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SUMMARY

Max-stable processes are increasingly widely used for modelling complex extreme events, but
existing fitting methods are computationally demanding, limiting applications to a few dozen
variables. r-Pareto processes are mathematically simpler and have the potential advantage of
incorporating all relevant extreme events, by generalizing the notion of a univariate exceedance.
In this paper we investigate the use of proper scoring rules for high-dimensional peaks-over-
threshold inference, focusing on extreme-value processes associated with log-Gaussian random
functions, and compare gradient score estimators with the spectral and censored likelihood esti-
mators for regularly varying distributions with normalized marginals, using data with several
hundred locations. When simulating from the true model, the spectral estimator performs best,
closely followed by the gradient score estimator, but censored likelihood estimation performs
better with simulations from the domain of attraction, though it is outperformed by the gradient
score in cases of weak extremal dependence. We illustrate the potential and flexibility of our
ideas by modelling extreme rainfall on a grid with 3600 locations, based on exceedances for
locally intense and for spatially accumulated rainfall, and discuss diagnostics of model fit. The
differences between the two fitted models highlight how the definition of rare events affects the
estimated dependence structure.

Some key words: Functional regular variation; Gradient score; Pareto process; Peaks-over-threshold analysis; Proper
scoring rule; Statistics of extremes.

1. INTRODUCTION

Recent contributions to extreme value theory describe models capable of handling spatiotem-
poral phenomena (e.g., Kabluchko et al., 2009) and provide a flexible framework for modelling
rare events, but their complexity makes inference difficult, if not intractable, for high-dimensional
data. For instance, the number of terms in the block maximum likelihood for a Brown–Resnick
process grows with the dimension D like the Bell numbers (Huser & Davison, 2013), so compu-
tationally cheaper methods such as composite likelihood (Padoan et al., 2010) or the inclusion
of partition information (Stephenson & Tawn, 2005; Thibaud et al., 2016) have been advocated.
The first is slow and the second, though more efficient, is prone to bias if the partition is incorrect
(Wadsworth, 2015).

An attractive alternative to the use of block maxima is peaks-over-threshold analysis, which
includes more information by focusing on single extreme events. In the multivariate case, specific
definitions of exceedances have been used (e.g., Rootzén & Tajvidi, 2006; Ferreira & de Haan,
2014; Engelke et al., 2015), which can be unified within the framework of r-Pareto processes
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(Dombry & Ribatet, 2015). For this approach, a full likelihood is often available in closed form,
thus increasing the maximum number of variables that can be jointly modelled from a handful to
a few dozen, but biased estimation may occur if nonextreme components are included. Censored
likelihood, proposed in this context by Wadsworth & Tawn (2014), is more robust with regard to
nonextreme observations, but it involves multivariate normal distribution functions, which can
be computationally expensive. Nevertheless, inference is feasible for D ≈ 30.

Nonparametric alternatives to full likelihood inference developed using the tail dependence
coefficient (Davis & Mikosch, 2009; Davis et al., 2013) or the stable tail dependence function
(Einmahl et al., 2016) rely on pairwise estimators and allow peaks-over-threshold inference for
D ≈ 100, but they are potentially inefficient and may be limited by combinatorial considerations.

Applications of max-stable processes (e.g., Asadi et al., 2015) or Pareto processes (Thibaud
& Opitz, 2015) have focused on small regions and have used at most a few dozen locations with
particular types of exceedance, but exploitation of much larger gridded datasets, along with more
complex definitions of risk, is needed for a better understanding of extreme events and to reduce
model uncertainties. The goals of this paper are to highlight the advantages of functional peaks-
over-threshold modelling using r-Pareto processes, to show the feasibility of high-dimensional
inference for the Brown–Resnick model with hundreds of locations, and to compare the robustness
of different procedures with regard to finite thresholds. We develop an estimation method based
on the gradient score (Hyvärinen, 2005) for a general notion of exceedances, for which the
computation of multivariate normal probabilities is not needed and computational complexity is
driven by matrix inversion, as with classical Gaussian likelihood inference. This method focuses
on single extreme events and a general notion of exceedance, modelled by Pareto processes,
instead of the max-stable approach.

2. MODELLING EXCEEDANCES OVER A HIGH THRESHOLD

2·1. Univariate model

The statistical analysis of extremes was first developed for block maxima (Gumbel, 1958,
§ 5.1). This approach is widely used and can give good results, but the reduction of a complex
dataset to maxima can lead to a significant loss of information (Madsen et al., 1997), so the
modelling of exceedances over a threshold is often preferred (Davison & Smith, 1990). Let X be
a random variable for which there exist sequences of constants an > 0 and bn such that

n pr(X > bn + anx) → − log G(x) (1)

as n → ∞, where G is a nondegenerate distribution function. Then X is said to belong to the
max-domain of attraction of G and, for a large enough threshold u < inf {x : F(x) = 1}, we can
use the approximation

pr(X − u > x | X > u) ≈ H(ξ ,σ)(x) =
{

(1 + ξx/σ)
−1/ξ
+ , ξ |= 0,

exp(−x/σ), ξ = 0,
(2)

where σ = σ(u) > 0 and a+ = max(a, 0). If the shape parameter ξ is negative, then x must
lie in the interval [0, −σ/ξ ], whereas x can take any positive value with positive or zero ξ . The
implication is that the distribution over a high threshold u of any random variable X satisfying
the conditions for (2) can be approximated by

G(ξ ,σ ,u)(x) = 1 − ζuH(ξ ,σ)(x − u), x > u,
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where ζu is the probability that X exceeds the threshold u. In its simplest form, this model for
univariate exceedances applies to independent and identically distributed variables, but it has also
been used for time series, nonstationary and spatial data.

The modelling of exceedances can be generalized to a multivariate setting (Rootzén & Tajvidi,
2006) and to continuous processes (Ferreira & de Haan, 2014; Dombry & Ribatet, 2015) within
the functional regular variation framework.

2·2. Functional regular variation

Let S be a compact metric space, such as [0, 1]2 for spatial applications. We write F+ =
C{S, [0, ∞)} for the closed subset of the Banach space of continuous functions x : S → R

endowed with the uniform norm ‖x‖ = sups∈S |x(s)|, write F for F+ with the singleton {0}
excluded, and write B(�) for the Borel σ -algebra associated with a metric space �. Let MF

denote the class of Borel measures on B(F ); we say that a set A ∈ B(F ) is bounded away from
{0} if d(A, {0}) = inf x∈A ‖x‖ > 0. A sequence of measures {�n} ⊂ MF is said to converge to a
limit � ∈ MF (Hult & Lindskog, 2005) if limn→∞ �n(A) = �(A) for all A ∈ B(F ) bounded
away from {0} with �(∂A) = 0, where ∂A denotes the boundary of A. For equivalent definitions
of this so-called ŵ-convergence, see Lindskog et al. (2014, Theorem 2.1).

Regular variation provides a flexible mathematical setting in which to characterize the tail
behaviour of random processes in terms of ŵ-convergence of measures. A stochastic process X
with sample paths in F is regularly varying (Hult & Lindskog, 2005) if there exists a sequence
of positive real numbers a1, a2, . . . with limn→∞ an = ∞ and a measure � ∈ MF such that

n pr(a−1
n X ∈ ·) → �(·) (3)

as n → ∞; then we write X ∈ RV(F , an, �); note the link to (1). For a normalized process X ∗,
obtained for instance by standardizing the margins of X to unit Fréchet (Coles & Tawn, 1991, § 5)
or unit Pareto (Klüppelberg & Resnick, 2008), regular variation is equivalent to the convergence
of the renormalized pointwise maximum n−1 maxn

i=1 X ∗
i of independent replicates of X ∗ to a

nondegenerate process Z∗ with unit Fréchet margins and exponent measure �∗ (de Haan &
Lin, 2001). The process Z∗ is called a simple max-stable process, and X ∗ is said to lie in the
max-domain of attraction of Z∗.

Regular variation also affects the properties of exceedances over high thresholds. For any
nonnegative measurable functional r : F → [0, ∞) and stochastic process {X (s)}s∈S , an
r-exceedance is defined to be an event {r(X ) > un} where the threshold un is such that
pr{r(X ) > un} → 0 as n → ∞. We further require that r be homogeneous, i.e., there exists
α > 0 such that r(ax) = aαr(x) for a > 0 and x ∈ F . As r(·) could be replaced by r(·)1/α

without loss of generality, in what follows we assume that α = 1. Dombry & Ribatet (2015)
called r a cost functional, and in his 2013 Université de Montpellier II PhD thesis Thomas Opitz
called it a radial aggregation function; but we prefer the term risk functional because r determines
the type of extreme event whose risk is to be studied.

A natural formulation of subsequent results on r-exceedances uses a pseudo-polar decompo-
sition. For a norm ‖ · ‖ang on F , called the angular norm, and a risk functional r, a pseudo-polar
transformation Tr is a map such that

Tr : F → [0, ∞) × Sang, Tr(x) =
{

v = r(x), w = x

‖x‖ang

}
,

where Sang is the unit sphere {x ∈ F : ‖x‖ang = 1}. If r is continuous and T is restricted to
{x ∈ F : r(x) > 0}, then T is a homeomorphism with inverse T−1

r (v, w) = v × w/r(w).
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Theorem 2.1 in Lindskog et al. (2014) provides an equivalent pseudo-polar formulation of
(3). For any X ∈ RV(F , an, �) and any uniformly continuous risk functional r not vanishing
�-almost everywhere, there exist β > 0 and a measure σr on B(Sang) such that

n pr{T−1
r (a−1

n v, w) ∈ ·} → � ◦ T−1
r (·) = �β × σr(·) (4)

as n → ∞, where �β[v, ∞) = v−β and σr(·) = �{x ∈ F : r(x) � 1, x/‖x‖ang ∈ (·)} is called
the angular measure. The converse holds if {x ∈ F : r(x) = 0} = ∅ (Lindskog et al., 2014,
Corollary 4.4).

The functional r(x) = sups∈S x(s), used by Rootzén & Tajvidi (2006) in a multivariate setting
and by Ferreira & de Haan (2014) for continuous processes, implies that realizations of X (s)
exceeding the threshold at any location s ∈ S will be labelled extreme, but this functional can
only be used in applications where X (s) is observed throughout S. Therefore it may be preferable
to use functions such as maxs∈S ′ X (s) or maxs∈S ′ X (s)/u(s), where S ′ ⊂ S is a finite set of
gauged sites. Other risk functionals include

∫
S X (s) ds for the study of areal rainfall (Coles &

Tawn, 1996), mins∈S ′ X (s)/u(s), and X (s0) for risks impacting a specific location s0. Although
the choice of risk functional allows one to focus on particular types of extreme event, the choice
of the angular norm ‖ · ‖ang has no effect and is usually made for convenience.

Finally, for a common angular norm ‖ · ‖ang, the angular measures of two risk functionals r1
and r2 that are strictly positive �-almost everywhere are linked by the expression

σr1(dw) =
{

r1(w)

r2(w)

}β

σr2(dw), dw ∈ B(Sang). (5)

Equation (5) is useful for simulation and when we are interested in r2-exceedances but inference
has been performed based on r1.All the previous definitions and results hold for finite dimensions,
i.e., for D-dimensional random vectors, upon replacing ŵ-convergence by vague convergence
(Resnick, 2007, § 3.3.5) on M

R
D+\{0}, the class of Borel measures on B(RD+ \ {0}) endowed with

the ‖ · ‖ norm; see the PhD thesis of Thomas Opitz mentioned above.

2·3. r-Pareto processes

In this section, r denotes a functional that is nonnegative and homogeneous with α = 1. The
r-Pareto processes (Dombry & Ribatet, 2015) are important for modelling exceedances and may
be constructed as

P = U
Q

r(Q)
,

where U is a univariate Pareto random variable with pr(U > v) = 1/vβ (v � 1) and Q is a
random process with sample paths in S r

ang = {x ∈ F : r(x) � 1, ‖x‖ang = 1} and probability
measure σang. The process P is then called an r-Pareto process with tail index β > 0 and angular
measure σang; to distinguish different Pareto processes, below we use the notation Pr

β,σr
for P.

An important property of r-Pareto processes is threshold invariance: for all A ∈ B({x ∈ F :
r(x) � 1}) and all u � 1 such that pr{r(P) � u} > 0,

pr{u−1P ∈ A | r(P) � u} = pr(P ∈ A).

Furthermore, for X ∈ RV(F , an, �) with index β > 0 and for a risk functional r that is continuous
at the origin and does not vanish �-almost everywhere, the distribution of the r-exceedances
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converges weakly to that of an r-Pareto process, i.e.,

pr
{
u−1X ∈ · | r(X ) � u

} → pr
(
Pr

β,σr
∈ ·)

as n → ∞, with tail index β and probability measure σr as defined in (4) (Dombry & Ribatet,
2015, Theorem 2). When working with a normalized process X ∗, the exponent measure �∗ of
the limiting max-stable process Z∗ and the measure �1 × σr of the Pareto process are the same
up to a coordinate transform, as suggested by (4).

For two different risk functionals r1 and r2 and angular measures σr1 and σr2 for which there
exists � ∈ MF such that

� ◦ T−1
r1

(·) = � ◦ T−1
r2

(·),

the associated Pareto processes Pr1
β,σr1

and Pr2
β,σr2

are defined on different subsets of F , but, as
suggested by (5), if there exists a threshold umin such that

{x ∈ F : r1(x) � umin} ⊂ {x ∈ F : r2(x) � 1},
then

pr

{
Pr1

β,σr1

u
∈ ·

∣∣∣∣ r2
(
Pr1

β,σr1

)
� u

}
= pr

(
Pr2

β,σr2
∈ ·), u � umin. (6)

Simulation of r-Pareto processes is feasible only for a few risk functionals, such as r1(x) = ‖x‖1,
but (6) can be used to obtain samples of one process from those of another: for independent
replicates x1, . . . , xN from Pr1

β,σr1
, {yn = xn/umin : r2(yn) � 1} is a sample from Pr2

β,σr2
.

Finally, let σr be a probability measure on S r
ang, and define the process

M (s) = max
n∈N

U n Qn(s)

r(Qn)
, s ∈ S, (7)

where {U n : n ∈ N} is a Poisson process on (0, ∞) with intensity u−2 du and Q1, Q2, . . . are repli-
cates of a process Q with probability measure σr . Then M is a max-stable process with exponent
measure �θ {Amax(x)} = �1 × σr{Amax(x)}, where Amax(x) = {y ∈ F : sups∈S y(s)/x(s) � 1}.
Thus equation (7) connects an r-Pareto process and its max-stable counterpart.

2·4. Extreme value processes associated with log-Gaussian random functions

We focus on a class of r-Pareto processes based on log-Gaussian stochastic processes, whose
max-stable counterparts are Brown–Resnick processes. This class is particularly useful, not only
for its flexibility but also because it is based on Gaussian models widely used in applications.
Chiles & Delfiner (1999, pp. 84–108) review these classical models.

Let Z be a zero-mean Gaussian process with stationary increments, i.e., the semivariogram
γ (s, s′) = E[{Z(s) − Z(s′)}2]/2 (s, s′ ∈ S) depends only on the difference s − s′ (Chiles &
Delfiner, 1999, p. 30), and let σ 2(s) = var{Z(s)}. If Z1, Z2, . . . are independent replicates of Z
and {U n : n ∈ N} is a Poisson process on (0, ∞) with intensity u−2 du, independent of the Zn,
then

M (s) = max
n∈N

U n exp{Zn(s) − σ 2(s)/2}, s ∈ S,
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580 R. DE FONDEVILLE AND A. C. DAVISON

is a stationary Brown–Resnick process with standard Fréchet margins, whose distribution depends
only on γ (Kabluchko et al., 2009); such processes are max-stable. Let γθ denote a parameterized
semivariogram whose parameter θ lies in a compact set �, and let σ 2

θ denote the corresponding
variance function.

Let s1, . . . , sD be locations of interest in S. In the rest of the paper, x will denote an element of
R

D+ with components xd ≡ x(sd) (d = 1, . . . , D). The finite-dimensional exponent measure of a
simple Brown–Resnick process with D variables is

�θ {Amax(x)} = E

[
max

d=1,...,D

{
Z(sd) − σ 2

θ (sd)/2

xd

}]
, (8)

where �θ(·) is the finite-dimensional projection of the measure defined in (3). Then we can write
(Huser & Davison, 2013)

�θ {Amax(x)} =
D∑

d=1

1

xd
{ηd(x), Rd}, (9)

where ηd is the (D − 1)-dimensional vector with ith component ηd,i = (γd,i/2)1/2 +
log(xi/xd)/(2γd,i)

1/2, γd,i denotes γ (sd , si) (sd , si ∈ S), and (·, Rd) is the multivariate normal
distribution function with mean zero and covariance matrix Rd having (i, j) entry (γd,i + γd,j −
γi,j)/{2(γd,iγd,j)

1/2}, where i, j ∈ {1, . . . , d − 1, d + 1, . . . , D}.
The r-Pareto processes associated with log-Gaussian random functions are closely related to

the intensity function λθ corresponding to the measure �θ , which can be found by taking partial
derivatives of �θ(x) with respect to x1, . . . , xD, yielding (Engelke et al., 2015)

λθ(x) = |�θ |−1/2

x2
1x2 · · · xD(2π)(D−1)/2

exp
(

−1

2
x̃T�−1

θ x̃

)
, x ∈ R

D+, (10)

where x̃ is the (D − 1)-dimensional vector with components {log(xi/x1) + γi,1 : i = 2, . . . , D}
and �θ is the (D − 1) × (D − 1) matrix with elements {γi,1 + γj,1 − γi,j}i,j∈{2,...,D}. Wadsworth
& Tawn (2014) derived an alternative symmetric expression for (10) that will be useful in § 3·3,
but (10) is more readily interpreted. Similar expressions exist for extremal-t processes (Thibaud
& Opitz, 2015).

3. INFERENCE FOR r-PARETO PROCESSES

3·1. Generalities

In this section, x1, . . . , xN are independent replicates of a D-dimensional r-Pareto random
vector P with tail index β = 1, and y1, . . . , yN are independent replicates of a regularly varying
D-dimensional random vector Y ∗ with normalized margins.

As in the univariate setting, statistical inference based on block maxima and the max-stable
framework discards information by focusing for maxima instead of single events. Models for max-
ima are difficult to fit not only due to the small number of replicates, but also because the likelihood
is usually too complex to compute in high dimensions (Castruccio et al., 2016). For the Brown–
Resnick process, the full likelihood cannot be computed for D greater than around 10 (Huser
& Davison, 2013), except in special cases. When the occurrence times of maxima are available,
inference is usually possible up to D ≈ 30 (Stephenson & Tawn, 2005; Thibaud et al., 2016).
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High-dimensional peaks-over-threshold inference 581

A useful alternative is composite likelihood inference (Padoan et al., 2010; Varin et al., 2011)
based on subsets of observations of sizes smaller than D, which trades off a gain in computational
efficiency against a loss of statistical efficiency. The number of possible subsets increases very
rapidly with D, and their selection can be troublesome, though some statistical efficiency can
be retrieved by taking higher-dimensional subsets. Castruccio et al. (2016) found higher-order
composite likelihoods to be more robust than the spectral estimator, but in realistic cases these
methods are limited to fairly small dimensions.

Estimation based on threshold exceedances and the Pareto process has the advantages that
individual events are used, the likelihood function is usually simpler, and the choice of risk
functional can be a means of tailoring the definition of an exceedance to the application. Equation
(4) suggests that the choice of risk functional should not affect the estimates, but this is not entirely
true, because the threshold cannot be taken arbitrarily high and the events selected depend on
the risk functional, the choice of which enables the detection of mixtures in the extremes and
can improve subasymptotic behaviour by fitting the model using only those observations closest
to the chosen type of extreme event. For example, we might expect the extremal dependence of
intense local rainfall events to differ from that of heavy large-scale precipitation, even in the same
geographical region.

The probability density function of a Pareto process for r-exceedances over the threshold
vector u ∈ R

D+ can be found by rescaling the intensity function λθ by �θ {Ar(u)}, yielding

λr
θ ,u(x) = λθ(x)

�θ {Ar(u)} , x ∈ Ar(u), (11)

where

�θ {Ar(u)} =
∫

Ar(u)

λθ (x) dx (12)

and Ar(u) is the exceedance region {x ∈ R
D+ : r(x/u) � 1}. Equation (11) yields the loglikelihood

�(θ ; x1, . . . , xN ) =
N∑

n=1

1

{
r

(
xn

u

)
� 1

}
log
[

λθ(xn)

�θ {Ar(u)}
]

, (13)

where division of vectors is componentwise and 1 denotes the indicator function. Maximization
of � gives an estimator θ̂r(x1, . . . , xN ) that is consistent, asymptotically normal and efficient under
mild conditions.

Numerical evaluation of the D-dimensional integral �θ {Ar(u)} is generally intractable for
large D, though it simplifies for certain risk functionals; an example is r(x) = maxd xd , for which
the integral is a sum of multivariate probability functions; see (9). Similarly, �θ {Ar(u)} does
not depend upon θ when r(x) = D−1∑

d xd (Coles & Tawn, 1991); we call the corresponding
version of (13) the spectral loglikelihood and its maximizer the spectral estimator.

In practice observations cannot be assumed to be exactly Pareto distributed; it is usually more
plausible that they lie in the domain of attraction of some extremal process. As a consequence
of Theorem 3.1 of de Haan & Resnick (1993), asymptotic properties of θ̂r(x1, . . . , xN ) hold for
θ̂r(y1, . . . , yN ) as N → ∞ and u → ∞ with the number of exceedances Nu = o(N ) → ∞; see
§ 3·3. However, the threshold u is finite and so low components of yn ∈ Ar(u) may lead to biased
estimation. As it is due to model misspecification, this bias is unavoidable; moreover, it grows
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582 R. DE FONDEVILLE AND A. C. DAVISON

with D, so these methods can perform poorly, especially if the extremal dependence is weak,
because it is then more likely that at least one component of yn will be small (Engelke et al., 2015;
Thibaud & Opitz, 2015; Huser et al., 2016). The bias can be reduced by a censored likelihood
proposed in the multivariate setting by Joe et al. (1992) and used for the Brown–Resnick model
by Wadsworth & Tawn (2014) and for the extremal-t process by Thibaud & Opitz (2015). This
method works well in practice but typically requires the computation of multivariate normal and
t probabilities, which can be challenging in realistic cases if standard code is used. Some modest
changes to the code to perform quasi-Monte Carlo maximum likelihood estimation with hundreds
of locations are described in § 3·2.

For spatiotemporal applications, inference for r-Pareto processes must be performed using
data from thousands of locations, and in § 3·3 we discuss an approach that applies to a wide range
of risk functionals and is computationally fast, statistically efficient and robust with regard to
finite thresholds.

3·2. Efficient censored likelihood inference

Censored likelihood estimation for extreme value processes associated with log-Gaussian ran-
dom functions was developed byWadsworth & Tawn (2014) and is based on (13) with maxd xd/ud
as the risk functional and where any component lying below the threshold vector (u1, . . . , uD) > 0
is treated as censored. The corresponding estimator has a higher variance but a lower bias than
the spectral estimator. The censored likelihood density function for the Brown–Resnick process
is (Asadi et al., 2015)

λcens
θ ,u (x) = 1

�θ {Amax(u)}
1

x2
1x2 · · · xk

φk−1(x̃2:k ; �2:k)D−k{μcens(x1:k), �cens(x1:k)},

x ∈ Amax(u),

where k components exceed their thresholds, x̃2:k and �2:k are subsets of the variables x̃ and
�θ in equation (10), and φk−1 and D−k are the multivariate Gaussian density and distribution
functions with mean zero. The argument and covariance matrix for D−k are

μcens(x1:k) = {log(uj/x1) + γj,1}j=k+1,...,D − �(k+1):D,2:k�
−1
2:k ,2:k x̃2:k ,

�cens(x1:k) = �(k+1):D,(k+1):D − �(k+1):D,2:k�
−1
2:k ,2:k�2:k ,(k+1):D.

Wadsworth & Tawn (2014) derived similar expressions. The estimator

θ̂cens(y
1, . . . , yN ) = arg max

θ∈�

∑
n=1,...,N

1

{
max

d

(
yn

d

ud

)
� 1

}
log λcens

θ ,u (yn) (14)

is also consistent and asymptotically normal as u → ∞, N → ∞ and Nu → ∞ with Nu = o(N ).
For finite thresholds, θ̂cens has been found to be more robust with respect to the presence of low
components than the spectral estimator (Engelke et al., 2015; Huser et al., 2016), but it is awkward
because of the potentially large number of multivariate normal integrals involved, thus far limiting
its application to D � 30 (Wadsworth & Tawn, 2014; Thibaud et al., 2016).

When maximizing the right-hand side of (14), the normalizing constant �θ {Amax(u)} described
in (8) and the multivariate normal distribution functions require the computation of multi-
dimensional integrals. Theorem 7 of Geyer (1994) suggests that we approximate θ̂cens by
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maximizing

�
p
cens(θ)

=
N∑

n=1

1

{
max

(
xn

u

)
� 1
}[

log
{

φk−1(x̃2:k ; �2:k)

(xn
1)

2xn
2 · · · xn

k

}
+ log


p
D−k{μcens(xn

1:k), �cens(xn
1:k)}

�
p
θ {Amax(u)}

]
,

where 
p
D−k and �

p
θ are Monte Carlo estimates of the corresponding integrals based on p

simulated samples, yielding a maximizer θ̂
p
cens that converges almost surely to θ̂cens as p → ∞.

Classical Monte Carlo estimation for multivariate integrals yields a probabilistic error bound
that is O(ωp−1/2), where ω = ω(φ) is the square root of the variance of the integrand φ. Quasi-
Monte Carlo methods can achieve higher rates of convergence and thus improve computational
efficiency while preserving the consistency of θ̂

p
cens. For estimation of multivariate normal distri-

bution functions, Genz & Bretz (2009, § 4.2.2) advocate the use of randomly shifted deterministic
lattice rules, which can achieve a convergence rate of order O(p−2+ε) for some ε > 0. Lattice
rules rely on regular sampling of the hypercube [0, 1]D, taking

zq = ∣∣2 × frac(qv′ + �) − 1
∣∣ (q = 1, . . . , p),

where frac(z) denotes the componentwise fractional part of z ∈ R
D, p is a prime number of

samples in the hypercube [0, 1]D, v′ ∈ {1, . . . , p}D is a carefully chosen generating vector, and
� ∈ [0, 1]D is a uniform random shift. Fast construction rules have been developed to find an
optimal v′ for given numbers of dimensions D and samples p (Nuyens & Cools, 2004). The
existence of generating vectors achieving a nearly optimal convergence rate, with integration
error independent of the dimension, has been proved, and methods for their construction are
available (Dick & Pillichshammer, 2010).

Our implementation of this approach applied to (14) and coupled with parallel computing is
tractable for D of the order of a few hundred; see the Supplementary Material for details. Our
algorithm can be extended to the extremal-t model by writing multivariate t probabilities in terms
of the multivariate normal distribution function; see Genz & Bretz (2009) for more details.

3·3. Score matching

Classical likelihood inference requires either evaluation or simplification of the scaling con-
stant �θ {Ar(u)}, whose complexity increases with the number of dimensions. Hence we seek
alternatives that do not require its computation.

Let A be a sample space such as R
D+, P a convex class of probability measures on A , and X

a random variable with distribution F ∈ A . A proper scoring rule (Gneiting & Raftery, 2007) is
a functional δ : P × A → R such that

�δ(G, F) = EX {δ(G, X )} − EX {δ(F , X )} � 0, G ∈ P.

The scoring rule is said to be strictly proper if �δ(G, F) = 0 if and only if G = F , and under
this hypothesis �δ defines a divergence measure on P (Thorarinsdottir et al., 2013).

Let δ denote a strictly proper scoring rule, let {Fθ : θ ∈ �} ⊂ A be a parametric family
of distributions, and let X 1, . . . , X N be independent observations from Fθ0 . The first term of the
divergence �δ(Fθ , Fθ0) can be estimated by

δ(θ) = 1

N

N∑
i=1

δ(Fθ , X i),
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minimization of which defines an unbiased and asymptotically normal estimator of θ0 under suit-
able regularity conditions (Dawid et al., 2016, Theorem 4.1). Consequently, for a risk functional
r, the estimator

θ̂ r
δ,u(X

1, . . . , X N ) = arg min
θ∈�

N∑
n=1

1

{
r

(
X n

u

)
> 1

}
δ

(
λr

θ ,u,
X n

u

)

is also consistent and asymptotically normal. Owing to de Haan & Resnick (1993, Propositions 3.1
and 3.2), these asymptotic properties can be generalized to samples from a regularly varying
random vector with normalized marginals; see the Supplementary Material for the proof.

PROPOSITION 1. Let Y 1, . . . , Y N be independent replicates of a regularly varying random vector
Y ∗ with normalized marginals and limiting measure �θ0 , and let δ be a strictly proper scoring
rule satisfying the conditions of Theorem 4.1 of Dawid et al. (2016). If N → ∞ and Nu → ∞ in
such a way that Nu/N → 0 as N → ∞, then

Nu
1/2{θ̂ r

δ,N/Nu
(Y 1, . . . , Y N ) − θ0

} → N {
0, K−1J (K−1)T

}
in distribution, where

J = E

{
∂δ(θ)

∂θ

∂δ(θ)

∂θT

} ∣∣∣∣
θ=θ0

, K = E

{
∂2δ(θ)

∂θ∂θT

} ∣∣∣∣
θ=θ0

.

Estimates of the Godambe information matrix KJ −1K can be used for inference, and the
scoring rule ratio statistic

W δ = 2

{
∂δ(θ0)

∂θ
− ∂δ(θ̂ r

δ,N/Nu
)

∂θ

}
,

properly calibrated, can be used to compare nested models (Dawid et al., 2016, § 4.1).
The loglikelihood is the proper scoring rule associated with the Kullback–Leibler divergence.

Although efficient, it is not robust, which is problematic for fitting asymptotic models such as
Pareto processes, and a closed form for the normalizing coefficient �θ {Ar(u)} defined in (12)
is available only in special cases. The gradient scoring rule (Hyvärinen, 2005) uses only the
derivative ∇x log λr

θ ,u and thus does not require computation of �θ {Ar(u)}. Hyvärinen (2007)
adapted this scoring rule for strictly positive variables, and we propose to extend it to any domain
of the form Ar(u) = {x ∈ R

D+ : r(x/u) � 1}, using the divergence measure

�grad(θ , θ0) =
∫

Ar(u)

∥∥∇x log λθ(x) ⊗ w(x) − ∇x log λθ0(x) ⊗ w(x)
∥∥2

2 λθ0(x) dx, (15)

where λθ is differentiable for all θ ∈ � on Ar(u) \ ∂Ar(u), with ∂A denoting the boundary of
A, ∇x is the gradient operator, w : Ar(u) → R

D+ is a positive weight function, and ⊗ denotes
the Hadamard product. If w is differentiable on Ar(u) and satisfies certain boundary conditions
discussed in the Supplementary Material, then the scoring rule

δw(λθ , x) =
D∑

d=1

(
2wd(x)

∂wd(x)

∂xd

∂ log λθ(x)

∂xd
+ wd(x)2

[
∂2 log λθ(x)

∂x2
d

+ 1

2

{
∂ log λθ(x)

∂xd

}2
])
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for x ∈ Ar(u) is strictly proper. The gradient score for a log-Gaussian Pareto process satisfies
the regularity conditions of Theorem 4.1 in Dawid et al. (2016), so the resulting estimator θ̂w is
asymptotically normal.

For the Brown–Resnick model, two possible weight functions are

w1
d(x) = xd

[
1 − exp{1 − r(x/u)}] (d = 1, . . . , D),

w2
d(x) = [

1 − exp{−3(xd − ud)/ud}][1 − exp{1 − r(x/u)}] (d = 1, . . . , D),
(16)

where r is a risk functional differentiable on R
D+ and the threshold vector u lies in R

D+. The
weights w1 are derived from Hyvärinen (2007), whereas w2 is designed to approximate the effect
of censoring by downweighting components of xn near u. These weighting functions are well
suited to extremes: a vector x ∈ Ar(u) is penalized if r(x/u) is close to 1, and low components
of x induce low weights for the associated partial derivatives. For these reasons, inference using
δw with the weighting functions in (16) should be more robust with respect to low components
than is the spectral estimator. The estimator θ̂w is much cheaper to compute than θ̂cens and can
be obtained for any risk functional differentiable on R

D+. Expressions for the gradient score for
the Brown–Resnick model can be found in the Supplementary Material, and the performances
of these inference procedures are compared in § 4.

The gradient score can be applied to any extremal model with a multivariate density function
whose logarithm is twice differentiable away from the boundaries of its support, and if discontinu-
ities are present on this support, then a carefully chosen weighting function w ensures the existence
and the consistency of the score. Indeed, similar expressions can be derived for the extremal-t
model, though choices for the weight functions are more restricted: w2 satisfies the boundary
conditions, but w1 does not ensure that the score is proper.

4. SIMULATION STUDY

4·1. Exact simulation

The inference procedures and simulation algorithms described herein are contained in an R
package, mvPot (de Fondeville, 2017; R Development Core Team, 2018).

We first illustrate the feasibility of high-dimensional inference by simulating r-Pareto processes
associated with log-normal random functions at D locations in S = [0, 100]2. Details of the
algorithm can be found in the Supplementary Material.

We use an isotropic power semivariogram, γ (s, s′) = (‖s − s′‖/τ)κ/2, shape parameters
κ = 0·5, 1, 1·3, 1·8, and scale parameter τ = 2·5, chosen such that the dependence models
defined on S cover strong to weak extremal dependence. For this simulation, the dependence
model with κ = 1·8 requires us to work on the log scale to avoid rounding errors. For each
simulation, N = 10 000 r-Pareto processes, with r(x) = D−1∑

d xd , were simulated on regular
10 × 10, 20 × 10 and 20 × 15 grids. The grid size was restricted to at most 300 locations for
ease of comparison with the second simulation study. For the gradient score, we use r(x) =
D−1∑

d x(sd). The components of the threshold vector u are set equal to the empirical 0·99
quantile of r(x1), . . . , r(xN ), giving Nu = 100. For censored likelihood inference, we use the
approach described in the Supplementary Material with p̄ = 10 and threshold u equal to the
empirical 0·99 quantile of maxd x1

d , . . . , maxd xN
d , so that the conditions for (6) are satisfied. One

hundred replicates are used in each case.
Table 1 displays the relative root mean squared error for estimation based on the censored

loglikelihood and the gradient score with weights w1 and w2, compared to that based on the
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586 R. DE FONDEVILLE AND A. C. DAVISON

Table 1. Relative root mean squared error (%) for comparison of esti-
mates based on censored loglikelihood, left, and the gradient score
with weights w1, middle, and w2, right, relative to spectral estimates,
for the parameters κ and τ = 2·5. Efficiency of 100% would corre-
spond to the spectral estimator, and smaller values to less efficient
estimators. Inference is performed using the top 1% of 10 000 Pareto
processes with semivariogram γ (s, s′) = (‖s − s′‖/τ)κ/2 simulated

on regular 10 × 10, 20 × 10 and 20 × 15 grids
Shape κ

Grid size κ = 0·5 κ = 1 κ = 1·3 κ = 1·8
10 × 10 53/46/44 10/32/33 4·7/39/39 1·0/51/52
20 × 10 67/51/52 10/25/24 5·4/34/35 1·0/54/55
20 × 15 67/47/47 11/30/31 4·1/25/25 1·4/49/49

Scale τ

Grid size κ = 0·5 κ = 1 κ = 1·3 κ = 1·8
10 × 10 52/58/57 19/60/59 10/63/66 1·7/53/53
20 × 10 41/80/79 17/70/70 9·2/71/70 3·3/52/51
20 × 15 38/68/69 17/82/81 7·1/62/61 3·9/51/52

spectral estimator. For all the methods and parameter combinations, bias is negligible and per-
formance is driven mainly by the variance. As expected, efficiency is lower than 100% because
when simulating and fitting from the true model, the spectral estimator performs best. The gradi-
ent score and censored likelihood estimators deteriorate as the extremal dependence weakens and
the number of low components in the simulated vectors increases. The gradient score outperforms
the censored likelihood except when censoring is low, i.e., when κ = 0·5. The performance of
censored likelihood estimation deteriorates as D increases, suggesting that the gradient score
will be preferable in high dimensions. These results are not realistic, however, since the data
are simulated from the model fitted, whereas in practice the model is used as a high-threshold
approximation to the data distribution.

The optimization of the likelihood based on the spectral density and gradient score functions
takes only a dozen seconds even for the finest grid. The same random starting point is used
for each optimization to ensure fair comparison. Estimation using the censored approach takes
several minutes and slows greatly as the dimension increases; see the Supplementary Material.

4·2. Domain of attraction

As the asymptotic regime is never reached in practice, we now compare the robustness of
the different inference procedures for finite thresholds. The Brown–Resnick process belongs
to its own max-domain of attraction, so its peaks-over-threshold distribution converges to a
generalized Pareto process with log-Gaussian random function. We repeat the simulation study
of § 4·1 with 10 000 Brown–Resnick processes and the same parameter values. This simulation
uses the algorithm of Dombry et al. (2016) and is computationally expensive, so we used only
300 variables. It took around three hours with 16 cores to generate N = 10 000 samples on the
finest grid.

Table 2 shows the results. As expected when the model is misspecified, the root relative mean
squared error is mainly driven by bias, which increases with the shape κ and the dimension D.
Spectral estimation is on the whole outperformed by both of the other methods. For κ = 0·5,
the three methods show fairly similar overall performance, with the censored likelihood better
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Table 2. As Table 1 but with inference based on the top 1% of 10 000
simulated Brown–Resnick processes

Shape κ

Grid size κ = 0·5 κ = 1 κ = 1·3 κ = 1·8
10 × 10 154/111/81 473/183/108 196/170/105 NC
20 × 10 172/122/95 413/150/114 309/181/137 144/168/122
20 × 15 142/119/99 369/133/110 314/170/140 163/173/137

Scale τ

Grid size κ = 0·5 κ = 1 κ = 1·3 κ = 1·8
10 × 10 107/127/116 263/38/35 109/231/452 NC
20 × 10 105/133/119 206/94/80 315/66/53 105/336/261
20 × 15 104/138/126 173/102/90 290/92/46 103/211/144

NC, optimization does not converge.

at capturing the shape parameter, while the gradient score does better for the scale parameter.
The moderate extremal dependence cases, with κ = 1 and 1·3, are dominated by the censored
likelihood, whereas for weak extremal dependence, κ = 1·8, the gradient score performs best,
because too much information is lost by censoring. For the 100-point grid, the optimization pro-
cedures do not converge when the extremal dependence is too weak. The choice of the weighting
function w affects the robustness of the gradient score. Computation times are similar to those
in § 4·1.

Quantile-quantile plots show that the score-matching estimators are very close to being nor-
mally distributed, but censored likelihood estimates can deviate somewhat from normality due
to the quasi-Monte Carlo approximation; this can be remedied by increasing the value of p.

To summarize: for strong extremal dependence, the three types of estimator are roughly equiv-
alent. For moderate extremal dependence, we recommend using the censored likelihood if the
number of variables permits; this is D � 500 with our computational capabilities, although if
extremal independence is reached at far distances and the grid is dense, the gradient score is an
excellent substitute. Owing to its robustness and lack of dimensionality limitations, the gradient
score appears to be the best choice for gridded applications with fine resolution. Empirical work
suggests that it can be robustified by careful design of the weight function.

5. EXTREME RAINFALL OVER FLORIDA

5·1. Real-data application

We fit an r-Pareto process based on the Brown–Resnick model to radar measurements of
rainfall taken every 15 minutes during the wet season, June–September, from 1999 to 2004 on a
regular 2 km grid in a 120 km × 120 km region of east Florida; see Fig. 1. There are 3600 spatial
observations in each radar image, and 70 272 images in all. The region was chosen to repeat the
application of Buhl & Klüppelberg (2016), but in a spatial setting only; a spatiotemporal model
is beyond the scope of the present paper. Buhl & Klüppelberg (2016) analysed daily maxima for
10 km × 10 km squares, but we use nonaggregated data to fit a nonseparable parametric model
for spatial extremal dependence, using single extreme events instead of daily maxima.

The marginal distributions for each grid cell were first locally transformed to unit Pareto using
their empirical distribution functions. For general application, where we wish to extrapolate the
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Fig. 1. Fifteen-minute accumulated rainfall in inches, observed (first row) and simulated (second row) for the risk
functionals rsum and rmax with an intensity equivalent to the 59th most intense event.

distribution above observed intensities, a model for the marginal distributions of exceedances is
needed, but since our goal here is to illustrate the feasibility of dependence model estimation on
dense grids, we regard marginal modelling as outside the scope of this study.

5·2. Multivariate extremal dependence model

The spatial model of Buhl & Klüppelberg (2016) is fully separable, i.e., it is a sum of two
separate semivariograms. This has the advantage that inference for each direction can be per-
formed separately, but it cannot capture anisotropy that does not follow the axis of the grid, i.e., is
not in the South-North or East-West directions. Furthermore, their pairwise likelihood approach
focuses on short-distance pairs, and so could mis-estimate dependence at longer distances. To
better capture possible anisotropy, we use the nonseparable semivariogram

γ (si, sj) =
∥∥∥∥�(si − sj)

τ

∥∥∥∥
κ

, si, sj ∈ [0, 120]2, i, j ∈ {1, . . . , 3600}, 0 < κ � 2, τ > 0,

and anisotropy matrix

� =
[

cos η − sin η

a sin η a cos η

]
, η ∈

(
−π

4
,
π

4

]
, a > 0.

The semivariogram γ achieves asymptotic extremal independence as the distance between sites
tends to infinity, i.e., the pairwise extremal index increases to 2 as ‖s − s′‖ → ∞.
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Table 3. Parameter estimates (with standard errors in parentheses) for an r-Pareto
process derived from log-Gaussian random functions with the semivariogram
γ (s, s′) = {‖�(s − s′)‖/τ }κ obtained by maximization of the gradient score for
events corresponding to the 59 highest exceedances of the risk functionals rsum and

rmax for the Florida radar rainfall data
Risk functional κ τ η a

rsum 0·814 (0·036) 25·63 (4·70) −0·009 (0·458) 1·059 (0·031)

rmax 0·955 (0·048) 3·540 (0·67) −0·316 (0·410) 0·940 (0·029)

To apply the peaks-over-threshold approach, we must define exceedances by choosing risk
functionals. We focus on two types of extremes: local very intense rainfall at any point of
the region, and high cumulative rainfall over the whole region. We therefore take the risk
functionals

rmax(X
∗) =

{
3600∑
d=1

X ∗(sd)20

}1/20

, rsum(X ∗) =
{

3600∑
d=1

X ∗(sd)ξ0

}1/ξ0

.

The function rmax is a differentiable approximation to maxd X (sd), which cannot be used with the
gradient score because of its nondifferentiability. Censored likelihood is computationally out of
reach with so many locations. Directly summing normalized observations X ∗ makes no physical
sense, so our function rsum, which selects extreme events with large spatial extent, attempts
to transform the data back to the original scale; we take ξ0 = 0·114, which is the average of
independent local estimates of a generalized Pareto distribution.

We fitted univariate generalized Pareto distributions to rsum(x∗
n) and rmax(x∗

n) (n = 1,
. . . , 70 272) with increasing thresholds. The estimated shape parameters are stable around the
99·9 percentile, which we used for event selection, giving 59 exceedances; just two events were
found to be extreme relative to both risk functionals. This threshold may appear rather high,
but it corresponds to around 10 events per year, which seems reasonable in light of the time-
frame. Here we merely illustrate the feasibility of high-dimensional inference, so we treat them
as independent, but in practice temporal declustering should be considered.

Optimization of the gradient score with the w1 weighting function on a 16-core cluster took
1–6 hours, depending on the initial point. Different initial points must be considered because
of the possibility of local maxima. Results are shown in Table 3, where standard deviations
are obtained using a jackknife procedure with 20 blocks. Both the estimated bias and the vari-
ance are fairly low. For rsum(x∗

n), we obtain a model similar to that of Buhl & Klüppelberg
(2016).

The estimated parameters differ appreciably for the two risk functionals, suggesting the pres-
ence of a mixture of different types of extreme events. The structure for rmax is consistent
with the database, in which the most intense events tend to be spatially concentrated. Our
model suggests higher dependence for middle distances than was found by Buhl & Klüp-
pelberg (2016), but they did note that their model underestimates dependence, especially for
high quantiles. The estimated smoothness parameters are very close, and neither estimate of η

differs significantly from zero, as imposed by Buhl & Klüppelberg (2016). For rsum, the esti-
mated parameters show strong extremal dependence even at long distances, corresponding to
exceedances of accumulated rainfall with large spatial cover. As â ≈ 1, there is no evidence of
anistropy.
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Fig. 2. Estimated conditional exceedance probabilities πij for the risk functionals (a) rsum and (b) rmax as functions of
the distance between locations si and sj (i, j = 1, . . . , 3600). In each panel the solid black curve represents the model

fitted using gradient score estimation.

5·3. Model checking and simulation

For model checking, we propose to use the conditional exceedance probability,

πij = pr
[
X ∗(sj) � u′ ∣∣ {X ∗(si) � u′} ∩ {r(X ∗/u) � 1}] = 2

[
1 − 

{(γij

2

)1/2
}]

,

where γi,j is the semivariogram for sites si and sj (i, j = 1, . . . , 3600), as defined in (9), and
u′ > 0. An empirical estimator of πij is

π̂ij =
∑N

n=1 1
[ {r(x∗n/u) � 1} ∩ {x∗n

i � u′} ∩ {x∗n
j � u′}]∑N

n=1 1
[{r(x∗n/u) � 1} ∩ {x∗n

i � u′}] ,

whose asymptotic behaviour derives from Davis & Mikosch (2009). For both risk functionals,
the fitted model, represented by the solid black lines in Fig. 2, follows the cloud of estimated
conditional exceedance probabilities reasonably well and captures the general trend, but fails to
represent some local variation, perhaps due to a lack of flexibility of the power model.

Finally, we use the models fitted in § 5·2 to simulate events with intensities equivalent to the
weakest of the 59 events found by our risk functionals. Simulation is performed by generating the
corresponding r-Pareto process with the fitted dependence structure, as in § 4·1. Figure 1 com-
pares observations from the database and representative simulations, which seem to successfully
reproduce both the spatial dependence and the intensity of the selected observations. A closer
examination suggests that in both cases the models produce oversmooth rainfall fields. This could
be addressed by improving event selection using risk functionals r that characterize special spatial
structures or physical processes. Although we fail to detect anisotropy, more complex models for
dependence that allow stochasticity of the spatial patterns might be worth considering.

These models can reproduce both spatial patterns and extreme intensity for spatially accumu-
lated and local heavy rainfall. In both cases the fitted dependence model provides a reasonable
fit and simulations seem broadly consistent with observations. However, the presence of two
contrasting dependence structures highlights the complexity of extreme rainfall and suggests that
a mixture model for both dependence and margins might be considered. Marginal and depen-
dence parameters are often estimated separately, but with the presence of mixtures, which can be
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detected using different risk functionals, joint estimation is required, which is beyond the scope
of this paper. For this reason and because we have neglected the temporal dependence, our model
should be viewed as merely a first step towards a spatiotemporal rainfall generator.
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