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High-dimensional optical quantum logic in large operational

spaces
Poolad Imany 1,2, Jose A. Jaramillo-Villegas 1,2,3, Mohammed S. Alshaykh 1,2, Joseph M. Lukens 4, Ogaga D. Odele1,2,
Alexandria J. Moore1,2, Daniel E. Leaird1,2, Minghao Qi1,5 and Andrew M. Weiner 1,2,5

The probabilistic nature of single-photon sources and photon–photon interactions encourages encoding as much quantum
information as possible in every photon for the purpose of photonic quantum information processing. Here, by encoding high-
dimensional units of information (qudits) in time and frequency degrees of freedom using on-chip sources, we report deterministic
two-qudit gates in a single photon with fidelities exceeding 0.90 in the computational basis. Constructing a two-qudit modulo SUM
gate, we generate and measure a single-photon state with nonseparability between time and frequency qudits. We then employ
this SUM operation on two frequency-bin entangled photons—each carrying two 32-dimensional qudits—to realize a four-party
high-dimensional Greenberger–Horne–Zeilinger state, occupying a Hilbert space equivalent to that of 20 qubits. Although high-
dimensional coding alone is ultimately not scalable for universal quantum computing, our design shows the potential of
deterministic optical quantum operations in large encoding spaces for practical and compact quantum information processing
protocols.
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INTRODUCTION

Quantum information processing has drawn massive attention
due to its power in solving some crucial algorithms exponentially
faster than their classical counterparts,1 as well as its ability to
transmit information in a fully secure fashion, two capabilities
looked to be combined in the emerging quantum internet.2

Among the platforms that can exhibit quantum behavior, optical
states have the advantages of low decoherence and suitability for
long-distance communications, yet the weak coupling of photons
to their surroundings also makes it extremely difficult to
manipulate the state of one photon based on the state of
another. This operation, needed for a two-qubit gate, is
probabilistic with standard linear optics and photon counting.3

Quantum gates have been demonstrated in a number of different
photonic degrees of freedom, such as polarization,4 orbital
angular momentum,5 time,6 and frequency,7,8 and to sidestep
the challenges of probabilistic multiphoton interactions, encoding
qubits in different degrees of freedom (DoFs) in a single photon
has been demonstrated, where each DoF carries one qubit and,
now, operations between different qubits can be made determi-
nistic.9,10 This scheme allows encoding more quantum informa-
tion in single photons, and can find use in stand-alone processing
tasks or be subsequently incorporated into larger systems built on
true photon–photon interactions, thus offering a potentially more
efficient method for photonic quantum information processing.
Even though in this case two- and three-qubit operations can be
executed with unity success probability, each DoF contains only
one qubit, and the number of a photon’s DoFs are limited; thus
the size of the Hilbert space in which these deterministic
transformations can happen is fairly moderate (e.g., an eight-

dimensional Hilbert space has been demonstrated by encoding
three qubits in three different DoFs of a single photon10).
In this article, we take advantage of the high dimensionality in

two particular DoFs of a single photon—namely, time and
frequency, which are both compatible with fiber optical transmis-
sion—to encode one qudit in each DoF. We consider multiple time
bins and frequency bins; as long as the frequency spacing
between different modes (Δf) and the time-bin spacing (Δt) are
chosen such that they exceed the Fourier transform limit (i.e., Δf
Δt > 1), we are able to manipulate the time and frequency DoFs
independently in a hyper-encoding fashion, using concepts
developed in time-division and wavelength-division multiplexing,
respectively.11,12 In other words, each time–frequency mode pair
constitutes a well-defined entity, or plaquette,11,12 which is
sufficiently separated from its neighbors to provide stable
encoding (Fig. 1). Alternatively, this can be understood by
considering bandwidth-limited plaquettes with individual spectral
linewidth δf (corresponding to temporal duration ~1/δf). These
will not overlap in time–frequency space as long as the chosen bin
separations satisfy Δf > δf and Δt > 1/δf. Combined, then, these
two equations yield the aforementioned condition Δf Δt > 1. An
analogous process is at work in the advanced optical modulation
formats gaining adoption in modern digital communications,
where many bits are encoded in a single symbol via modulation of
canonically conjugate quadratures.13 Since our single photons can
potentially be generated in a superposition of many time and
frequency bins, multiple qubits can be encoded in each DoF,
making our proposed scheme a favorable platform for determi-
nistic optical quantum information processing on Hilbert spaces
dramatically larger than previously demonstrated deterministic
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qubit-based gates. Ultimately, the total number of DoFs carried by
a single photon is limited, so one cannot increase the Hilbert
space indefinitely by encoding in increasingly more properties
within individual photons. The Hilbert space can be increased,
though, by expanding the dimensionality within each DoF. While
enabling only linear scaling of the Hilbert space with the number
of modes,14 and thereby not facilitating the exponential scaling
required for fault-tolerant quantum computing, qudit encoding
promises significant potential in the current generation of
quantum circuits. It has been shown, for example, that two-
qudit optical gates are useful in transmitting quantum states with
higher information content per photon by means of qudit
teleportation,15 a task that requires two-qudit gates which can
operate on the different degrees of freedom of a single
photon16,17—precisely the functionality we demonstrate here.

RESULTS

To enable the realization of all single-qudit unitaries, it is sufficient
to demonstrate the generalized Pauli gates X (cyclic shift) and Z
(state-dependent phase), which are universal for single-qudit
operations,5 and from which all d-dimensional Weyl operators can
be constructed.18 The Z gate applies a unique phase shift to each
of the d basis states, which can be easily executed with a phase
modulator and a pulse shaper in the time domain and frequency
domain, respectively. Specifically, for the basis state |n〉 (n= 0, 1,
…, d− 1), we have Z nj i ¼ expð2πin=dÞ nj i and X|n〉= |n ⊕ 1〉,
where ⊕ denotes addition modulo d. An X gate in the frequency
domain can be realized using a Z gate sandwiched between two
high-dimensional DFT gates. Such a DFT operation has been
recently demonstrated,7 completing in principle the universal gate
set for single-qudit frequency-domain operations. To complete the
gate set in the time domain, we demonstrate the time-bin X gate
presented in Fig. 2a, operating on time bins in three dimensions, a
process which corresponds to state-dependent delay. Because the
gate operates on each photon individually, we can simulate its
performance with coherent states; the statistics of the input field
have no impact on the principle of operation. Of course, to apply
this gate in multiphoton quantum information processing, true
single photons would need to be tested as well, the preparation or
heralding of which is technically demanding and could introduce
additional noise. However, as this noise is extrinsic to the gate
itself, we focus on weak coherent states for initial characterization
here. To test for the correct modal operation of this gate, we use a
continuous-wave (CW) laser and prepare the desired weak
coherent state by carving out three time bins {|0〉t, |1〉t, |2〉t} using
an intensity modulator and manipulating their relative phases
with a phase modulator. The time bins are 3-ns wide with Δt=
6-ns center-to-center spacing. To perform the X operation, we
need to separate the time bins |0〉t and |1〉t from |2〉t and delay the
route for time bins |0〉t and |1〉t by 3 bins (18 ns). We realize the
necessary spatial separation between the time bins with a
Mach–Zehnder modulator (MZM) switch. We emphasize that

while most MZM designs are one-port devices, with one of the
two output paths terminated, this 1 × 2 version permits access to
both interferometer outputs, and accordingly it is in principle
lossless—as required for a unitary operation. (In practice, of
course, insertion loss reduces throughput, but it should be
possible in the future to significantly reduce this loss through,
e.g., on-chip integration.) After the path-dependent delay, another
1 × 2 MZM, but operated in reverse, can be used to recombine the
time bins deterministically as well. However, due to lack of
equipment availability, in this proof-of-principle experiment we
employ a 2 × 2 fiber coupler for recombination, which introduces
an additional 3-dB power penalty. To measure the gate output, we
synchronize a single-photon detector and time interval analyzer
with the generated time bins. The transformation matrix
performed by the X gate when probed by single time bins yields
a computational basis fidelity F C of 0.996 ± 0.001, shown in Fig. 2b
(see the Methods section). As such computational-basis-only
measurements do not reflect the phase coherence of the
operation, we next prepare superposition states as input and
interfere the transformed time bins after the gate with a cascade
of 1-bin and 2-bin delay unbalanced interferometers. In order to
combat environmentally induced phase fluctuations, we stabilize
both these interferometers and the X gate by sending a CW laser
in the backwards direction and using a feedback phase control
loop. We apply a phase of 0, ϕ, and 2ϕ to the time-bins |0〉t, |1〉t,
and |2〉t, respectively, with the phase modulator in the state
preparation stage and sweep ϕ from 0 to 2π, obtaining the
interference pattern shown in Fig. 2c. After subtraction of
the background, we calculate a visibility of 0.94 ± 0.01 from the
maximum and minimum points, showing strong phase coherence
(the ability to preserve and utilize coherent superpositions)
between the time bins after the gate. If for concreteness we
assume a channel model consisting of pure depolarizing (white)
noise,18 we can use this visibility to estimate the process fidelity
F P, finding F P ¼ 0:92 ± 0:01 for the X gate (see the Methods
section). Given the ability to perform arbitrary one-qudit opera-
tions using combinations of X and Z gates, it follows that it is in
principle possible to generate and measure photons in all
mutually unbiased bases19—an essential capability for high-
dimensional quantum key distribution (QKD),20 which has been
proven to offer greater robustness to noise compared with qubit-
based QKD21 and can enable significantly higher secret key rates
over metropolitan-scale distances.22

With this high-performance time-bin X gate in hand, we are
then in a position to incorporate it into a frequency network to
realize deterministic two-qudit gates, where the frequency DoF
acts as the control and the time DoF is the target qudit. For this
demonstration, instead of a weak coherent state, we utilize true
single photons, heralded by detecting the partner photon of a
frequency-bin entangled pair generated through spontaneous
four-wave mixing in an on-chip silicon nitride microresonator. The
time bins, defined by intensity modulation of the pump, couple
into a microring resonator with a free spectral range (FSR) Δf=

Fig. 1 Illustration of the scheme. Two qudits encoded in d time bins and frequency bins in a single photon, going through a deterministic
quantum process. The single photon can be encoded in an arbitrary superposition of different time and frequency bins; the unused
time–frequency slots are shown with dashed circles. After the deterministic quantum process operates on the two-qudit state, the orientation
of the time–frequency superpositions change to a new two-qudit state
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380 GHz and resonance linewidths δf≃250 MHz, generating a
biphoton frequency comb. The time-bin and frequency-bin
entanglement of such sources have been proven recently.23–26

As our time- and frequency-bins exceed the Fourier limit (Δf Δt=
2280, δf Δt= 1.5), our time–frequency entangled photons can be
considered hyperentangled—that is, entangled in two fully
separable DoFs. The signal and idler photons from the first three
comb-line pairs are then selected and separated with a
commercial pulse shaper, as shown in Fig. 3a. Now that the time
bins and frequency bins are all generated in the state preparation
stage, the idler photons are sent to a single-photon detector for
heralding, and the signal photons are what carry the two qudits in
the three time bins {|0〉t, |1〉t, |2〉t} and frequency bins {|0〉f, |1〉f, |2〉f}.
This procedure lets us prepare any time-bin/frequency-bin
product state |m〉t|n〉f (m, n= 0, 1, 2) of the full computational
basis set. In principle, we could also herald arbitrary
time–frequency superposition states in this setup, by first sending
the idler photon through a combination of time- or frequency-bin
interferometers prior to detection in the temporal and spectral
eigenbases. This more general case would permit the preparation
of any two-qudit state and is an important area for further
research.
As the first two-qudit gate, we demonstrate the controlled-

increment (CINC) operation, where an X gate is applied to the
time-bin qudit only when the frequency qudit is in the state |2〉f.
This two-qudit gate along with arbitrary single-qudit gates [which,
as noted above, can be formed from single-qudit X and Z
operations5] complete a universal set for any quantum opera-
tion.27 To implement this gate, we separate |2〉f from the other two
frequency bins with a dense wavelength-division multiplexing
(DWDM) filter and route it to a time-bin X gate (Fig. 3a); no
operation happens on the route of the other two frequency bins.
The frequency bins are then brought back together with another
DWDM with zero relative delay to complete the two-qudit gate
operation. To measure the transformation matrix of this gate in
the computational basis, we prepare the input state in each of the
nine combinations of single time bins and frequency bins, using
the first intensity modulator and the pulse shaper, respectively.
We then record the signal counts in all possible output time-bin/
frequency-bin pairs, conditioned on detection of a particular idler

time–frequency mode, by inserting three different DWDMs in the
path of the signal photons to pick different frequency bins. The
measured transformation matrix is shown in Fig. 3b, with
accidental-subtracted fidelity F C ¼ 0:90 ± 0:01 (see the Methods
section).
For the next step, we implement an even more complex

operation, the SUM gate—a generalized controlled-NOT gate28—
which adds the value of the control qudit to the value of the
target qudit, modulo 3. In this gate, the time bins associated with |
0〉f are not delayed, the time bins associated with |1〉f experience a
cyclic shift by 1 slot, and the time bins corresponding to |2〉f go
through a cyclic shift of 2 slots. To delay the time bins dependent
on their frequencies, we induce a dispersion of −2 ns.nm−1 on the
photons using a chirped fiber Bragg grating (CFBG); this imparts
6 -ns (1-bin) and 12 -ns (2-bin) delays for the temporal modes of
|1〉f and |2〉f, respectively, as required for the SUM operation.
However, this delay is linear—not cyclic—so that some of the time
bins are pushed outside of the computational space, to modes |3〉t
and |4〉t. Returning these bins to overlap with the necessary |0〉t
and |1〉t slots can be achieved using principles identical to the
time-bin X gate with a relative delay of three bins. The
experimental setup is shown in Fig. 3a, where we use the same
techniques as for the CINC gate to measure the transfer matrix
shown in Fig. 3c, with F C ¼ 0:92 ± 0:01. The fact that this SUM
gate is implemented with qudits in a single step potentially
reduces the complexity and depth of quantum circuits in
algorithms that require an addition operation.29 Lack of frequency
shifting components in these gates can be confirmed by the small
off-diagonal terms in Fig. 3b, c for which the input and output
frequency bins differ.
To show the ability of our design to operate on large Hilbert

spaces, we extend the dimensions of our qudits and encode two
16-dimensional quantum states in the time and frequency DoFs of
a single photon. For this demonstration, as we want to use more
time bins and set a smaller frequency spacing between modes, we
use a periodically poled lithium niobate (PPLN) crystal as a
broadband source of time–frequency entangled photons followed
by a programmable pulse shaper to set the frequency spacing and
linewidth, instead of a microring with fixed frequency spacing.
(We note that, in principle, one could still use an integrated source

Fig. 2 a Experimental setup of the state preparation, the X gate, and the state measurement. IM intensity modulator, PM phase modulator,
MZM Mach–Zehnder modulator, PZT piezo-electric-phase shifter, SPD single-photon detector. The circle-shaped fibers indicate the delay; each
circle is equivalent to one time-bin delay (6 ns). b The transformation matrix. c Counts measured after overlapping all three output time bins,
for a time-bin superposition state input into the X gate. The blue errorbars are obtained from five measurements for each phase. The
subtracted background was about 200 per 2 s
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for these experiments by appropriately engineering a microring’s
FSR, bandwidth, and resonance linewidth to realize spectral and
temporal spacings tighter than the integrated photon sources
currently available to us.) In this experiment, we first shine a
773-nm CW laser on the PPLN crystal, generating entangled
photons with a bandwidth of ~5 THz.30 We then carve 16 time
bins with a full width at half maximum of ~200 ps and 1.2-ns
spacing between them, to generate the time-bin qudits. Then, a
pulse shaper is used to carve out the frequency of these entangled
photons to generate sixteen 22-GHz-wide frequency bins on both
the signal and idler side of the spectrum, each spaced by 75 GHz
from each other. Now that we have 16-dimensional qudits in both
time and frequency, we send a heralded signal photon into the
same SUM-gate structure. We note that after the CFBG, the
individual time bins will spread to ~350 ps due to their now larger
(22 GHz) linewidth. While not necessary in this proof-of-principle
experiment, such spreading could be reduced either by using a
smaller linewidth for our frequency modes (e.g., with a
Fabry–Perot etalon), or by using a dispersive element with a
step-wise frequency-dependent delay profile.31–33 To verify the
operation, we send in different input two-qudit states, chosen
from one of 256 basis states, and measure the output after the
gate. While this yields a total of 256 × 256 (216) computational
input/output combinations to test, we have no active frequency-
shifting elements in the SUM gate to shift 75 GHz-spaced
frequencies into each other, so we make the reasonable
assumption that the frequency qudit remains unchanged through
the operation. This is also enforced by the high extinction ratio of
the pulse shaper (~40 dB), which blocks unwanted frequency bins.
This allows us to focus on results in the sixteen 16 × 16 transfer
matrices measured in Fig. 4a–p (a subset with a total of 212 input/
output combinations). In each matrix, 16 different inputs with the

same frequency and different time bins are sent into the SUM
gate, and the output time bins are measured. For this experiment,
we use superconducting nanowire single-photon detectors
(SNSPDs), which allow us to report our data without accidental
subtraction. The average computational space fidelity for the
whole process, with the assumption that frequencies do not leak
into each other, can be calculated as F C ¼ 0:9589 ± 0:0005, which
shows the high performance of our operation. This high fidelity
benefits greatly from the high extinction ratio of the intensity
modulator used to carve the time bins (~25 dB). To show the
coherence of our SUM gate, we use this setup to perform a SUM
operation on a three-dimensional input state,
ψj iin¼ 1

ffiffi

3
p 0j ifþ 1j ifþ 2j if

� �

0j it, which results in a maximally non-

separable state34 between time and frequency DoFs:
ψj iout¼ 1

ffiffi

3
p 00j iftþ 11j iftþ 22j ift

� �

. To quantify the dimensionality

of this state, we use an entanglement certification measure called
entanglement of formation (Eof).

35,36 We experimentally obtain
Eof ≥ 1.19 ± 0.12 ebits, where 1 ebit corresponds to a maximally
nonseparable pair of qubits, while 1.585 ebits represents the
maximum for two three-dimensional parties (see Methods); in
exceeding the qubit limit, our state thus possesses true high-
dimensional nonseparability.
One of the most crucial challenges toward optical quantum

operations is the lack of on-demand photon sources. Therefore, it
is interesting to consider our scheme for application to quantum
communication and networking, for which operations with just a
few qudits have potential impact. A gate very similar to the SUM
gate is the XOR gate, which subtracts the control qudit from the
target and is a requirement for qudit teleportation proto-
cols.15,37,38 Since teleportation of quantum states is possible using
different degrees of freedom of an entangled photon pair,165 a

Fig. 3 a Experimental setup for the CINC and SUM gates. The MZM for the CINC gate is driven such that it separates the time bin |2〉t from
time bins |0〉t and |1〉t. For the SUM gate, the MZM separates the time bins that fall outside of the computational space (|3〉t and |4〉t) from the
computational space time bins (|0〉t, |1〉t, and |2〉t). DWDM dense wavelength-division multiplexer. b, c The experimental transformation matrix
of the CINC and SUM gate, respectively. The accidentals were subtracted in the transformation matrices, and the coincidence to accidentals
ratio was ~3.7 in the CINC and ~3 in the SUM case
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single-photon two-qudit gate in our time–frequency paradigm
could be applied directly for teleporting high-dimensional states.
Specifically, the XOR gate can be demonstrated by using positive
dispersion and reconfiguring the switching in the SUM gate, or in
the three-dimensional case, by simply relabeling the frequency
bins |0〉f→ |2〉f and |2〉f→ |0〉f and performing the same process as
the SUM operation. In addition, these two-qudit gates can be used
for the purpose of beating the channel capacity limit for standard
superdense coding for high-dimensional entangled states.39 In
such quantum communications applications for the two-qudit
gates, a modest number of state manipulations brings
significant value.
The demonstrated SUM gate can also be used to produce high-

dimensional Greenberger–Horne–Zeilinger (GHZ) states.40 GHZ

states consist of more than two parties, entangled with each other
in a way that measurement of one party in the computational
basis determines the state of all the other parties.41 It has been
only recently that these states were demonstrated in more than
two dimensions, where a three-dimensional three-party GHZ state
was realized using the orbital angular momentum of optical
states.40 Here, we take advantage of our SUM gate and the large
dimensionality of time–frequency states to generate a four-party
GHZ state with 32 dimensions in each DoF. We start from the state

ψj iin¼ 1
ffiffiffiffi

32
p 0; 0j itsti

P31
m¼0 m;mj ifsfi , which means both signal and

idler photons are initialized in the zero time-bin state and are
maximally entangled in the frequency domain. Then, we operate
deterministic SUM gates separately on both signal and idler
photons, resulting in a four-party GHZ state of the form

Fig. 4 a–p The transfer matrices corresponding to each possible time-bin output for each individual input time bin. Each matrix is specified
for one frequency input, where the matched frequency output for different time bins is measured. In |m, n〉 on the x and y axis,m indicates the
frequency qudit and n is the time bin qudit. The computational space fidelity of each matrix is shown on top of it. Subtraction of accidentals is
not employed
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ψj iout¼ 1
ffiffiffiffi

32
p

P31
m¼0 m;m;m;mj ifstsfiti . Since the initial state only

consists of the zeroth time bins, the dispersion module does not
shift any of the bins outside of the computational space; hence
the interferometric structure used in the full SUM gate is not
required when operating within this subspace. The GHZ state is
measured in the computational basis (Fig. 5); the plot contains
coincidences for all basis states in the set
f m; n; k; lj ifstsfiti ; 0 � m; n; k; l � 31g. Only states whose four qudits
match (i.e., m;m;m;mj ifstsfiti ) have high counts, as expected for a

GHZ state. Of course, full characterization of the state requires
measurements in superposition bases as well,42 but due to the
additional insertion loss associated with superposition measure-
ments in time and frequency using interferometers and phase
modulators, respectively, we were unable to measure such
projections. Remarkably, the demonstrated GHZ state resides in
a Hilbert space equivalent to that of 20 qubits, an impressive
1,048,576 (324) dimensions. We emphasize that the four parties of
the demonstrated GHZ state are carried by only two photons, and
hence cannot be used for genuine multi-partite GHZ applications
such as demonstration of Bell’s theorem without inequalities,41

quantum secret sharing,43 or open-destination teleportation.44

However, the realization of such high-dimensional GHZ states
indicates the potential of our time–frequency platform for
quantum technologies such as near-term quantum computation
and cluster-state generation.33,45

DISCUSSION

Hyper-entangled time–frequency states, as opposed to other
high-dimensional optical degrees of freedom like orbital angular

momentum, can be generated in integrated on-chip sources,
which have gained tremendous attention in recent years due to
their low cost, room temperature operation, compatibility with
CMOS foundries and the ability to be integrated with other optical
components. Pulse shapers,46 phase modulators,47 and switches48

can all be demonstrated on a chip, and a series of DWDMs and
delay lines can be used to realize the equivalent functionality of
on-chip CFBG. In addition, demonstration of balanced and
unbalanced interferometers on-chip eliminates the need for active
stabilization, which is of considerable profit for the scalability of
the scheme.49 These contributions can potentially lead to
combining these sources with on-chip components designed for
manipulation of these states, realizing the whole process on an
integrated circuit.
High-dimensional optical states25,26,49–51 can open the door to

deterministically carry out various quantum operations in
relatively large Hilbert spaces,52 as well as enable higher encoding
efficiency in quantum communication protocols, such as quantum
key distribution22 and quantum teleportation.16,53 We have
demonstrated deterministic single- and two-qudit gates using
the time and frequency degrees of freedom of a single photon for
encoding—operating on up to 256 (28)-dimensional Hilbert
spaces—and carried out these gates with a high computational-
space fidelity. We have shown the application of such two-qudit
gates in near-term quantum computation by using them to realize
a GHZ state of four parties with 32 dimensions each, correspond-
ing to a Hilbert space of more than one million modes. Such
deterministic quantum gates add significant value to the photonic
platform for quantum information processing and have direct
application in, e.g., simulation of quantum many-body
physics.54–56

Fig. 5 a Measurement of the four-party 32-dimensional GHZ state in the computational basis. The states |m, n〉 shown on the signal and idler
axes correspond to frequency-bin m and time-bin n. The large coincidence peaks exist only for states with the same time-bin and frequency-
bin indices for both signal and idler (32 peaks). b, c Zoomed-in 32 × 32 submatrices of the matrix shown in a. Each submatrix shows
coincidences for different signal and idler time bin indices for fixed signal and idler frequency bin indices. b Matched signal and idler
frequency bins: large peak is observed for 16; 16; 16; 16j ifsts fiti . c Unmatched signal and idler frequency bins. The small peak evident at
16; 16; 23; 23j ifstsfiti reflects additional counts from multiphoton pair events at the time bins to which frequency bins 16j ifs and 23j ifi are
shifted. The data are shown with accidentals subtracted (coincidence to accidentals ratio of ~4)
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METHODS

For the time-bin single-qudit X gate shown in Fig. 2, we split the
experimental setup in three stages: state preparation, X gate operation,
and state measurement. For the state preparation, we use an Agilent
81645A CW laser tuned to 1553.9 nm and send it into an intensity
modulator (~4-dB insertion loss) and phase modulator (~3-dB insertion
loss), both manufactured by EOSpace, which are used to create the time
bins and control their relative phases, respectively. To implement the X
gate operation, we used an MZM with two complementary outputs (~4-dB
insertion loss), also manufactured by EOSpace. We use a piezo-based fiber-
phase shifter (General Photonics FPS-001) to control the phase difference
between the two paths following the MZM. Then a 2 × 2 fiber coupler is
used to merge the branches. For the state measurement, we used 1-bin
and 2-bin delay interferometers implemented with 2 × 2 fiber couplers and
additional piezo-based fiber phase shifters. For the time-bin X gate and
computational-basis measurements of three-dimensional two-qudit gates,
gated InGaAs single-photon detectors (Aurea Technologies SPD_AT_M2)
were used. For the rest of the measurements, we used superconducting
nanowire single-photon detectors (Quantum Opus). To measure the arrival
times of the photons on the single-photon detectors, a time-interval
analyzer (PicoQuant HydraHarp 400) is used. The stabilization of the
interferometers is done by sending a CW laser at 1550.9 nm in the
backward direction and feeding the output power into a computer-based
feedback loop to maintain the phase. To stabilize the X gate, we use a
similar scheme with an additional circulator at the input of the gate (not
shown in the figures) to retrieve the optical power in the backward
direction. The signals applied to the intensity modulators and phase
modulator, as well as the trigger and synchronization signal of the single-
photon detector and time interval analyzer, are generated by an electronic
arbitrary waveform generator (Tektronix AWG7122B) and adjusted to the
proper level by linear amplifiers.
To assess the performance of our one- and two-qudit quantum gates,

we first focus on the computational-basis fidelity F C—one example of a
so-called “classical” fidelity in the literature.57 Defining |n〉 (n= 0, 1,…, N−
1) as the set of all computational basis states and |un〉 as the corresponding
output states for a perfect operation, we have the fidelity

F C ¼ 1

N

X

N�1

n¼0

pðunjnÞ (1)

where p(un|n) is the probability of measuring the output state |un〉 given an
input of |n〉. In the operations considered here, the ideal output states |un〉
are members of the computational basis as well, so there is no need to
measure temporal or spectral superpositions in determination of F C . Given
the measured counts, we retrieve the N conditional probability distribu-
tions via Bayesian mean estimation (BME),58,59 where our model assumes
that each set of count outcomes (after accidentals subtraction) follows a
multinomial distribution with to-be-determined probabilities; for simplicity,
we take the prior distributions as uniform (equal weights for all outcomes).
We then compute the mean and standard deviation of each value p(un|n)
and sum them to arrive at F C . Specifically, if Cun jn signifies the counts
measured for outcome un, and Ctot|n, the total counts over all outcomes
(both for a given input state |n〉), BME predicts:

p unjnð Þ ¼ 1þ Cun jn
N þ Ctotjn

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Cun jn

N þ Ctotjn
� �2

N þ Ctotjn � Cun jn � 1

N þ Ctotjn þ 1

s

(2)

where the standard deviation in the estimate is used for the error. Since
the probabilities here each actually come from N different distributions, we
estimate the total error in F C by adding these constituent errors in
quadrature. Explicitly, we find F C ¼ 0:996± 0:001 for the X gate, 0.90 ±
0.01 for the CINC operation, 0.92 ± 0.01 for the 3 × 3 SUM gate, and F C ¼
0:9589± 0:0005 for the 16 × 16 SUM gate. The reduction in F C for the two-
qudit gates is due in large part to the fewer total counts in these cases,
from our use of heralded single photons rather than a weak coherent state.
As seen by the presence of N in the denominator of Eq. (2), even when
Cun jn ¼ Ctotjn , the estimate p(un|n) is not unity unless Ctot|n≫ N. In our
experiments, the two-qudit tests have only ~100–300 total counts per
input computational basis state for the 9 × 9 matrices (with N= 9) and
~500–800 counts per input state for the 16 × 16 matrices (with N= 16),
thereby effectively bounding the maximum p(un|n) and, by extension,
fidelity F C . This behavior is actually a strength of BME, though, as it
ensures that we have a conservative estimate of the fidelity that is justified
by the total amount of data acquired.58

While extremely useful for initial characterization, however, the
computational-basis fidelity above provides no information on phase
coherence. On the other hand, process tomography would offer a
complete quantification of the quantum gate. Yet due to the challenging
experimental complexity involved in quantum process tomography, here
we choose a much simpler test which—while limited—nonetheless offers
strong evidence for the coherence of our time-bin X gate. To begin with,
note that all three-dimensional quantum processes can be expressed in
terms of the nine Weyl operations60:

U0 ¼ I ¼
1 0 0

0 1 0

0 0 1

0

B

@

1

C

A
;

U1 ¼ X ¼
0 0 1

1 0 0

0 1 0

0

B

@

1

C

A
;

U2 ¼ X2 ¼
0 1 0

0 0 1

1 0 0

0

B

@

1

C

A

U3 ¼ Z ¼
1 0 0

0 ei
2π
3 0

0 0 e�i2π3

0

B

@

1

C

A
;

U4 ¼ ZX ¼
0 0 1

ei
2π
3 0 0

0 e�i2π3 0

0

B

@

1

C

A
;

U5 ¼ ZX2 ¼
0 1 0

0 0 ei
2π
3

e�i2π3 0 0

0

B

@

1

C

A

U6 ¼ Z2 ¼
1 0 0

0 e�i2π3 0

0 0 ei
2π
3

0

B

@

1

C

A
;

U7 ¼ Z2X ¼
0 0 1

e�i2π3 0 0

0 ei
2π
3 0

0

B

@

1

C

A
;

U8 ¼ Z2X2 ¼
0 1 0

0 0 e�i2π3

ei
2π
3 0 0

0

B

@

1

C

A

(3)

The quantum process itself is a completely positive map E,61 which for a
given input density matrix ρin outputs the state

ρout ¼ E ρinð Þ ¼
X

8

m;n¼0

χmnUmρinU
y
n (4)

The process matrix with elements χmn uniquely describes the operation.
The ideal three-bin X gate with process matrix χX has only one nonzero
value, [χX]11= 1. To compare to this ideal, we assume the actual operation
consists of a perfect X gate plus depolarizing (white) noise.18 In this case
we have a total operation modeled as

ρout ¼ λU1ρinU
y
1 þ

ð1� λÞ
3

I3 (5)

whose process matrix we take to be χN ¼ λχX þ 1�λ
9 I9 , which can be

calculated by using I3 ¼ 1
3

P8
n¼0 UnρinU

y
n .
18 if we then assume a pure input

superposition state ρin= |ψin〉〈ψin|, where |ψin〉∝ |0〉t+ eiϕ|1〉t+ e2iϕ|2〉t,
and measure the projection onto the output |ψout〉∝ |0〉t+ |1〉t+ |2〉t (as in
Fig. 2c), λ can be estimated from the interference visibility V as62:

λ ¼ 2V

3� V
(6)

and the process fidelity is then given by:

F P ¼ Tr χXχNð Þ ¼ χN½ �11¼
1þ 8λ

9
¼ 1þ 5V

9� 3V
¼ 0:92± 0:01 (7)

as discussed in the article.
To show the coherence of our SUM gate, we generate an input state in

the signal photon which is in time-bin |0t〉 and an equi-amplitude
superposition in frequency ψj iin¼ 1

ffiffi

3
p 0j ifþ 1j ifþ 2j if

� �

0j it . After passing
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this state through the SUM gate, the time-bin state of the photon is shifted
based on the frequency, leaving us with a maximally non-separable state
ψj iout¼ 1

ffiffi

3
p 00j iftþ 11j iftþ 22j ift

� �

. We note that since we are starting with

time-bin zero, the time bins will not fall out of the computational space;
therefore, the interferometric structure is not needed for the SUM gate and
a dispersion module alone can do the operation. This saves us the extra
insertion loss of the interferometer, which is an important parameter due
to the low photon pair rate on the detectors in this particular experiment.
To measure the three-dimensional nonseparability in |ψout〉, we must vary
the phases of different signal frequency bins and time bins with a pulse
shaper and phase modulator, respectively. To observe the effect of this
phase sweep with our relatively slow single-photon detectors (with
~100 ps jitter), an indistinguishable projection of all three time bins and
frequency bins should be created. In general, the time bins can be
projected on an indistinguishable state by using a cascade of inter-
ferometers, as illustrated in Fig. 2a. However, in our specific experiment, it
is simpler to use a dispersion module with opposite dispersion to that of
the module used in the SUM gate to perform the same projection. The
frequency bins are then projected on an indistinguishable state using a
phase modulator and pulse shaper to mix the frequencies (Fig. 6a)—a
technique used previously in ref. 26. We note that our measurements on
the signal photons are conditioned on heralding by idler frequency
superposition states. To measure the interference between different signal
frequency bins, the idler photons too have to be projected on an
indistinguishable frequency bin using a phase modulator and pulse shaper
(Fig. 6a). This projection guarantees that detection of an idler photon does
not give us any information on the frequency of the signal photon. Here
the phases of the idler frequency bins are held constant; only the phases of
the signal frequency and time bins are varied. This is in contrast to
experiments in ref. 26, where the phases of both signal and idler frequency
bins were varied.
In our experiment, three-dimensional interference measurements were

not possible since mixing all three frequencies together adds extra
projection loss, which we cannot afford. Therefore, we vary the phases of
different time bins and frequency bins to measure two-dimensional
interference patterns between all three time bins and frequency bins

(Fig. 6c). Using the visibilities of these interference patterns along with a
joint spectral intensity (JSI) measurement (Fig. 6b) can give us a lower
bound on the amount of nonseparability present in our system by
measuring entanglement of formation.35,36 The JSI denotes the correla-
tions between the time bins and frequency bins of a signal photon
heralded by an idler photon in its computational basis. This measurement
was done using the same experimental setup used in Fig. 6a, without the
equipment used for sweeping the phase of different signal time bins and
projection measurements. For this measurement, the idler photons were
detected after PS1, and the signal photons were detected right after the
SUM gate.
Having the JSI measurement and the two-dimensional interference

visibilities in hand, we have all the data needed to calculate the
entanglement of formation with the assumption of having only white
noise in our system, which can be expressed as:

Eof � � log2 1� B2

2

� �

(8)

where

B ¼ 2
ffiffiffiffiffiffi

Cj j
p

X

j; kð Þ 2 C

j<k

j; jh jρ k; kj ij j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j; kh jρ j; kj i k; jh jρ k; jj i
p

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(9)

Here, C is the number of indices (j, k) used in the sum. This measurement is
useful when we do not have access to all the elements of the density
matrix. 〈j, j|ρ|k, k〉 (j ≠ k) elements indicate the coherence between modes j
and k, and can be lower-bounded using the two-dimensional visibilities.
The terms 〈j, k|ρ|j, k〉 can be calculated using the elements of the JSI. Using
these values, we measure Eof ≥ 1.19 ± 0.12 ebits, which indicates greater
than two-dimensional nonseparability in our two-party system, more than
one standard deviation away from the threshold.
To generate the 32-dimensional four-party GHZ state, the signal and

idler go through the same dispersion module (−2 ns.nm−1). After

Fig. 6 Measurement of a three-dimensional maximally nonseparable time–frequency state. a The experimental setup. SPDC spontaneous
parametric down conversion, PS pulse shaper, IM intensity modulator, D and -D dispersion modules with +2 ns.nm−1 and −2 ns.nm−1,
respectively, PM phase modulator. The same time-bin and frequency-bin spacings (1.2 ns, 75 GHz) as the 16-dimensional SUM gate experiment
are used for these measurements. We note that in this experiment, the IM was placed only on the signal photons’ route to avoid its insertion
loss on the idler photons. b Joint spectral intensity of the three-dimensional nonseparable state. The accidentals were subtracted in this
measurement, with a coincidence to accidentals ratio of about 30. c Two-dimensional interference patterns showing the coherence between
all three time–frequency modes of the state. The frequency-bin and time-bin phases are varied using PS1 and PM1, respectively. Both phases
are swept together from 0 to π, for a total phase sweep from 0 to 2π. The data are shown with accidentals subtracted and coincidence to
accidentals ratio of about 1. Since projection of frequency bins 0 and 2 on an indistinguishable frequency bin undergoes more projection loss,
the coincidences between modes 0 and 2 were measured in 10min
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dispersion, the signal frequency bins farther away from the center of the
spectrum are delayed more, but the idler frequency bins are delayed less
as we move farther away from the center. In order to write the GHZ state in

the form ψj iout¼ 1
ffiffiffiffi

32
p

P31
m¼0 m;m;m;mj ifsts fiti , we label the signal time bins

after dispersion 0 to 31 starting from earlier time bins (time bin 0 the
earliest, time bin 31 the latest), while on the idlers, we label the time bins
such that the earliest time bin is 31 and the latest time bin is 0. Another
choice would be to send signal and idler through separate modules with
equal but opposite dispersion, in which case we would use identical time
labeling. To measure the state illustrated in Fig. 5, we individually
measured coincidences for the 32 different settings of both signal and idler
frequency bins (32 × 32 measurements). For each of these measurements,
we used our event timer to assign signal and idler time bins for each
coincidence, which results in a 32 × 32 submatrix for each signal-idler
frequency setting. Therefore, we have 324 measurements in total. Two of
the 32 × 32 time-bin submatrices are shown in Fig. 5b, c.
We use bulk switches, dispersion modules, pulse shapers, and phase

modulators in out experiments, which have high insertion loss (switch:
3 dB, dispersion module: 3 dB, pulse shaper: 5 dB, phase modulator: 3 dB).
Therefore, we use very bright entangled photons at the input in order to
have reasonable coincidence counts on our detectors in our acquisition
time. Using bright biphotons gives rise to multi-pair generation which
leads to the relatively high accidental rate here.
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