic analysis miexén Section 5.2) can be applied to
multiple kernel learning.

Penalizing by such a norm will indeed impose that some of #wors fp () € HweD(v) Fu
are exactly zero, and we show in Section 5.1 that these amtiigatterns we might get. We thus
consider the following minimization problem

) 1 A
fenvglfg__lm beR E o £<yu Z(fva q)v(xz» + b) + 5 ( Z defD(v)H)

1 veV veV

2
: (13)

3Following Bach et al. (2004a) and Section 2, we consider g of the norm, which does not change the regular-
ization properties, but allow simple links with multiplerkel learning.
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Figure 5: Directed acyclic graph of subsets of size 4. (laftertex (dark blue) with its ancestors
(light blue), (right) a vertex (dark red) with its descentiaftight red). By zeroing out weight vectors
associated with descendants of several nodes, we alwagisiethta set of non-zero weights which
contains all of its own ancestors (i.e., the set of non-zez@hts is equal to its hull).

Our norm is a Hilbert space instantiation of the hierardmoams recently introduced by Zhao et al.
(2009). If all Hilbert spaces are finite dimensional, ourticatar choice of norms corresponds to an
“¢1-norm of¢5-norms”. While with uni-dimensional groups or kernels, tlig-norm of{..-norms”
allows an efficient path algorithm for the square loss andwhe DAG is a tree (Zhao et al., 2009),
this is not possible anymore with groups of size larger thaa or when the DAG is not a tree (see
Szafranski et al., 2008, for examples on two-layer hieli@g)h In Section 4, we propose a novel
algorithm to solve the associated optimization problenoiyipomial time in the number of selected
groups or kernels, for all group sizes, DAGs and losses. M@ in Section 5, we show under
which conditions a solution to the problem in Eq. (13) cotesitly estimates the hull of the sparsity
pattern.

4 Optimization

In this section, we give optimality conditions for the prefls in Eq. (13), as well as optimization
algorithms with polynomial time complexity in the number sdlected kernels. In simulations,
we consider total numbers of kernels up4td®, and thus such efficient algorithms that can take
advantage of the sparsity of solutions are essential toubeess of hierarchical multiple kernel
learning (HKL).

4.1 Reformulation in terms of Multiple Kernel Learning

Following Rakotomamonjy et al. (2008), we can simply deawe=quivalent formulation of Eq. (13).
Using Cauchy-Schwarz inequality, we have that fomadt RK such that | .y, d*n, < 1, avaria-
tional formulation ofQ( f)? defined in Eq. (12):

2 o)
O(f)? = (ZdefD(v)H) =<Z(dv77},/2)#>

veV veV
2 | fow II? . )
< Dodimex Y T <Y (D )l
veV veV "o weV YveA(w)
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-1
with equality if and only if for allv € V 1, = d; || fo) | (X ey defD(w)H)fl = %.

We associate to the vectgre RY, the vector € RY such that

YweV, )= >t (14)

veA(w)

We use the natural convention thatrif is equal to zero, theqw( ) is equal to zero for all de-
scendantsy of v. We let denoteH = {n € RY, >, d?n, < 1} the set of allowed; and
Z ={¢(n), n € H} the set of all associatedn) for n € H. The setd andZ are in bijection, and
we can interchangeably ugec H or the corresponding(n) € Z. Note thatZ is in general not
convex (unless the DAG is a tree, see Proposition 9 in Appefdi), and if( € Z, then(, < {,
for all w € D(v), i.e., weights of descendant kernels are always smalléchaib consistent with
the known fact thakernels should always be selected after all their anceqs®e Section 5.1 for a
precise statement).
The problem in Eq. (13) is thus equivalent to

min min l <yu Z<fv7 (xz» + b) + % Z Cw(n)_luwaQ' (15)
1

cH beER N
K FellvevFo, b€ i= veV wevV

From Section 2, we know that at the optimuyfy, = (., (7) > iy @i Py (z;) € Fuy, Wherea € R”
are the dual parameters associated with the single keraelitgy problem in Proposition 1, with

kernel matrixy <y Cuw (1) Kuw

Thus, the solution is entirely determined by R” andn € H ¢ RV (and its corresponding
C(n) € Z). We also associate to andn the corresponding functiong,, w € V, and optimal
constanth, for which we can check optimality conditions. More pretisave have (see proof in
Appendix A.4):

Proposition 2 (Dual problem for HKL) The convex optimization problem in Eq. (13) has the fol-
lowing dual problem:

a€R™, 1.1 a=0

1< -
—5 Z——)\Z—— § w(ma’ Kya. 16
max ni:lw( nia;) max Cw(n)a « (16)

Moreover, at optimalityyw € V, fu, = Cuw(n) > 2i®u(z;) andb = b* (3, cv Cw(n) Kwe),
with 7 attaining, giveno, the maximum of Co(m)a’ Kya.

Proposition 3 (Optimality conditions for HKL) Let(a,n) € R™ x H, such thatl,) o = 0. Define
functionsf € F throughVw € V., fu, =Cuw(n) Yoiy a;®w(a;) andb = b* (3, oy Cw(n) Kwa) the
corresponding constant term. The vector of functigns optimal for Eq. (13), if and only if :

(&) givenn € H, the vector is optimal for the single kernel learning problem with kdrmmeatrix

K= Zwev Cuw (1) Kw

(b) givena, n € H maximizes

> (Seeaw we!) o' Kua= Y Gulna” Ky an

weV weV
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Moreover, as shown in Appendix A.4, the total duality gap barupperbounded as the sum of
the two separate duality gaps for the two optimization protd, which will be useful in Section 4.2
for deriving sufficient conditions of optimality (see Apmix A.4 for more details):

~ by ~
£3aPkernel < Z Cw (U)va (X) + Egapweights ((aTKwa)w€V7 77) ) (18)
weV

wheregap,,.;.nts COrresponds to the duality gap of Eq. (17). Note that in tree ad “flat” regular
multiple kernel learning, where the DAG has no edges, weimliiack usual optimality condi-
tions (Rakotomamonyjy et al., 2008; Pontil and Micchellip3D

Following a common practice for convex sparse problems @tex., 2007; Roth and Fischer,
2008), we will try to solve a small problem where we assume mankthe set ob such that| fp ) ||
is equal to zero (Section 4.3). We then need (a) to check #rahles in that set may indeed be left
out of the solution, and (b) to propose variables to be adide icurrent set is not optimal. In the
next section, we show that this can be done in polynomial &itteough the number of kernels to
consider leaving out is exponential (Section 4.2).

Note that an alternative approach would be to consider tgelae multiple kernel learning
problem with additional linear constraings,, > ¢, for all non-sources € V. However, it would
not lead to the analysis through sparsity-inducing nornténaa in Section 5 and might not lead to
polynomial-time algorithms.

4.2 Conditions for Global Optimality of Reduced Problem

We consider a subs&’ of V' which is equal to its hull—as shown in Section 5.1, those laeenly
possible active sets. We consider the optimal solufiafi the reduced problem (div’), namely,

n 2
min _ + e(yi,z<fv,<bv<mi>>+b)+§(Zdvufw>mwu), (19)
1

beR N
fwellyew Fo, b i= veW veW

with optimal primal variablegyy, dual variablesx € R™ and optimal paifny, (). From these,
we can construct a full solutiofi to the problem, agyy- = 0, with nye = 0. That is, we keepy
unchanged and add zerosiig .

We now consider necessary conditions and sufficient camditfor this augmented solution to
be optimal with respect to the full problem in Eq. (13). WeakerbyQ(f) = >,y doll fo)nw |l
the optimal value of the norm for the reduced problem.

Proposition 4 (Necessary optimality condition) If the reduced solution is optimal for the full prob-
lem in Eq. (13) and all kernels indexed By are active, then we have:

al Ko

Q(f)>. 20
tesonres(We) 2 ) (20)
Proposition 5 (Sufficient optimality condition) If
OCTI? o
max v <Qf)* 4 2¢/A, (21)
tesources(We) Z (ZUEA(W)HD(t) dv)Q

weD(t)

then the total duality gap in Eqg. (18) is less than
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The proof is fairly technical and can be found in Appendix;Atbs result constitutes the main tech-
nical result of the paper: it essentially allows to desigrmlgorithm for solving a large optimization
problem over exponentially many dimensions in polynonirakt Note that when the DAG has no
edges, we get back regular conditions for unstructured MKarwhich Eq. (20) is equivalent to
Eq. (21) fore = 0.

The necessary condition in Eq. (20) does not cause any catignal problems as the number
of sources ofV ¢, i.e., the cardinal ofources(1V¢), is upper-bounded bV’ | times the maximum
out-degree of the DAG.

However, the sufficient condition in Eq. (21) requires to swar all descendants of the active
kernels, which is impossible without special structurenfaly exactly being able to compute that
sum or an upperbound thereof). Here, we need to bring to beasgecific structure of the full
kernelk. In the context of directed grids we consider in this paded,,ican also be decomposed
as a product, thed_ ., ) dv can also be factorized, and we can compute the sum over all
v € D(¢) in linear time inp. Moreover, we can cache the sums

-2 -

Rt: Z <ZveA(w)mD(t) dv) Ku

weD(t)

in order to save running time in the active set algorithm @né=d in Section 4.4. Finally, in the
context of directed grids, many of these kernels are eitbestant across iterations, or change
slightly; that is, they are product of sums, where most ofghms are constant across iterations,
and thus computing a new cached kernel can be consideredngflexity O(n?), independent of
the DAG and ofiV.

4.3 Dual Optimization for Reduced or Small Problems

In this section, we consider solving Eq. (13) for DA®s(or active seti?’) of small cardinality,
i.e., for (very) small problems or for the reduced problerbtamed from the algorithm presented
in Figure 6 from Section 4.4.

When kernels:,, v € V, have low-dimensional feature spaces, either by design (ank one if
each node of the graph corresponds to a single feature)tenraaiow-rank decomposition such as a
singular value decomposition or an incomplete Choleskiofaation (Fine and Scheinberg, 2001;
Bach and Jordan, 2005), we may use a “primal representatind’solve the problem in Eq. (13)
using generic optimization toolboxes adapted to conictraims (see, e.g., Grant and Boyd, 2008).
With high-dimensional feature spaces, in order to reusgtiagi optimized supervised learning code
and use high-dimensional kernels, it is preferable to usdual“optimization”. Namely, we fol-
low Rakotomamonjy et al. (2008), and considerdar 7, the function

n

BO)=GK()= _mn _ + f(y > (for () +b> + % > Gl

N beR N
FelloevFv, beR T I veV weV

which is the optimal value of the single kernel learning peabwith kernel matrixy oy Cu K-
Solving Eg. (15) is equivalent to minimizing (¢ (n)) with respect to; € H.

If the Fenchel conjugate of the loss is strictly convex (isguare loss, logistic loss, Hiber loss,
2-norm support vector regression), then the funcfibis differentiable—because the dual problem
in Eqg. (3) has a unique solutiam (Bonnans and Shapiro, 2000). When the Fenchel conjugate is
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not strictly convex, a ridge (i.e., positive diagonal mgtimay be added to the kernel matrices,
which has the exact effect of smoothing the loss—see, eegnatéchal and Sagastizabal (1997) for
more details on relationships between smoothing and adidinggly convex functions to the dual
objective function.

Moreover, the function — ((n) is differentiable onR* )", but not at any pointg such that
onen, is equal to zero. Thus, the function— B[(((1 - e)n + 7 d=?)] , whered—2 is the vector
with elementsi; 2, is differentiable ife > 0, and its derivatives can simply be obtained from the
chain rule. In simulations, we use= 10~3; note that adding this term is equivalent to smoothing
the normQ(f) (i.e., make it differentiable), while retaining its spa&ysinducing properties (i.e.,
some of the optimab will still be exactly zero).

We can then use the same projected gradient descent stest&gakotomamonjy et al. (2008) to
minimize it. The overall complexity of the algorithm is thproportional taO(|V |n?)—to form the
kernel matrices—added to the complexity of solving a sitkglmel learning problem—typically be-
tweenO(n?) andO(n?), using proper kernel classification/regression algoritiifishwanathan et al.,
2003; Loosli et al., 2005). Note that we could follow the aygmh of Chapelle and Rakotomamonjy
(2008) and consider second-order methods for optimizirig veispect to;.

4.4 Kernel Search Algorithm

We now present the detailed algorithm which extends theckealgorithm of Lee et al. (2007)
and Roth and Fischer (2008). Note that the kernel matrices@vrer all needed explicitly, i.e., we
only need them (a) explicitly to solve the small problemg (ba need only a few of those) and (b)
implicitly to compute the necessary condition in Eq. (20) &me sufficient condition in Eq. (21),
which requires to sum over all kernels which are not sele@sghown in Section 4.2.

The algorithm works in two phases: first the (local) necgssandition is used to check op-
timality of the solution and add variables; when those aeddthe augmented reduced problem
must include the new variable into the active set. Once tieessary condition is fulfilled, we use
the sufficient condition, which essentially sums over ati selected kernels and makes sure that if
some information is present further away in the graph, it wdeed be selected. See Figure 6 for
detailé.

The algorithm presented in Figure 6 will stop either whendbality gap is less tha2e or when
the maximal number of kernelg has been reached. That is, our algorithm does not always giel
solution which is provably approximately optimal. In priaet when the weightd,, increase with
the depth ofv in the DAG (which we use in simulations), the provably smaiélity gap generally
occurs before we reach a problem larger thaghowever, we cannot make sharp statements). Note
that some of the iterations only increase the size of th@astts to check the sufficient condition
for optimality. Forgetting those would not change the doluis we add kernels with zero weights;
however, in this case, we would not be able to actually gettift we have ae-optimal solution
(see Figure 7 for an example of these two situations). Nait ltbcause of potential overfitting
issues, settings of the regularization paramateiith solutions having more tham active kernels
are likely to have low predictive performance. Therefore,may expect the algorithm to be useful
in practice with moderate values f

“Matlab/C code for least-squares regression and logigiiession may be downloaded from the author’s website.
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Input: Kernel matricesk,, € R"*", weightsd,, v € V, maximal gape,
maximal number of kernel®.
Algorithm :

1. Initialization: active selV’ = @, cache kernel matricek,,,, w € sources(W¢)

2. Computg o, ) solutions of Eq. (19), obtained using Section 4.3 (with gap

3. While necessary condition in Eq. (20) is not satisfied @#d < @
a. Add violating kernel isources(WW*¢) to W
b. Compute«, 1) solutions of Eq. (19), obtained using Section 4.3 (with gap
c. Update cached kernel matric&s,, w € sources(W¢)

4. While sufficient condition in Eq. (21) is not satisfied dild| < Q
a. Add violating kernel irsources(W¢) to W
b. Compute«, 1) solutions of Eq. (19), obtained using Section 4.3 (with ghap
c. Update cached kernel matricks,, w € sources(W¢)

Output: W, «, n, constant ternd

Figure 6: Kernel search algorithm for hierarchical kerealrhing. The algorithm stops either when
the duality gap is provably less thaa, either when the maximum number of active kernels has
been achieved; in the latter case, the algorithm may or makawe reached 2:-optimal solution
(i.e., a solution with duality gap less than).

Running-time complexity. Let D be the maximum out-degree (number of children) in the graph,
x be the complexity of evaluating the sum in the sufficient é¢owl in Eq. (21) (which usually
takes constant time), anl = |1V | the number of selected kernels (the number is the size of the
active sefiV’). AssumingO(n?) for the single kernel learning problem, which is consewea(see,
e.g. Vishwanathan et al., 2003; Loosli et al., 2005, for samgroaches), solving all reduced prob-
lems has complexity)(Rn?®). Computing all cached matrices has complexityxn?® x RD)

and computing all necessary/sufficient conditions has ¢exitg O(n? x R2D). Thus, the to-

tal complexity isO(Rn? + kn?RD + n?R2D). Thus, in the case of the directeegrid, we get
O(Rn?® + n?R?p). Note that the kernel search algorithm is also an efficiegarithm for unstruc-
tured MKL, for which we have complexit9)(Rn? 4+ n?R?p). Note that gains could be made in
terms of scaling with respect to by using better kernel machine codes with complexity betwee
O(n?) andO(n?) (Vishwanathan et al., 2003; Loosli et al., 2005). Note thatlevthe algorithm
has polynomial complexity, some work is still needed to makscalable for more than a few
hundreds variables, in particular because of the memonyinegents ofO(Rpn?). In order to
save storing requirements for the cached kernel matrioesrdnk decompositions might be use-
ful (Fine and Scheinberg, 2001; Bach and Jordan, 2005).

5 Theoretical Analysis in High-Dimensional Settings
In this section, we consider the consistency of kernel setedor the normQ(f) defined in Sec-
tion 3. In particular, we show formally in Section 5.1 that #ctive set is always equal to its hull,

and provide in Section 5.2 conditions under which the hudbissistently estimated in low and high-
dimensional settings, where the cardinalityloimay be large compared to the number of observa-
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Figure 7: Example of active sets for the kernel search algos: (left) first phase, when checking
necessary conditions, the dark blue nodesdre the active kernels (non-zefyy and the red+ are
the sources of the complement, which may be added at thetaation; (right) second phase, when
checking sufficient conditions, the dark blue node$ dre the active kernels (non-zeg the light
blue nodes %) are the kernels with zero weights but are here just to chetiknality conditions,
and the red nodesH) are the sources of the complement, which may be added aextéeration.

tions. Throughout this section, we denotejbgny minimizer of Eq. (13) antl’ = {v € V, f, # 0}
the set of selected kernels.

5.1 Allowed Patterns

We now show that under certain assumptions any solution of B2) will have a nonzero pattern
which is equal to its hull, i.e., the sBt = {v € V, f, # 0} must be such thal’ = |J,, ;3 A(w)—
see Jenatton et al. (2009) for a more general result witHagging groups without the DAG struc-
ture and potentially low-rank kernels:

Theorem 6 (Allowed patterns) Assume that all kernel matrices are invertible. Then theofet
zerosIV of any solutionf of Eq. (13) is equal to its hull.

Proof Since the dual problem in Eq. (16) has a strictly convex dhjedunction on the hyperplane
a'1, = 0, the minimum ino: € R™ is unique. Moreover, we must have# 0 as soon as the loss
functionsy; are not all identical. Sincgf,||2 = (2o K, for some¢ € Z, and alla” Ko > 0

(by invertibility of K,, anda" 1,, = 0), we get the desired result, from the sparsity pattern of the
vector¢ € RY, which is always equal to its hull. |

As shown above, the sparsity pattern of the solution of E8) (il be equal to its hull, and thus
we can only hope to obtain consistency of the hull of the patteshich we consider in the next
sections. In Section 5.2, we provide a sufficient conditmndptimality, whose weak form tends to
be also necessary for consistent estimation of the hubgtihesults extend the one for the Lasso and
the group Lasso (Zhao and Yu, 2006; Zou, 2006; Yuan and Lii7 2BVainwright, 2009; Bach,
2008a).
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5.2 Hull Consistency Condition

For simplicity, we consider the square loss for regressiwh laave out other losses presented in
Section 2.1 for future work. Following Bach (2008a), we ddas a random design setting where
the pairs(z;,y;) € X x Y are sampled fronndependent and identical distribution&Ve make
the following assumptions on the DAG, the weights of the namd the underlying joint distribu-
tion of (®,(X)).,ev andY. These assumptions rely @ovariance operatorswhich are the tools
of choice for analyzing supervised and unsupervised legrtéchniques with reproducing kernel
Hilbert spaces (see Bach, 2008a; Fukumizu et al., 2007;Hdarg et al., 2008, for a introduction to
the main concepts which are used in this paper). We let défidke joint covariance operator for
the kernelk(z, y) defined by blocks corresponding to the decomposition indiéwel”. We make
the following assumptions:

(A0) Weights of the DAGEach of thenum(V") strongly connected componentsiéfas a unique
source; the weights of the sources are equal.te (0, 1], while all other weights are equal
to d, = $4ePth(¥) with 3 > 1. The maximum out-degree (number of children) of the DAG is
less thardeg(V') — 1.

(A1) Sparse non-linear modeE(Y |X) = -w(fw(X) +bwithW CV,f, € F,,w e W,
andb € R; the conditional distribution ot"|X is Gaussian with variance? > 0. The set
W is equal to its hull, and for each € W, fp,)nw # 0 (i.e., the hull of the non zero
functions is actuallyw).

(A2) Uniformly bounded inputsfor all v € V, ||®,(X)|| < 1 almost surely, i.ek,(X, X) < 1.

(A3) Compacity and invertibility of the correlation operator ¢ime relevant variablesThe joint
correlation operatoC' of (®(x,))vey (defined with appropriate blocks',,,) is such that
Cww is compact and invertible (with smallest eigenvatue: A, (Cww) > 0).

(A4) Smoothness of predictorfor eachw € W, there existh,, € F,, such thatf,, = 3,.,h,
and|h,| < 1.

(A5) Root-summability of eigenvalues of covariance operatbs eachw € W, the sum of the
square roots of the eigenvaluesXf,,, is less than a constadt, /.

When the Hilbert spaces all have finite dimensions, coveeaperators reduce to covariance
matrices, and Assumptiai\3) reduces to the invertibility of the correlation matitww (as it is
always compact) and thus of the covariance m&@Xxw , while (A4) and(A5) are always satisfied.
These assumptions are discussed by Bach (2008a) in thextcohtaultiple kernel learning, which
is essentially our framework with a trivial DAG with no edgesid as many connected components
as kernels). Note however that Assumpti@) is slightly stronger than the one used by Bach
(2008a) and that we derive here non asymptotic resultsevBalch (2008a) was considering only
asymptotic results.

For K a subset oft’, we denote bYx (fr) = > cx dullfow)nk|l, the norm reduced to
the functions inK and by(2. its dual norm(Boyd and Vandenberghe, 2003; Rockafellar, 1970),
defined afYj (gx) = maxq, (s, )<1 (9K, fi). We considesw € (F,).ew, defined through

Vw e W, s, = ( > dUHfD(v)H1>hw.

veEA(w)
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When the DAG has no edges, i.e., for the regular group Lassgetback similar quantities than the
ones obtained by Bach (2008a); if in addition, the featuseep are all uni-dimensional, we get the
vector of signs of the relevant variables, recovering thesbaconditions (Zhao and Yu, 2006; Zou,
2006; Yuan and Lin, 2007; Wainwright, 2009). The followitngbrem shows that if the consistency
condition in Eq. (22) is satisfied, then we can upperboungtbbability of incorrect hull selection
(see proof in Appendix B):

Theorem 7 (Sufficient condition for hull consistency) AssumdA0-5) and
Uiy [ Diag(BYDweCwew Cwsw| <11, (22)
withn > 0; let v = miny,ew || Diag(Xu0)pw)fow) | andw = Q(f)d 2. Let

4log(2num(V))  4logdeg(V)
WS e

Choosey = \Q(f)d, € [2"1(1‘52)1/2, w11/2(|:{)vw/2]' The probability of incorrect hull selection is
upper-bounded by:

2n M3/2

n n
o (= 1) o (= o) o (= oo ) @3)

wherecy, ¢z, c3 are positive monomials in, v, n and Cf/12

The previous theorem is the main theoretical contributibthis paper. It is a non-asymptotic
result which we comment on in the next paragraphs. The pel@sron novel concentration in-
equalities for empirical covariance operators and forcstned norms, which may be useful in other
settings (see results in Appendices B.2, B.3 and B.4). Naiiethe last theorem is not a consequence
of similar results for flat multiple kernel learning or grolpsso (Bach, 2008a; Nardi and Rinaldo,
2008; Lounici et al., 2009), because the groups that we densire overlapping. Moreover, the
last theorem shows that we can indeed estimate the corraifihe sparsity pattern if the suffi-
cient condition is satisfied. In particular, if we can make groups such that the between-group
correlation is as small as possible, we can ensure corréécdiection.

Low-dimensional settings. When the DAG is assumed fixed (or in fact only the number of con-
nected componentsum (V') and the maximum out-degreteg(1')) andn tends to+oo, the prob-
ability of incorrect hull selection tends to zero as soona¥'? tends to+oo and\ tends to zero,
and the convergence is exponentially fashin

High-dimensional settings. When the DAG is large compared tq then, the previous theo-
rem leads to a consistent estimation of the hull, if the wr@kdefiningp is not empty, i.e.pn >
402y (V)w' [W|7¢ 2. Sincey(V) = O(log(num(V)) + log(deg(V))), this implies that we may
have correct hull selection in situations where= O(log(num(V')) + log(deg(V'))). We may
thus have an exponential number of connected componen@ragxponential out-degree, with no
constraints on the maximum depth of the DAG (it could thusribiite).

Here, similar scalings could be obtained with a weighteghorm (with the same weights
Bderth(v): however, such a weighted Lasso might select kernels whietiaa from the roor and
would not be amenable to an efficient active set algorithm.
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Multiple kernel learning (group Lasso). In this situation, we have a DAG with connected
components (one for each kernel), and zero out-degree deg(V) = 1), leading toy(V) =
O((logp)'/?), a classical non-asymptotic result in the unstructuretingst for finite-dimensional
groups (Nardi and Rinaldo, 2008; Wainwright, 2009; Loucal., 2009), but novel for the multi-
ple kernel learning framework, where groups are infiniteehsional Hilbert spaces. Note that the
proof techniques would be much simpler and the result sharperms of power of W| andw with
finite-dimensional groups and with the assumption of inkigityy of 3vyw and/or fixed design as-
sumptions. Finally, Theorem 7 also applies for a modifiedieer of the elastic net (Zou and Hastie,
2005), where thé,-norm is added to the sum of bloék norm—by considering a single node with
the null kernel connected to all other kernels.

Non linear variable selection. For the power set and the directed grids that we considerdior n
linear variable selection in Section 3.2, we hawen(V) = 1 anddeg(V) = p wherep is the
number of variables, and thugV’) = O(logp) = O(loglog |V']), i.e., we may have exponentially
many variables to choose non-linearly from, od@ubly exponential number of kernels to select
from.

Trade-off for weight 3. Intuitively, since the weight on the norififn || is equal topderth(),
the greater thgg the stronger the prior towards selecting nodes close todieas. However, ifi
is too large, the prior might be too strong to allow selectiagles away from the sources.

This can be illustrated in the bound provided in Theorem % @dnstanty(1) is a decreasing
function of 3, and thus having a largg, i.e., a large penalty on the deep vertices, we decrease
the lower bound of allowed regularization paramejeend thus increase the probability of correct
hull selection (far away vertices are more likely to be laft)o However, sincé)(f) is a rapidly
increasing function off, the upper bound decreases, i.e., if we penalize too muchkyoméd start
losing some of the deeper relevant kernels. Finally, it istivooting that if the constant tend
to infinity slowly with n, then we could always consistently estimate the depth offititiei.e., the
optimal interaction complexity. Detailed results are thbjsct of ongoing work.

Results on estimation accuracy and predictive performance In this paper, we have focused
on the simpler results of hull selection consistency, wtattbw simple assumptions. It is how-
ever of clear interest of following the Lasso work on estiorataccuracy and predictive perfor-
mance (Bickel et al., 2009) and extend it to our structurdgtinge In particular, the rates of con-
vergence should also depend on the cardinal of the actiy@égand not on the cardinality of the
DAG |V|.

Enhancing consistency condition. The sufficient condition in Eq. (22) states that low correla-
tion between relevant and irrelevant feature spaces leagedd model selection. As opposed to
unstructured situations, such low correlation may be ecdnvith proper hierarchical whitening
of the data, i.e., for alb € V, we may projec{®,(x;));=1,... to the orthogonal of all ancestor
vectors(®,,(x;))i=1....n, w € A(v). This does not change the representation power of our method
but simply enhances its statistical consistency.

Moreover, AssumptionA3) is usually met for all the kernel decompositions preseimesec-
tion 3.2, except the all-subset Gaussian kernel (becaubefeature space of each node contains the
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feature spaces associated with its parents). However,ebwktitening procedure outlined above,
similar results than Theorem 7 might be obtained. Besidiélseioriginal variablesused to define
the kernel decompositions presented in Section 3.2 arpémdkent, then the consistency condition
in Eq. (22) is always met except for the all-subset Gaussandt; again, a pre-whitening procedure
might solve the problem in this case.

Necessary consistency condition. We also have a necessary condition which is a weak form of
the sufficient condition in Eq. (22)—the proof follows cléséhe one for the unstructured case
from Bach (2008a):

Proposition 8 (Necessary condition for hull consistencyAssumgA1-3) and V' is fixed, withn
tending to+oo. If there is a sequence of regularization parametgisuch that both the prediction
function and the hull of the active kernels is consisterslyneated, then we have

The conditions in Eq. (22) and Eq. (24) make use of the duahnbut we can loosen them using
lower and upper bounds on these dual norms: some are congutgtolynomial time, like the
ones used for the active set algorithm presented in Sectbartl more detailed in Appendix B.7.
However, we can obtain simpler bounds which require to loadr the entire DAG; we obtain by
lowerbounding|| fp () || by [|.fo[| and upperbounding it by~ () [ fwl in the definition of2(f),
forg € F:

1w || . 1w
< Qe c) < —.
wews 2 veA(wynwe dv welgwe) vews d,
The lower and upper bounds are equal when the DAG is trivialggges), and we get back the
usual weighted,-f» normmax,,cwe ”ZZH'

5.3 Universal Consistency

In this section, we briefly discuss the universal consistgmoperties of our method when used for
non-linear variable selection: do the kernel decompasstipresented in Section 3.2 allow the esti-
mation of arbitrary functions? The main rationale behinshgsll subsets of variables rather than
only singletons is that most non-linear functions may no¢kgressed as a sum of functions which
depend only on one variable—what regular MKL (Bach et alo4%) and SPAM (Ravikumar et al.,
2008) would use. All subsets are thus required to allow usdleconsistency, i.e., to be able to
approach any possible predictor function.
Our norm((f) is equivalent to a weighted Hilbertian norm, i.e.:

Sl <o <VIE (X d)il?

veV weV MveA(w)

Therefore, the usual RKHS balls associated to the univésesalels we present in Section 3.2
are contained in the ball of our norms, hence we obtain usaezonsistency (Steinwart, 2002;
Micchelli et al., 2006) in low-dimensional settings whens small. A more detailed and refined
analysis that takes into account the sparsity of the decsitigo and convergence rates is out of the
scope of this paper, in particular for the different regirf@s, ¢ andn.
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6 Simulations

In this section, we report simulation experiments on sytith#atasets and datasets from the UCI
repository. Our goals here are (a) to compare various kénamdd approaches to least-squares
regression from theamekernel, (b) to compare the various kernel decompositioeseted in
Section 3.2 within our HKL framework, and (c) to compare jiciéde performance with non-kernel-
based methods—more simulations may be found in earlier {&akh, 2008Db).

6.1 Compared Methods

In this section, we consider various nonparametric metfiodaon-linear predictions. Some are
based on the kernel decompositions defined in Section 3.2-kdmel based methods were chosen
among methods with some form of variable selection capasili All these methods were used
with two loops of 10-fold cross-validation to select regidation parameters and hyperparameters
(in particular3). All results are averaged over 10 replications (mediappeuand lower quartiles
are reported).

Hierarchical kernel learning (HKL).  We use the algorithm presented in Section 4.4 with the ker-
nel decompositions presented in Section 3.2, i.e., Henpalgnomials (“Hermite”), spline kernels
(“spline”) and all-subset Gaussian kernels (“Gaussian”).

Multiple kernel learning (MKL).  We use the algorithm presented in Section 4.4 with the kernel
decompositions presented in Section 3.2, but limited taédsrof depth one, which corresponds to
sparse generalized additive models.

Constrained forward selection (greedy). Given a kernel decomposition with rank one kernels,
we consider a forward selection approach that satisfiesaime £onstraint that we impose in our
convex framework.

Single kernel learning (Ls). When using the full decomposition (which is equivalent tmsuing
all kernels or penalizing by afy-norm) we can use regular single kernel learning.

Generalized Lasso (Glasso). Given the same kernel matrix as in the previous method, Roth
(2004) considers predictors of the fofm);"_; ;k;(z, x;), with the regularization by th& -norm of
o instead ofo " K« for the regular single kernel learning problem.

Multivariate additive splines (MARS). This method of Friedman (1991) is the closest in spirit to
the one presented in this paper: it builds in a forward greemy multivariate piecewise polynomial
expansions. Note however, that in MARS, a node is added ditdy @ne of its parents (and not all,
like in HKL). We use the R package with standard hyperparansattings.

Regression trees (CART). We consider regular decision trees for regression usingtdrelard R
implementation (Breiman et al., 1984) with standard hypsameter settings.
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Figure 8. Comparison of non-linear regression methods iinsgg@ared error vs. dimension of
problem (inlog scale). (Top left) comparison of greeedy,and/¢; (HKL) methods on the same
Hermite kernel decomposition. (Top right) comparison afesal kernel decompositions for HKL.
(Bottom left) comparison with other kernel-based methg@wottom right) comparison with non-
kernel-based methods.

Boosted regression trees (boosting). We use the R “gbm” package which implements the method
of Friedman (2001).

Gaussian processes with automatic relevance determinatis (GP-ARD). We use the code
of Rasmussen and Williams (2006), which learns widths faheariable within a Gaussian ker-
nel, using a Bayesian model selection criterion (i.e., aithusing cross-validation). Note that
HKL, with the all-subset Gaussian decomposition, does eatch explictly forA in the kernel
exp(—(z — 2') T A(x — 2')), but instead considers a large set of particular value$ ahd finds a
linear combination of the corresponding kernel.

6.2 Synthetic Examples

We generated synthetic data as follows: we generate a eoearimatrix from a Wishart distribution
of dimensionp and with 2p degrees of freedom. It is then normalized to unit diagonal an
datapoints are then sampled i.i.d. from a Gaussian disinitbwvith zero mean and this covariance
matrix. We then consider the non-linear functigoX) = >7_, >°"_, ., X;X;, which takes all
cross products of the firstvariables. The output” is then equal tg (X') plus some Gaussian noise
with known signal-to-noise ratio.
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Figure 9: Comparison of non-linear regression methods iinsggared error vs. dimension of
problem (inlog scale). (Top left) comparison of greeedy,and/; (HKL) methods on the same
Hermite kernel decomposition. (Top right) comparison afesal kernel decompositions for HKL.
(Bottom left) comparison with other kernel-based methd@sttom right) comparison with other
non-kernel-based methods.

Results are reported in Figure 8. On the top left plot, we canmifferent strategies for linear
regression, showing that in this constrained scenario evtieg generating model is sparde;
regularization based methods outperform other methodwéfol selection and ridge regression).
On the top right plot, we compare different kernel decompmss: as should be expected, the
Hermite and spline decompositions (which contains exabiygenerating polynomial) performs
best. On the bottom left plot, we compare several kernetdhasethods on the same spline kernel,
showing that when sparsity is expected, using sparse mefhaddeed advantageous. Finally, on
the bottom right plot, we compare to non-kernel based methsitbwing that ours is more robust
to increasing input dimensions It is also worth noting the instabilities of the greedy noeth such
as MARS or “greedy”, which sometimes makes wrong choicelseastart of the procedure, leading
to low performance.

6.3 UCI Datasets

We perform simulations on the “pumadyn” datasets from thd t#pository (Blake and Merz,
1998). These datasets are obtained from realistic simuoktf the dynamics of a robot arm, and
have different strengths of non-linearities (fh: fairlpéar, high noise; nh: non-linear, high noise)
and two numbers (8 and 32) of input variables.
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Results are reported in Figure 9. On the top left plot, we cmmmlifferent strategies for lin-
ear regression with, = 1024 observations: with moderately non-linear problems (32fh), all
performances are similar, while for non-linear problenn{® 8nh), HKL outperforms other meth-
ods (forward selection and ridge regression). On the tamt fépt, we compare different kernel
decompositions: here, no decomposition includes the géngrmodel, and therefore, none clearly
outperforms the other ones. On the bottom left plot, we campaveral kernel-based methods on
the same spline kernel: it is interesting to note that for emately linear problems, MKL performs
well as expected, but not anymore for highly non-linear faots.

Finally, on the bottom right plot, we compare to non-kernatdd methods: while boosting
methods and CART are clearly performing worse, HKL, MARS &walissian processes perform
better, with a significant advantage to MARS and Gaussiacgsses for the dataset “32nh”. There
are several explanations regarding the worse performand&lothat could lead to interesting de-
velopments for improved performance: first, HKL relies otireating a regularization parameter
by cross-validation, while both MARS and GP-ARD rely on am#tic model selection through fre-
guentist or Bayesian procedures, and it is thus of clearasteo consider methods to automatically
tune the regularization parameter for sparse methods suetKa. Moreover, the problem is not
really high-dimensional as is much larger thap, and our regularized method has a certain amount
of bias that the other methods don’t have; this is a claspicddlem of?/; -regularized problems, and
this could be fixed by non-regularized estimation on thecsetevariables.

7 Conclusion

We have shown how to perform hierarchical multiple kernatméng (HKL) in polynomial time in
the number of selected kernels. This framework may be apfienany positive definite kernels and
we have focused on kernel decompositions for non-lineaalbke selection: in this setting, we can
both select which variables should enter and the correspgriegrees of interaction complexity.
We have proposed an active set algorithm as well a theoretiedysis that suggests that we can
still perform non-linear variable selection from a number of variables which is exgmial in the
number of observations.

Our framework can be extended in multiple ways: first, thipggashows that trying to use
{1-type penalties may be advantageous inside the feature.sphat is, one may take the opposite
directions than usual kernel-based methods and look itisidieature spaces with sparsity-inducing
norms instead of building feature spaces of ever increagiimgnsions. We are currently investi-
gating applications to other kernels, such as the pyramidhmernels (Grauman and Darrell, 2007,
Cuturi and Fukumizu, 2006), string kernels, and graph Keffsee, e.g., Shawe-Taylor and Cristianini,
2004). Moreover, theoretical and algorithmic connectianith the recent work of Huang et al.
(2009) on general structured sparsity and greedy methadd be made.

Moreover, we have considered in this paper a specific instafidlock ¢1-norms with over-
lapping groups, i.e., groups organized in a hierarchy, botesof the techniques and frameworks
presented here can be extended to more general overlagpilntuses (Jenatton et al., 2009), for
DAGs or more general graphs; it would also be interestingotasicler non discrete hierarchical
structures with a partial order, such as positive definitérioes.

Finally, we hope to make connections with other uses of ggdarglucing norms, in particular
in signal processing, for compressed sensing (Baraniuk];20andés and Wakin, 2008), dictionary
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learning (Olshausen and Field, 1997) and sparse princgmaponent analysis (d’Aspremont et al.,
2007).

A Proofs of Optimization Results

In this first appendix, we give proofs of all results relatedhe optimization problems.

A.1 Set of Weights for Trees

We prove that the set of weighfsi.e., Z, is itself convex when the DAG is a tree. We conjecture
that the converse is true as well.

Proposition 9 If V is a tree, the seZ = {((n) € RV, n € RY, > . d2n, < 1} is convex.

Proof When the DAG is a tree (i.e., when each vertex has at most aeatpand there is a single
sourcer), then we have for alb which is not the source of the DAG (i.e., for which there isaka
one parent)g‘ n, L. This implies that the constraint> 0 is equivalent ta;, > 0 for
all leaveswv, anof for allv wh|ch is not a source;,(,) > ¢, with equality possible only when they
are both equal to zero.

Moreover, for the source, ¢, = n,.. The final constrainE v nyd? < 1, may then be written

asy, ., d; o gt C*l +¢dy < 1, thatis, Y, d3 (Cv + oo ) c ) + ¢-d? < 1, which is a convex
L .
constraint (Boyd and Vandenberghe, 2003). |

A.2 Proof of Proposition 1

We introduce auxiliary variables; = (f, ®(z;)) + b and consider the Lagrangian:
(u fvba ZQDZ uz —\|f\|2+)\zaz Uj /s ( )> b)

Minimizing with respect to the primal variableleads to the term-+ = iy Yi(—nAag); minimiz-
ing with respect tof leads to the term-4 aTKa and to the expreSS|on gfas a function ofy, and

n

minimizing with respect td leads to the constrairt| o = Yooy =0.

A.3 Preliminary Propositions

We will use the following simple result, which implies theaal component,,(n) is a concave
function of (as the minimum of linear functions gj:

Lemma 10 Leta € (R%)™. The minimum op 7, ajz7 subject tox > 0 and Yoz =11is

equal to(Z] ) ;1)7 and is attained at:; = a; * (Zm_ a-_1>71.

J=1"
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Proof The resultis a consequence of applying Cauchy-Schwartpality, applied to vectors with
components:;ja /2 anda; 2 Note that when some of thg are equal to zero, then the minimum
is zero, with optimalr; being zero whenever; # 0. u

The following proposition derives the dual of the problemyjn.e., the dual of Eq. (17):

Proposition 11 Let L = {x € RY*Y, kp(y)e = Oandvw € V, YveAw) e = 1}. The
following convex optimization problems are dual to eactegtand there is no duality gap:

i d 25
T

max w(n)a’ K. 26

”EHI;VC (m) (26)

Proof We have the Lagrangiafi(A, x,n) = A+ > ey v (ZweD(v) k2,07 Kya — Ad%) , with
n = 0, which, using Lemma 10, can be minimized in closed form wé$pect toA, to obtain the
constraintsy_, - n,d? = 1 and with respect ta € L. We thus get

—1 -
min max d;, Z k2,0 Kya = maxaT<Z<ZveA(w)nvl> Kw>a,

keL veV n
weD(v) weV

= maxa (wa w)

weV

Givenn, the optimal value fok has a specific structure (using Lemma 10, forak V): (a) if for
allv € A(w), n, > 0, thenky,, = (un, ! forallv € A(w), (b) if there existey € A(w) such that
1y, = 0, then for allv € A(w) such that;, > 0, we must have,,, = 0. [ |

A.4  Proof of Proposition 3
We consider the following function of € H anda € R™ (such thafl,! o = 0):
F(% :__Z¢z TL)\O[Z __a (ZCU} w)
weV

This function is convex im (because of Lemma 10) and concavexinstandard arguments (e.g.,
primal and dual strict feasibilities) show that there is mality gap to the variational problems:

inf sup  F(n,a) = sup inf F(n,a).
n€H pern 1T a=0 a€Rn, 1T a=0"€H
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We can decompose the duality gap, given a pairy) (with associated, f andb) as:

sup F(n,a') — inf F(1/, )

o/ €R™, 1T /=0 neH
A _ .
= mln{ Z@z(Z fvv(bv(wi» + b> + 5 Z Cw(n) 1waH2} - }anF(U/’Oé)’
veV weV e
< —ZsoZ(ch ) =Y o Kyo+ = sz —nAa;)
weV wEV
T /
+ sup -« Cw (),
n'eHd 2 l;/ ( )
1< ~
— EZ%(Zgw(n)(f(woé ) Zwl —ndey) + A Cw(n)e! Kya
=1 weV weV
+% |::/lell:]3[ Z (w( ,)OéTKwOé - Z Cw("?)a—l—kwo{| s
weV weV
_ A T~
= 8aPkernel Z Cw(n)va a) + Egapweights (((X Kw“)weVﬂ?) :
weV

We thus get the desired upper bound from which Propositiail@#s, as well as the upper bound
on the duality gap in Eq. (18).

A.5 Proof of Propositions 4 and 5

We assume that we know the optimal solution of a truncatetdleno where the entire set of decen-
dants of some nodes have been removed. We let défiotiee hull of the set of active variables.
We now consider necessary conditions and sufficient camditior this solution to be optimal with

respect to the full problem. This will lead to Propositionantl 5.

We first use Proposition 11, to get a sekgf, for (v, w) € W for the reduced problem; the goal
here is to get necessary conditions by relaxing the duall@mln Eq. (25), definingc € L and
find an approximate solution, while for the sufficient commit any candidate leads to a sufficient
condition. It turns out that we will use the solution of th&aseed solution required for the necessary
condition for the sufficient condition.

Necessary condition. If we assume that all variables i are active and the reduced set is optimal
for the full problem, then any optimal € L must be such that,,, = 0if v € W andw € W¢,
and we must have,,,, = (,n, ! for v € W andw € D(v) N W (otherwisey, cannot be optimal
for the reduced problem, as detailed in the proof of Projmositl). We then let fre&,,,, for v, w
in W¢. Our goal is to find good candidates for those free dual paerne

We can lowerbound the sums by maxima:

max d, > E K2 o Ky > max d;? max k2, a' Kyua,
veVnwe D) veVnWwe weD(v)
w
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-1
which can be minimized in closed form with respectteading tok,,, = d, <Zv/eA(w)ﬂWC dv/>

and, owing to Proposition 11 to the following lower bound fiesix,cr >, cy/ Cw(n)an(wa:

max {62, max a a 5 } >max {62, max a a 5 }, 27)
weWwe (ZUEA(w)ﬁWC dv) wesources(We) (ZvEA(w)ﬁWC dv)

wheres? = 3" i Colnw)a T Kya = Q(f)% If the reduced solution is optimal we must have
this lower bound smaller thas?, which leads to Eq. (20). Note that this necessary conditiay
also be obtained by considering the addition (alone) of drthesourcesv € sources(W*¢) and
checking that they would not enter the active set.

Sufficient condition.  For sufficient conditions, we simply take the previous valb&ined before
for x, which leads to the following upperbound forx,c i Y-, oy Cuw(n)a " Kya:

max {52 max o Ky } =max {52 max o Kya }
tewe (ZUEA(w)ﬁWC dv)Q ’tESources(WC)weD(t)(ZUEA(w)mWC dv)2 ’

because for all € W€, there exists € sources(W¢) such thaty € D(¢). We have moreover for

allt € We,
Yooodvz= ) dy,
veEA(w)NWe veEA(w)ND(t)
leading to the upper boundt = max {52,maxt650urces(wc) ZweD(t) (Evej;iﬁt) E } . The gap

in Eq. (18) is thus less thaxy/2(A — §2), which leads to the desired result.

A.6 Optimality Conditions for the Primal Formulation

We now derive optimality conditions for the primal problemg&g. (13), when the loss functions
are differentiable, which we will need in Appendix B, that is
min _ L(f,b) + 5P,
fEF, beR

where L(f,b) is the differentiable loss function. Following Bach (20D8ad Proposition 2, the
solution may be found by solving a finite-dimensional prafbl@énd thus usual notions of calculus
may be used.

Let f € F = [],cv Fv andb € R, wheref # 0, with W being the hull of the active functions
(or groups). The directional derivative in the directigh, 7) € ¥ x R is equal to

(VFL(f,b), A) + V,L(f,b)7 + AQ(f (Zd <||fD()|| o)+ Y dlldng) ||>

veWe

and thus(f, ) if optimal if and ony if V,L(f,b) = 0 (i.e., b is an optimal constant term) and if,
with 6 = Q(f):

Yw e W, Vwa(f,b)—i—)\(S( Z ||fD( H)fw: , (28)
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andvAwe € RV, " (Vy, L(f,b), Au) +)\5< > deAD(U)H) > 0. (29)
weWe veWe

We can now define folX C V, Qx(fx) = > ek doll fow)nk ||, the norm reduced to the func-
tions in K and Qj, its dual norm (Boyd and Vandenberghe, 2003; Rockafellar0)L9 The last
equation may be rewritterfy;,.(V ¢, L(f,b)) < AJd. Note that when regularizing byQ(f) =

2
A vev doll fow) |l instead of} < > vev ol fow) ||> , we have the same optimality condition with
d=1.

B Proof of Theorem 7

In this appendix, we provide the proof of Theorem 7 with salvartermediate results. Following
usual proof techniques from the Lasso literature, we witisider the optimization reduced to ker-
nels/variables irW, and (a) show that the hull of the selected variables is ithdke hull of W
(i.e., itself because we have assumedAfl)(that W is equal to its hull) with high probability, and
(b) show that when the reduced solution is extendeWtowith zeros, we have the optimal global
solution of the problem with high probability. The main diffities are to use bounds on the dual
norms of our structured norms, and to deal with the infiniteeshsional group structure within a
non-asymptotic analysis, which we deal with new conceiotnahequalities (Appendices B.2, B.3
and B.4).

B.1 Notations

Let i, = %Z?:1 ®,(z;) € F, be the empirical mean and, = E®,(X) € F, the population
mean of®,(X) and ivw = %Zg‘:l(%(xi) — fiy) @ (P (x;) — f1y) be the empirical cross-
covariance operator fronf,, to 7, andgq, = %Z?:l gi(Py(x;) — f1y) € Fy, for v,w € V,
wheres; = y; — >, cw fuw(z;) — b is the i.i.d. Gaussian noise with mean zero and variarce
By assumption A2), we havetr¥,, < 1 andtr S < 1forallv e V, which implies that
)\max(EWW) < |W| and)\max(EWW) < |W|

All norms on vectors in Euclidean or Hilbertian spaces avagb the Euclidean or Hilbertian
norms of the space the vector belongs to (which can alwaysfbered from context). However,
we consider several norms on self-adjoint operators betviilbert spaces. All our covariance
operators are&ompactand can thus be diagonalized in an Hilbertian basis, withcuesece of
eigenvalues that tends to zero (see, e.g., Brezis, 1980n&easnd Thomas-Agnan, 2003; Conway,
1997). The usual operator norm of a self-adjoint operdtds the eigenvalue of largest magnitude
of A and is denoted by A||.p; the Hilbert-Schmidt norm is thé,-norm of eigenvalues, and is
denoted by||A|us, and is equal to the Frobenius norm in finite dimensions. Ikintne trace
norm is equal to thé;-norm of eigenvalues, and is denoted |p¥||(,. In Section B.3, we provide
novel non asymptotic results on the convergence of empo@aariance operators to the population
covariance operators.

B.2 Hoeffding’s Inequality in Hilbert Spaces

In this section, we prove the following proposition, whichillwe useful throughout this appendix:
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Proposition 12 Let X1,..., X, be i.i.d. zero-mean random observations in the Hilbert sp&¢
such that for alli, || X;|| < 1 almost surely. Then, we have:

1 n
IP’( E;XZ-

Proof We denoteZ = ||2 """, X;||. If all X; are held fixed but one, thefi may only change by
%. Thus, from Mc Diarmid’s inequality (see, e.g., MassarQ20rheorem 5.1, page 148), we have,
forall ¢ > 0:

nt?

225) <Zexp<—?). (30)

P(Z —EZ > t) < exp(—nt?/2).
Moreover, using the Hilbertian structure &f

n

1 1/2 B -
EZ < (EZ%)Y? = <n— _21E<X@-,Xj>> = 0 V2E|X )Y < 02

1,]=
This leads tdP(Z > n~'/2%t + n~1/2) < exp(—t?/2) forall t > 0, i.e., forallt > 1, P(Z
tn=1/2) < exp(—(t — 1)2/2). If t > 2, then(t — 1)> > t2/4, and thusP(Z > tn~'/?)
exp(—t2/8) < 2exp(—nt?/8). Fort < 2, then the right hand side is greater ti2anxp(—1/2) >
and the bound in Eq. (30) is trivial.

[ alV/ANA\Y,

B.3 Concentration Inequalities for Covariance Operators

We prove the following general proposition of concentratad empirical covariance operators for
the Hilbert-Schmidt norm:

Proposition 13 Let X1,...,X,, be i.i.d. random observations in a measurable spagesquipped
with a reproducing kernel Hilbert spacg with kernelk, such thatk(X;, X;) < 1 almost surely.
Let 3 andX: be the population and empirical covariance operators. Weshéor allz > 0:

562

P(|S — Slus > 2n~"/?) < dexp ( - 3_2>
Proof We first concentrate the mean, using Proposition 12, sireeldlta is universally bounded
by 1:
nt?

P(la—pll =21) < QGXP(— ?)

The random variable8pb(X;) — u) ® (®(X;) — p) are uniformly bounded by in the Hilbert
space of self-adjoint operators, equipped with the Hilsatimidt norm. Thus, using Proposi-
tion 12, we get
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Thus, since> = - 3771 (®(X;) —p)@(P(X;) —p)+(u—)@ (u—p), and||(p—i1) @ (p—i1) s =
||u’ - 1[1‘”2! we get:
P(|S — Slus = ) <2 ( ’”2) 42 ( m) <4 ( m2>
HS 2 &) X 2€XP 32 €xp 16 X *#€xXp 32 )’
as long az < 2. Whenz > 2, the bound is trivial becausg® — S||is > « occurs with probability
zero. |

We now prove the following general proposition of concetiiraof empirical covariance oper-
ators for thetrace norm

Proposition 14 Let X1,...,X,, be i.i.d. random observations in a measurable spaGesquipped
with a reproducing kernel Hilbert spacg with kernelk, such thatk(X;, X;) < 1 almost surely.
Let> and S the population and empirical covariance operators. Asstimaéthe eigenvalues &t
are root-summable with sum of square roots of eigenvaluaaleqC, . We have, ifc > 4C !
2
P(|E — S|y > 2n~12) < 3exp ( - g—z)

Proof Itis shown by Harchaoui et al. (2008) that
E||S — Zj¢ < Cppan M2

Thus, following the same reasoning as in the proof of Prajoosil2, we get

P2 - 2000 - w e @00 - )| > €+ 00 < eni-272)

i=1

tr

and thus ift > 2C' /5, we have:

n “
i=1

(|- e - wes ek -

We thus get, for > 4C' /,,

a znt1/2
P(|Z = Sle = 2n~Y?) < exp(—2?/32) + 2exp < T ) < 3exp(—2%/32),
as long assn—1/2 < 2. If this is not true, the bound to be proved is trivial. [ |

B.4 Concentration Inequality for Least-squares Problems

In this section, we prove a concentration result that cangdmdiead to several problems involv-
ing least-squares and covariance operators (Harchaolj 2088; Fukumizu et al., 2007; Bach,
2008a):
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Proposition 15 Let X1,...,X,, be i.i.d. random observations in a measurable spagesquipped
with a reproducing kernel Hilbert spacg with kernelk, such thatk(X;, X;) < 1 almost surely.
Lety and S the population and empirical covariance operators. Asstimaéthe eigenvalues &t
are root-summable with sum of square roots of eigenvaluealéq ', ;. Lete be an independent

Gaussian vector with zero mean and covariance matfik Defineq = 1 "7 | ;(®(X;) — ).

~ 1/2
We have, for alt > <40‘2n_1 [)\—1/201/2 + I - 2||tr)\—1D / :

P([|(S + A~ Y2¢|| > t|X) < exp(—nt?/20?)
Proof Given the input variables|(S-+AI)~/2¢|| is a Lipschitz-continuous function of the i.i.d. noise
vectore, with Lipschitz constant /2. Moreover, we have

~ —~ 1/2 o~ o~ 1/2
IE<||(E+)\I)_1/2q|||X) < IE<||(E+)\I)_1/2qH2|X) 2 _ onir? <tr2(2+)\1)_1) ”

We now follow Harchaoui et al. (2008) for bounding the engaitidegrees of freedom:

tr (S 4+ M) — tr B(T + A
Ar(Z 4+ M) IS = ) (S 4+ AD !
AIE = Zfleefl(E + A ™ lop[1(E +AD) ™ Hlop < ATHIE = g

/N

Moreover, we havetr 3(3 + AI)~! < A71/2Cy 5. This leads to:

~ 2 ~
E (IS +A)72)1X)" < o™t |A1201 ) + |2 - Sljua™].

The final bound is obtained from concentration of Lipscleibztinuous functions of Gaussian vari-
ables (Massart, 2003):

P(||(E 4+ AD)"2¢|| > ¢|X) < exp(—nt?/20?)

as soon ag’ > 4o’n =t | A\7V2C ) + 1S — zutrxl] |

B.5 Concentration Inequality for Irrelevant Variables

In this section, we upperbound, using Gaussian concemtratequalities (Massart, 2003), the tail-
probability
P(Qywe[z] > 1),

wherez = —qwe + iwcw(iww + D)~ lqw, for a given deterministic nonnegative diagonal
matrix D. The vectorz may be expressed as weighted sum of the components of thesi@aus
vectore. In addition, Q3. [gwe] is upperbounded byrax,cewe ||gw ||dy! < di ! maxypewe || guw |-
Thus by concentration of Lipschitz-continuous functiofisnalltivariate standard random variables
(we have ai'n~'/2-Lipschitz function of:), we have (Massart, 2003):

nt?d?
202 )

P[Qwe[z] = t+E(Qye[2]|2)]2] < exp (—
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For allw € W¢, given (z1,...,x,), n'/?07 2, € F, is normally distributed with covariance
operator which has largest eigenvalue less than one. We acentposéW ¢ by values ofd,,: by
assumptiond,, may take valuel,. or a power of3 (we let denoteD the set of values aof,,, w € V).
We get (wherer denotes all input observations):

1251F [ max szH|x < nlf2g-1 ZE A \sz
weWe  dy, = wWEWE, dy,=d
< Zdlog 2{w € W€, d,, = d}|)*/?
deD
2
< > Slog(2|{w € V,dy, = d}|)Y/?
deD
< 12 log(2|{w € V, depth(w) = k}|)*/?
k>0
< dPy T = log(2|depth (k)2 = d LA
;Oﬁk g(2| (%))

We thus gef? [Qi,v [z] > %

P (e [Q] > d;—’f/g(:c) < exp (—%) . (31)

Note that we have used the expectation of the maximum of gsiofrfGaussian vectors is less than
2(log(2¢))"/? times the maximum of the expectation of the norms.

:c} exp< ) and if we use > 2A, we get

Upper boundon A. The cardinal oflepth (k) is less thamum(V) deg(V)*, thus, sinces > 1,

A = Zﬂk log(2|depth ™ (k)|)'/2

k>0
< Zﬁk log 2num(V))1/2+(klogdeg(v))1/2]
k>0
< m(log(%um(v))” 2 4 (logdeg(V))/22 3" BFk1/2,

k>0

Moreover, we have, by splitting the sum @tlog 3)~!, and using the fact that after the split, the
functionz — S~*2'/2 is decreasing:

2 A2 < 23 Rk <2(21§) GkEL2 1o i BkRL2,
e =t k=(2log 8)~!
g 2,
W +2(log §) 3/ /O T a2 i,
(log B3 (1+T(3/2)) < W, wherel'(-) is the Gamma functian
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This leads toA < 1—
(V) in Theorem 7.

1=z (log(2num(V))'/? + (log deg(V))WW and the expression for

B.6 Error of the Reduced Solution

We have the following loss function (optimized with respiecthe constant terr € R)

L(f) = 57 1.5~ 1) — {a./ — 1),

Following Bach (2008a) and Nardi and Rinaldo (2008), we mi@rsthe reduced problem ow,
minyrer, fe=0 L(f) + AQw(fw), with non unique solutiorf (since Sww is not invertible in
general). The goal here is to show thfaandf are close enough so that for alle W, fD(w £0;
this will implies that the hull of the active set ¢fis indeedW.

As opposed to the Lasso case, we also need to consigehe minimum of fyy — L(fw) +
%ZUGW ”2“;”2, which corresponds to the local quadratic approximatiothefnorm aroundwy,
where

dy
o) I

Co' = Culfw) ' =Q(f) >

vEA(w)

Moreover, we consider the corresponding noiseless vefswnf fw (the solution for: = 0). We

will compute error boundsfw — fw |, || fw — fw || and|| fw — fw ||, which will provide an upper
bound on|| fw — fw || (see Proposition 19). In particular, once we haye; — fw || < v/2, then

we must have f, ()|l > 0 for all w € W and thus the hull of selected kernels is ind&¥d

Lemma 16 We have:
Q)2 W|'/2

RV

Ifw — fwll < (A+ [Sww — Swwllopd; ?) (32)

Proof The functionf is defined as, withD = Diag(¢ '),
Thus, we have
+A||(Bww + AD) " Dy || .
We can now upper bounl Sww + AD) ! Dfw || < [[hw ||| Dllop < [W|Y2671Q(F)20 2.
1w —fwl < (A+1Sww = Swwlopl D op ) [[(Sww +AD) " D |
a Q(f)?
< (A ISww — Swwlopd;?) ZE w2
We have used moreover the following identities:

d, Q(f)?

Mol = v

Co' = d2 and ¢, =Q(f) >

vEA(w
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which leads td| D~ !{|op < d;2 and||D||op < Q(f)?v 2. |

Lemma 17 We have:

Ifw — fwll < X724 | (Sww + AD)_l/Z(JWH- (33)
Proof The differencef — f is equal to, withD = Diag(¢;,'T), fw — fw = (Sww + AD) ™!
Thus, || fw — fw| < AY2| D720 x |(Bww + AD)~ 1/QqWH, which leads to the deswed
result. [ |

Lemma 18 Assumé|fw — fw|| < v/4, A < [W|d; 2 and |[Sww — Swwllop < 16V|2\;/'\' We

have:

B . _ [96|WP2||fw — fw [Q(F)? v
— < n
lfw — fwll < mm{ VR 'SIW[3/2 4

Proof We consider the ball of radiu$ < min{W, ¥} around fw, i.e., Bs(fw) = {fw €

Fw, Ifw — fwl < 6}. Sinced < v/4 and||fw — fw| < v/4, then in the ballBs(fw), we
have for allw € W, || fp(u)nwll = y/2. On the ballB;s(fw ), the functionLw : fw — L(fw)

is twice differentiable with Hessiaﬁww, while the functionHw : fw — %Qw(fw)2 is also
twice differentiable. The functio®lwy is the square of a sum of differentiable convex terms; a short
calculation shows that the Hessian is greater than the sutmediinctions times the sums of the
Hessians. Keeping only the Hessians corresponding to siserfaed unique) sources of each of the
connected components BV, we obtain the lower bound (which still depends On

9*Hw
dfwo fw
whereC(W) are the connected components\Wf. We can now use Lemma 20 to find a lower

bound on the Hessian of the objective functibRy + AHw on the ball Bs(fw): with A =
Amin[((fc, Zep fD))c, peciw)], we obtain the lower bound

L= fel2fcfl) :

(fw) = d:tw (fw) Diag {
I fell cec(w)

A { A\d? } ANd?
B=—min<1, = ,
Wi 3w

becaus@w (fw)l| fol ™! = dr, Amax(Sww) < [W/, andA < [W|d, 2.
We have moreover on the bals( fw) (on which| fw || < 2|/fw| < 2]W[1/2)

A > )‘min[(<f07ECDfD>)C,D€C(W)]_CI%Z(*X £ IZSww — Swwllop

> B2 1017 — AW Sww — 5
ncgcmvlv)ZII wlwll” = HAWI[[Zww — Zwwllop

WV

womin Z ISatull” — 26/ W25 W] — 4 W[ Sww — Sww lop

> r?— /-@1/2/4 — k% /4 > k1?2,
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because we have assumed that thdW|!/25|W| < 12k/4 and4|W||Eww — Swwllop <
V2K /4.

We can now show thafw and fw are close, which is a simple consequence of the lower

boundB on the Hessian. Indeed, the gradient of the objectivijatapplied toz) is equal to

<vaLW(f~W) + )‘vaHW(fW)vz> = +A Z <(Cz_ul - Cw(fw)_l)fwvzw>
vEW

< 1/2 1 -l
< 2= WY max €, — Gu(fw) ™
8)lfw — fwl
< Azl \W\WTQ(QQ,
because¢;! — Cu(fuw) Y| < W < [Ifw — fw [ 2292 1 we choose

A\W\Wg“fw Twllos)? _ 96|W P2 fw — fw [[Q(f)?

= K2 Ad2 U5 kd2 ’
2 3\W| "
then the minimum of the reduced cost function must occuriwittie ball Bs(fw ). [

We can now combine the four previous lemma into the followpngposition:

Proposition 19 We have:

Sww — 3 op) QEZWIL/2Z -2 _

||fw—fw\|<<)\+

Assume moreovelfw — fw| < v/4, A < [W|d 2 and || Sww — f)ww||op 16‘W|, then:

(35)

96| WI*2 || fw — fw|Q(f)*  »° z}

fw — fwll < |l fw — £ i
o = foel < o — foe |+ { e W

B.7 Global Optimality of the Reduced Solution

We now prove, that the padded solution of the reduced prokidémindeed optimal for the full
problem if we have the following inequalities (with= \Q(f)d, andw = Q(f)d; 1):

IZSww — Swwl| < #ﬁiw ~0 (w—l,w,—l/z> (36)
IZww — Swwl < % = 1120 (w*f”/?ywrl/?) (37)
lfw — fwll < 439(/)% = 20 (w72 W 2) (38)
fw — fwl) < min {vn/5 S )} —0(w) (39)

V< 20;1{77;%3‘/;71/2 Le.,pt? =0 (“’_3/2’“7’_1/2) (40)
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Q%Vc [—qu + iwcw(iww + )\D)i

< AQ(f)n/5 = O(pd; ) (41)
1w — fw [ Eww + AD)Y2qw]| < 242

w]
Ay =p0 (w?). (42)

20Q(f )

Following Appendix A.6, sincd fw — fw|| < /2, the hull is indeed selected, arfg; satisfies
the local optimality condition

Aiww(fw —fw) — qw + XQw(fw)éw = 0,
Sww (fw — fw) — qw + ADiag((, ") fw =0,

wheresw is defined as (following the definition ej and¢ = ¢(fw):

b = ( 3 dvnfD(U)u—l)fw = G o Vi €W,

vEA(w)

This allows us to give a “closed form” solution (not reallysed form because it depends an
which itself depends off):

fw—fw = (Sww +ADiag((yh) Hew — A Diag(Cyh)fw).

We essentially replace by ¢ gnd check thg optimality conditions from Appendix A.6. Tigtwe
consider the everftyy, . [VL(f)we| < AQ(f). We use the following inequality, with the notations

gwe = Diag(Zu)weCwew Cry Diag(ZuQ(F)1¢, )whw and D = Diag((; )w, D =
Diag (¢, )w

Qe [VL(iwe] = Qiyel—qwe + Swew (fw — fw)]

Qiye[—awe + Swew (Sww + AD) " gw — ADfw))]

Die[—awe + Swew (Eww + AD) " lgw] + Ay [gwe]

AU [gwe — Swew (Sww + AD) " Dfw)]

Ay [Suw (Sww + AD) ' Dfw — Suw (Sww + AD) ' Dfw]
+ Qe [Ewew Sww + AD) lgw — (Sww + AD) 'qw]
Qive[—qwe + Swew (Sww + AD)  law] + Ay [gwe]
+AA+B+0).

N

N

We will bound the last three terms, B andC' by (f)5/5, bound the differenc&(f) — Q(f)| <

nQ(f)/5 (which is implied by Eq. (39)) and use the assumpm;m, [gwe] < 1 —n, and use the
bound in Eq. (41) to boun@3y,. [— WC+EWCW(EWW+)\D) Law] < AQ(f)n/5. Note that we
have the bouniy . [gwe] < max,cwe ”9”“ , obtained by lower boundinjfp . || by || f.|| in the
definition of Qwye.
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Bounding B. We have:

R = S,wEww + D) 'Dfw) — Sw(Eww + AD) ' Dfw)

= (Zuw — Suw)(Sww + AD) " Dfw)

13w (Eww + AD) N (Eww + AD — Sww + AD)((Sww + AD) "' Dfw))
+Zuw (Eww + AD) ! Diag((; - ¢ fw

[Zww — inHOpHDHOP‘W‘l/Z"i_l

A2 DT | Dlop W2 (| ww = Swwllop + AID = Dllop)

N

2]l

1D = Dllop| W[/

15 - Sj20(6)% 2 W2

AT 2002 W ([ Bww — Swwllo + MO0 f - )
+[W24Q(8)% 2| f ~ £,

which leads to an upper bound < d;!||R|. The constraints imposed by Eq. (36), Eq. (37),
Eqg. (38) and Eq. (39) imply thas < Q(f)n/5.

N

Bounding A. We consider the termEw-w (Zww + AD) ! Dfyw). Because of the operator
range conditions used by Bach (2008a) and Fukumizu et &7(2@e can write

Diag(2/?)Cww Diag(ZY?)y = Sww~ = D Diag(Zy,)hw,
where||v|| < || D||x!||h]|. We thus have
Sow(Eww + AD) Dy = Z20,w Diag(ZY)w(Eww + AD) "' D Diag(Z,. ) whw
= xU2C,w Diag(Z}?)w(Eww + A\D) ' Swwy
= 220w Diag(Z12)w
—2120,w Diag(ZY ) w(Sww + AD) "t ADy.

w

We have moreover
S Cuw Oy D Diag(Z ) whw = B1/2Cuw iy Cww Diag(21/°)7,
which leads to an upper bound fdr.
A<D ) < TNV DIRRIW Y < 4k A2 W2,
The constraint imposed on Eq. (40) implies tHa& Q(f)n/5.

Bounding C. We consider, fotw € W¢:

T = S,wEww + D) Law — Suw(Eww +AD) aw
A ow (Bww + AD) YD — D)(Eww + AD) lgw
ATHD Hlopl D = Dllop | (Sww + AD) ™ 2qw||
AN fw — fw [[(Eww +AD) 2w,

leading to the bound’ < d 'A\~!||T||. The constraint imposed on Eq. (42) implies tidat<
Q(f)n/5.

AT

NN
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B.8 Probability of Incorrect Hull Selection

We now need to lower bound the probability of all events froq @6), Eq. (37), Eqg. (38), Eq. (39),
Eq. (40), Eq. (41) and Eq. (42). They can first be summed up as:

Ifw — fwll < O (uiwtwi12)
po< O (WWIT
0 <w*3/2|W|’1/2mu1/2>

AQ(F)n/5 = O(ud, )
0 <,u3/4w’1]W]1/2> .

NN

N

ISww — Sww i
Qiye[—awe + Swew (Sww + AD) qw]
|(Eww + AD) 2w

NN

From Proposition 19, in order to havfw — fw| < O (u'/*w='|W|~/2), we need to have
Ifw — fwll < O (1403 [W[72), ie., [ (Sww + AD) ™ 2qw|| < O(p*/ w2 [W|72), u =
O(p 4w W|=5/2) and | Sww — Sww i = O(p!/4w=5[W|5/2),

From Proposition 15, in order to boutiEww+AD) Y/ 2qw ||, we require| Sww —Sww |l =
O(u'?w=12W|~3/2). We finally require the following bounds:

0 (w*11/2|W|’7/2>

0 (,ul/Qw_?’/ZIW]_l/Z)
O(pd, ™)

0 (,u3/4w_7/2|W|_2) ‘

We can now use Propositions 14 and 15 as well as Eq. (31) tindb&a desired upper bounds on
probabilities.

N

“

N

I=ww — Sww i
Qye[—awe + Swew (Eww + AD) Lqw]
I(Eww + AD) ™ Y2qw||

NN

B.9 Lower Bound on Minimal Eigenvalues
We provide a lemma used earlier in Section B.6.

Lemma 20 Let@ be a symmetric matrix defined by blocks @&ng) a sequence of unit norm vectors
adapted to the blocks definirg. We have:

)‘min i ig Wy )i,g . i i Mg
)\min (Q + Dlag |:/’LZ(I — ulu;r)]) 2 [(uz ?f? ju]) J] min {17 %{g))} .

Proof We consider the orthogonal complemehiof «;, we then have

[ul, e ,up]T (Q + Diag [Mz(I — Uz U, T)]) [ul, e ,up] = (UZTQijuj)i,j
[Vlﬁ""%]—r (Q+Diag [IUZ'(I Ui )]) [Vl”%] = (VZTQZ]VJ +5i:jﬂi1)i,j
Vi, V] T (@ + Diag [ (I — wgul)]) [us, .., up] = (VT Qijug)is-

We can now consider Schur complements: the eigenvalue wetavlower-bound is greater than
if v < )\min[(uiTQijuj)m] and

(Vi Qi Vs + Simjpal)iy — (Vi' Qijueg)iy (u Qijug)iy — vI) ™ (u QijVy)iy o= VI
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which is equivalent to
(Vi'QijV;)ij + Diag(ml) — (V' Qi )i (u] Qiuy); ) (uf QiVy)i g
+ (V;T Qijuy)ig [(UIQU%‘)Z} — ((u] Qijuz)iy —vD) ' (u] Qi Vy)ij = v (43)

If we assume that < Amin[(u, Qiju;):;]/2, then the second term has spectral norm less than

2V Amax (Q)
Yol Oyui)” The result follows. [ |
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