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Abstract

The COVID-19 pandemic poses a major burden on healthcare and economic systems across the globe. Even though a major-

ity of the population develops only minor symptoms upon SARS-CoV-2 infection, a significant number are hospitalized at 

intensive care units (ICU) requiring critical care. While insights into the early stages of the disease are rapidly expanding, 

the dynamic immunological processes occurring in critically ill patients throughout their recovery at ICU are far less under-

stood. Here, we have analysed whole blood samples serially collected from 40 surviving COVID-19 patients throughout 

their recovery in ICU using high-dimensional cytometry by time-of-flight (CyTOF) and cytokine multiplexing. Based on the 

neutrophil-to-lymphocyte ratio (NLR), we defined four sequential immunotypes during recovery that correlated to various 

clinical parameters, including the level of respiratory support at concomitant sampling times. We identified classical mono-

cytes as the first immune cell type to recover by restoration of HLA-DR-positivity and the reduction of immunosuppressive 

CD163 + monocytes, followed by the recovery of CD8 + and CD4 + T cell and non-classical monocyte populations. The 

identified immunotypes also correlated to aberrant cytokine and acute-phase reactant levels. Finally, integrative analysis of 

cytokines and immune cell profiles showed a shift from an initially dysregulated immune response to a more coordinated 

immunogenic interplay, highlighting the importance of longitudinal sampling to understand the pathophysiology underlying 

recovery from severe COVID-19.

Keywords COVID-19 · ICU patients · Neutrophil-to-lymphocyte ratio · CyTOF · Immune profiling ·  

Cytokine multiplexing · Recovering immune populations

Introduction

The SARS-CoV-2 coronavirus outbreak has infected more 

than 93 million people worldwide causing more than 2 

million deaths and was officially declared a pandemic by 

the World Health Organization (WHO) [1]. Due to the 

lack of immunity to SARS-CoV-2, and while awaiting a 

comprehensive vaccination strategy, the unpredictable 

clinical outcome of COronaVirus-Induced Disease 2019 

(COVID-19) has created significant strain on medical sys-

tems [2–5]. Over the past year, major research efforts have 

tried to unravel the pathobiology underlying the disease 

course [6, 7]. As such, it has been shown that COVID-19 

leads to the combination of pathologically elevated levels 

of pro-inflammatory cytokines, coagulopathy and a dysreg-

ulated immune response [6, 8, 9]. Deep immune-profiling 

in severe COVID-19 patients revealed excessive amounts 

of dysfunctional neutrophils, decreased levels of lympho-

cytes and low levels of antigen-presenting receptors on 

monocytes and dendritic cells, hindering efficient adaptive 

immune responses [8, 10–12]. In contrast to asymptomatic 

or mild/moderate symptomatic COVID-19 patients, criti-

cally ill patients typically show a biphasic disease course 
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with an early viral stage before ICU admission, followed by 

a hypoxic phase characterized by a cytokine storm and acute 

respiratory distress requiring (invasive) respiratory support, 

antivirals and immune modulation to prevent multiple organ 

failure and death.

Considering the potentially severe and unpredictable 

impact of a SARS-CoV-2 infection, research has also 

focused on predicting the disease course of COVID-19. 

Using a variety of multiplexing technologies, longitudi-

nal blood sampling has revealed a dichotomous profile in 

cytokine expression levels that could differentiate patients 

prone to develop mild/moderate versus severe disease 

within the first-two weeks following SARS-CoV-2 infection 

[13–15]. In addition, severely diverging levels of immune 

cell populations, typically reported by aberrant neutrophil-

over-lymphocyte ratios (NLR) and higher levels of immature 

neutrophil frequencies were also indicative of a more severe 

disease course [16–22]. Based on these insights, various 

interventional trials were initiated, from which the use of 

corticosteroids showed promising results [23] although the 

optimal timing of these interventions remains to be deter-

mined and side effects (i.e. secondary infections) may com-

plicate their use. Therefore, until the population gets vac-

cinated, patients exhibiting severe pathology will continue 

to require extensive medical care and need to be admitted to 

ICU, with the associated burden on the healthcare system.

In contrast to the early stages of the disease, the biol-

ogy from ICU admission to the recovery phase remains far 

less understood. A systems-biology study with a longitu-

dinal follow-up of 10 ICU patients suggested involvement 

of eosinophils early in the disease [24]. Various immune 

cell populations were also found to be increased in rela-

tive proportions during recovery, while excessive cytokine 

levels returned to normal at the time of discharge from ICU 

[24, 25]. Restoration of T-cell functionality, including the 

induction of effector-memory cells, has also been described 

during the recovery phase of COVID-19 [26]. However, the 

exact sequence of changes occurring during the restitution of 

the peripheral immune system after severe infection remains 

elusive.

Within the transdisciplinary clinical COntAGIouS trial 

(COvid-19 Advanced Genetic and Immunologic Sampling, 

NCT04327570), we have analysed serially collected whole 

blood and serum samples of critically ill COVID-19 patients 

that survived an ICU stay at the University Hospitals Leu-

ven, Belgium. By using high-dimensional analysis tech-

nologies, we identified four immunotypes (i.e. blood cell 

composition profiles) based on the NLR, defining a com-

mon biological trajectory during patient recovery which 

correlated well to various clinical parameters including the 

required level of respiratory support at concomitant sam-

pling times. We identified classical monocytes as the first 

cell type to recover, followed by CD8 + and CD4 + T cell and 

non-classical monocyte populations, while the NLR-defined 

groups also correlated to cytokine and acute-phase reactant 

(APR) levels. Finally, an integrated analysis of cytokines 

and immune cell profiles allowed us to monitor recovery 

from this dysregulated immune response, highlighting the 

importance of sampling at multiple timepoints to better 

understand the pathophysiology underlying recovery from 

severe COVID-19.

Methods

Patient cohort and sampling

Forty COVID-19 patients that had been admitted to the ICU 

were enrolled in the ‘COntAGIouS’ trial (NCT04327570). 

Thirty-eight patients were confirmed positive for SARS-

CoV-2 infection by nasopharyngeal swab and/or by bron-

choalveolar lavage (BAL) sampling and subsequent PCR 

quantification. Two patients were confirmed positive for 

SARS-CoV-2 via CT scan. In line with previous reports, 

CT scans are used to classify “probable positive” cases in 

the absence of a positive RT-PCR test based on the “ground-

glass” characteristics which are a known hallmark of early 

COVID-19 infection [27]. Routine clinical laboratory tests 

at the time of sampling were performed as outlined within 

the ‘COntAGIouS’ study design [12]. The patients enrolled 

in the study were sampled at several clinically relevant time 

points: upon admission to the ICU (0–2 days post admis-

sion), at 6 ± 2 days post admission, and eventually at ICU 

discharge. Of note, if the medical condition of the patient 

was not improving, a bronchoscopy procedure was per-

formed during which whole blood samples were again col-

lected for concomitant immune-profiling.

The healthy control group consisted of volunteers 

(recruited from UZ Hospital staff) with no prior diagnosis 

or recent symptoms compatible with COVID-19. This group 

was not tested by nasopharyngeal swab, but antibody assess-

ment of plasma samples revealed an absence of COVID-19 

IgG antibodies.

Sample processing and staining procedure 
for CyTOF

Whole blood (WB) samples were drawn into sterile antico-

agulant lithium heparin blood collection tubes and processed 

for mass cytometry staining within 2–4 h of collection. WB 

was stained with the  Maxpar® Direct™ Immune Profiling 

Assay (DIPA) kit from  Fluidigm© according to manufac-

turer instructions by following the workflow outlined for 

whole blood staining. Additional antibodies not included 

in the Maxpar DIPA kit were titrated on WB samples after 

RBC lysis from healthy donors to determine the optimal 
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staining index. The antibodies are outlined in Suppl. Table 1. 

The additional markers were added after the red blood cell-

removal step. The last step of the protocol is 193-Ir inter-

calation, which was performed overnight at 4 °C. The sam-

ples that could not be acquired on the instrument the next 

day were immediately cryopreserved in Maxpar Fix/Perm 

buffer + 193-Ir at − 80 °C. This cryopreservation technique 

was validated in triplicate by dividing aliquots of donor sam-

ples stained on the same day and comparing cell viability 

and immune profiles between the fresh and cryopreserved 

samples. Batch effects were evaluated by running a reference 

sample derived from an aliquot of the same healthy donor’s 

blood over the period of the study.

Data acquisition

Cells stained for mass cytometry were acquired the day after 

the staining procedure or within a week of cryopreserva-

tion. For CyTOF acquisition, the samples were pelleted in 

Maxpar Cell Acquisition Buffer (CAS) on the day of acqui-

sition and transferred to the KU Leuven Flow and Mass 

Cytometry Facility. Prior to acquisition, 1 million cells/ml 

were resuspended in CAS containing EQ beads (1:10) and 

filtered through 35 µm cell strainer cap tubes. The samples 

were acquired at a rate of 250–300 events per second on 

a  Helios® Mass Cytometer (Fluidigm). CyTOF software 

version 6.7.1016 and the Maxpar Direct Immune Profiling 

Assay.tem template were used to acquire and normalize data 

from the stained samples.

Chemokine and cytokine assays

Chemokine and cytokine levels in plasma were assessed 

according to manufacturer instructions (Meso Scale Dis-

covery) using the V-plex human cytokine 30-plex kit, com-

plemented with Human IL-1RA (V-plex) and human IL-18 

(U-plex) kits.

Data analysis

To analyse the CyTOF data, we used the FlowSOM models 

built for [12]. A general overview of our pipeline is shown 

in Supp. Figure 1, Part A. To generate these models, nor-

malized.fcs files were first transferred to the Maxpar Path-

setter™ software (version 2.0.45), which performs a stand-

ardized, automatic and unsupervised quality check (bead 

removal and high-quality singlet selection) and gating of 

live single cells. Samples with fewer than 50,000 cells were 

discarded, as were four samples which showed-up as outli-

ers in a PCA analysis of the 25, 50 and 75% quantiles of the 

marker values. The FlowSOM analysis was subsequently 

performed in R, using 123 cleaned.fcs files, including eight 

healthy controls and longitudinal samples of 40 COVID-19 

patients, throughout various stages of disease. Samples were 

first pre-processed: margin events were filtered out, data was 

transformed with an arcsinh transformation with cofactor 

5 and the PeacoQC algorithm (manuscript in preparation, 

tool available at https:// github. com/ saeys lab/ peaco QC) was 

applied to remove any unstable signal regions during the 

measurement. On this cleaned data a first FlowSOM model 

[28] was trained, using a random selection of cells for all 

samples, resulting in 3,000,093 cells to train on. The clus-

tering made use of 11 markers (CD3, CD4, CD8a, CD11c, 

CD14, CD19, CD20, CD45, CD66b, TCRƴδ and NCAM), 

mapped the data onto a 10 by 10 SOM grid and resulted 

in 30 meta-clusters. 22 meta-clusters were selected as hav-

ing CD66b values lower than 2 or CD45 values higher than 

4, corresponding to non-granulocytes, while eight meta-

clusters were labelled as granulocytes. The full files were 

mapped onto this model, and for each of them new.fcs files 

were generated corresponding to the two subsets of cells. 

These were then used to build two separate FlowSOM mod-

els, including either the non-granulocyte or the granulocyte 

cells, again using only a subset of 2,949,946 (granulocyte: 

3,000,093) cells for training mapped onto a 10-by-10 SOM 

grid, this time using 33 markers (CD3, CD4, CD8a, CD11c, 

CD14, CD16, CD19, CD20, CD27, CD28, CD38, CD45, 

CD45RA, CD45RO, CD57, CD66b, CD69, CD294, CD161, 

CD163, CCR4, CCR6, CCR7, CXCR3, CXCR5, HLA-DR, 

IgD, IL-2Rα, IL-3R, IL-7Rα, NCAM, NKG2A and TCRƴδ). 

To be able to identify small populations, no meta-clustering 

was applied on these second models, and the 100 clusters 

were manually annotated by three independent experts 

according to their mean metal intensity (MMI) values. In 

the non-granulocyte model, six clusters were manually iden-

tified as still being mixtures of different cell types, and split 

into two or three clusters, resulting in 108 non-granulocyte 

clusters and 100 granulocyte clusters.

For this study, all samples were again fully mapped onto 

these models to identify their immune profiles. During this 

process, we noticed some files had a sub-optimal granulocyte/

non-granulocyte split. Therefore, we redefined this split using 

the file-specific MMI values of the metaclusters, selecting 

all metaclusters with CD66b values lower than 3 and CD45 

values higher than 3 as non-granulocytes. For one file, three 

metaclusters were still incorrectly assigned when inspecting 

the density distribution of the cells, so for this file the CD45 

boundary was adapted to 4. Once all cells were assigned to 

the 208 clusters from the existing models, we used a manual 

annotation of these clusters to aggregate them in 24 cell popu-

lations, describing the immune profile of each sample by the 

percentage of live cells each of these populations represented. 

In addition, the total lymphocyte percentage (i.e. the sum of 

all populations which were annotated as lymphocyte subsets) 

was added, bringing the total to 25 parameters per sample. 

Importantly, the values determined by CyTOF corresponded 

https://github.com/saeyslab/peacoQC
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well to the general blood counts routinely assessed by the hae-

matology analysers available at the clinic, as can be seen by the 

representation of the data as % of cells vs number of cells per 

volume of blood (Supp. Figure 2). An overview of the map-

ping of these 24 cell populations on a tSNE representation of 

the data is shown in Supplemental Figure 3-Part A. The sam-

ples were then grouped in four equal-sized groups depending 

on their NLR: 31 samples with a ratio higher than 7.1 (R4), 

30 samples with a ratio between 7.1 and 4.8 (R3), 31 samples 

with a ratio between 4.8 and 2.7 (R2) and 31 samples with a 

ratio lower than 2.7 (R1). The four profiles were ordered by 

decreasing neutrophil/lymphocyte ratio, and are throughout 

the figures in this paper coloured as black, green, blue and 

cyan, respectively. We chose to split the data in four equal-

sized groups, as clustering approaches are known to perform 

suboptimally on data sets in which gradual/continuous changes 

are expected. As described throughout the manuscript dividing 

the samples in the identified groups resulted in the discovery 

of relevant patterns.

The differences among these four groups, which included 

both patient and control samples, were then further character-

ized. To compute statistics, we made use of linear mixed mod-

els, and for the cytokines and APR values we used mixed mod-

els with random effect for the patient, to correct for the fact 

that patients can have multiple longitudinal samples, spread 

over one or more groups. Correlations were calculated using 

the Spearman Rank test. All p values were taken together to be 

corrected for multiple testing with the Benjamini–Hochberg 

(FDR) method. Curve-fitting analysis was done using the drc 

package in R from which the inflection points and the cor-

responding p values were collected. In addition, we also used 

the built-in immuno profiling tools of the Maxpar Pathsetter™ 

software to analyse the overall immune cell profile in a stand-

ardized and automated way. The Pathsetter-based blood pro-

files were grouped into 12 clusters using k-means clustering, 

and manually further grouped into four final profiles. These 

profiles strongly corresponded with the NLR results and led to 

similar biological conclusions, thus giving additional valida-

tion in our grouping strategy.

The code used to generate the results is available at https:// 

github. com/ saeys lab/ CYTOF_ covid 19_ study. The raw.fcs files 

have been uploaded and annotated via Flow Repository and 

the data is available at Flow Repository ID: FR-FCM-Z34U.

To create the correlation matrices, we applied the Mor-

pheus software (https:// softw are. broad insti tute. org/ morph 

eus) and used Pearson correlation metric for clustering. For 

clustering, only those values for COVID-19 patients that were 

matched across both serum cytokine/chemokine screening as 

well as mass cytometry were considered. Unmatched patients 

were excluded.

Results

Mapping the disease course of COVID-19 survivors 
at ICU

To unravel the sequential recovery of the immune system 

throughout the course of a severe COVID-19 infection, we 

have analysed a cohort of 40 patients that survived a stay 

at the intensive care unit (ICU) at the University Hospi-

tals Leuven, Belgium. These patients were enrolled in the 

COntAGIouS trial (NCT04327570) through which whole 

blood samples were serially collected during their ICU 

stay (see methods and Table 1 for patient demographics 

and characteristics; a set of healthy controls was included 

for reference).

For each patient, a detailed timeline of their ICU stay 

was generated to display the most clinically relevant 

events, including onset of symptoms, hospital admission, 

ICU admission, start/stop of therapeutic interventions 

and finally discharge from ICU and hospital. If applica-

ble, discharge from a specialized revalidation centre where 

the patient continued his/her recovery after hospital dis-

charge is also included. Occasionally, blood was drawn 

at additional time points (such as during bronchoscopy) 

and is also indicated on the timeline. From this graphical 

representation of individual time points (Fig. 1a), a large 

range in the duration of ICU stay (from 2 to 72 days) was 

evident, indicating a highly variable recovery rate across 

patients. Of the 40 enrolled patients, only nine were 

women, which corresponds to previous observations of 

males experiencing increased severity and hospitalization 

rates once infected with SARS-CoV-2 [29–31] (Fig. 1b). 

The age range and overall time spent at ICU was, however, 

comparable between male and female patients (Fig. 1a, b 

and Table 1). Within this critically ill patient cohort, we 

did not find a correlation between BMI and the overall 

duration of ICU stay (r = − 0.15, p = 0.35) despite > 40% 

of the patients having a BMI above 30 (Table 1, Fig. 1b) 

[32].

This timeline was further expanded to include the level 

of respiratory support that was required at concomitant 

sampling times (Fig. 1c, d). Here, respiratory support lev-

els were classified from 0 to 5 where level 0 indicates no 

support, while level 4 and 5 indicates the need for mechan-

ical ventilation [with level 5 indicating patients that were 

ventilated in prone position and/or requiring inhalation 

NO therapy or extracorporeal membrane oxygenation 

(ECMO)] (Table 1; the corresponding WHO scores are 

indicated in Fig.  1d). Subsequent correlation analysis 

showed that the maximal level of respiratory support cor-

related well to the overall duration of ICU stay (r = 0.67, 

p = 7e–17, Fig. 1c, d, supp. Figure 4).

https://github.com/saeyslab/CYTOF_covid19_study
https://github.com/saeyslab/CYTOF_covid19_study
https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
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Identifying peripheral blood profiles using repeated 
sampling

Next, we performed deep immune-profiling on collected 

blood samples using high dimensional cytometry by time-of-

flight (CyTOF) analysis. From this data, 33 surface markers 

were used to map changes in composition and phenotype of 

white blood cells during ICU stay. All cells were clustered 

using FlowSOM, an unsupervised gating method, and these 

clusters were manually annotated to identify 25 immune cell 

subtypes to reconstruct potential dynamic changes. How-

ever, given the variation in duration of hospitalization at 

Table 1  Clinical and demographic characteristics of the included patient cohort

COVID-19 ICU patients

(n = 40, unless indicated)

Healthy controls (n = 8)

Baseline characteristics

 Age, years (median, IQR) 60 [53–67] 46 [39–63]

 Gender

 Men 31 (77%) 3 (37%)

 Women 9 (23%) 5 (63%)

 Ethnicity Caucasian (n = 39)

North African (n = 1)

Caucasian (n = 8)

Comorbidities and severity of illness

 BMI (median, IQR) 28.3 [24.3–31.3] 24.0 [21.5–26.5]

 Charlson Comorbidity Index (median, IQR) 2 [1–3] 0

 SOFA score first 24 h upon ICU admission (median, IQR) 7 [3–8] 0

Diagnosis of SARS-CoV-2

 CT compatible 2 NA

 qRT-PCR nasopharyngeal swab only 27 NA

 qRT-PCR BAL fluid only 2 NA

 qRT-PCR nasopharyngeal swab and BAL fluid 9 NA

Highest level of respiratory support during ICU stay

 Oxygen via oxymask 2 (5%) NA

 High flow oxygen support 11 (27%) NA

 Invasive and non-invasive mechanical ventilation 17 (42%) NA

 Prone ventilation/inhaled NO/ECMO 10 (25%) NA

Immuno-modulatory therapy during ICU stay

 Methylprednisolone only (MP (n)) 19 (47%) NA

 Anti-IL6 (n) 1 (2%) NA

 MP + anti-IL1 (n) 3 (7%) NA

 MP + anti-IL6 (n) 5 (12%) NA

 None of the above 12 (30%) NA

Timeline of blood sampling

 Time from illness onset to ICU admission (median, IQR) 8 (5)

(n = 38)

NA

 Time from ICU admission to first blood draw (median, IQR) 1 (1)

(n = 24)

NA

 Time from ICU admission to mid-point blood draw (median, IQR) 12 (1)

(n = 37)

NA

 Time from ICU admission to blood draw at bronchoscopy (median, IQR) 15 (10)

(n = 13)

NA

 Time from ICU admission to blood draw at discharge (median, IQR) 23 (16)

(n = 38)

NA

Outcome

 Length of hospital stay (median, IQR) 37 (22) NA

 Length of ICU stay (median, IQR) 23 (21) NA

 Length of hospital stay and revalidation after ICU stay (median, IQR) 24 (16)

(n = 12)

NA
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the ICU in this patient cohort, mapping immune profiles 

on an absolute time scale did not produce coherent results. 

Alternatively, we ranked all samples, both from COVID-19 

patients and healthy controls, based on the neutrophil-to-

lymphocyte ratio (NLR). To allow comparison between and 

identify evolutions across different NLR levels, we defined 

four equal-sized groups (Fig. 2a, b) across all collected 

samples, regardless of when a sample was taken. As such, 

we defined four “NLR” stages (R1–4) ranging from severe 

lymphopenia and neutrophilia (profile R4, which showed the 

highest NLR values) to immune profiles resembling those 

of healthy controls, defined by the lowest NLR values (R1) 

(Fig. 2a, b and Suppl. Figure 5). In addition, the highest 

NLR group (R4) had increased levels of the acute phase 

reactants C-reactive protein (CRP) and ferritin (Fig. 2c, d), 

biomarkers of inflammation that are commonly monitored 

in ICU patients and define a critical state.

Integrating longitudinal immune-profiling 
with clinical features

Next, we assessed how the identified NLR groups corre-

sponded to a variety of clinical parameters. As indicated 

above, the level of respiratory support was measured at each 

sampling time point and correlation analysis of this feature 

with the four NLR profiles revealed that patients exhibiting 

R4 required increased respiratory support at that moment 

compared to lower level NLRs (Fig. 2e). Further correlation 

analysis also showed that the overall clinical status of each 

patient upon admission to ICU, as determined by calculating 

the Sequential Organ Failure Assessment Score (SOFA) [33, 

34], was significantly correlated to the NLR groups (Fig. 2f; 

r = − 0.23, p = 0.03). We did not find any correlations of age 

or BMI with the NLR groups (Suppl. Figure 6A-D).

Using these groups, we reconstructed a detailed sequence 

of events for each individual patient and investigated how 

these evolved along their ICU stay (Figs. 1e, 2g, Suppl. 

Figure 7). For 35 out of 40 patients, we observed a recov-

ery (overall downwards shift of the NLR score) or stabi-

lisation of their immune profile, along their stay at ICU 

(Suppl. Figure 7), with an enrichment of R1 towards ICU 

discharge (Fig. 2g). Strikingly, the NLR values at ICU dis-

charge ranged between 1 and 4, suggesting that the physical 

condition of these patients remained heterogeneous at that 

moment. In line with this observation, we found that patients 

exhibiting a higher NLR value upon discharge from ICU 

required significantly longer revalidation (either at the regu-

lar hospital ward and/or a specialized revalidation center) 

following their stay at ICU (Fig. 2h, r = − 0.4, p = 0.02). 

In addition, Charlson comorbidity indices [35] were low 

for all patients (Table 1), indicating that the majority of 

patients admitted to ICU were in good general health before 

their infection with SARS-CoV-2. We also did not observe 

correlations of the Charlson comorbidity indices to either 

the NLRs or the required level of respiratory support (not 

shown).

Fig. 1  Detailed timeline of the COVID-19 patient cohort highlight-

ing clinical milestones. a Line plot on which clinical milestones are 

highlighted according to their relative time (days) from each patient’s 

admission to ICU. Patients are ordered (top to bottom) according to 

their overall length of stay in ICU. b Dot plot indicating the gender 

and BMI of each included patient. c, d Line plot indicating the level 

of required respiratory support and corresponding WHO scores at 

concomitant sampling times (d) as indicated in panel a. Panel c high-

lights the maximal level of respiratory support each patient required 

at concomitant sampling times (c). e Mapping of the defined NLR 

groups (1–4) on top of the indicated timeline as defined in panel a. 

f Indication of the treatments received by each of the patients during 

their stay at ICU. The colour and symbol code are indicated in each 

separate panel. CS corticosteroid, a-IL1 anti-IL-1, a-IL6 anti-IL6, 

HFNC high flow nasal cannula, NIV non-invasive ventilation, IMV 

invasive mechanical ventilation, ECMO extracorporeal membrane 

oxygenation, iNO inhaled nitric oxide, BMI body mass index
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Finally, we tracked alterations in patient immune pro-

files who were treated with diverse immunomodulatory 

regimens. Commonly, the glucocorticoid methylpredniso-

lone (MP) was given as a monotherapy (n = 19). In several 

cases, MP was prescribed in combination with either anti-

IL-1 (anakinra; n = 3) or anti-IL-6 (tocilizumab; n = 5). One 

patient received anti-IL-6 exclusively while the remaining 

patients in our cohort (n = 12) relied on supportive care 

alone (Table 1; Fig. 1f). Unsurprisingly, our data analysis 

confirmed that patients who underwent steroid treatment had 

a greater tendency towards a longer ICU stay. Correlation 

analysis of the NLR profiles with MP treatment revealed that 

patients exhibited a higher NLR upon ICU discharge com-

pared to patients that did not receive MP (Suppl. Figure 6E). 

Finally, while the cohort of patients that received anti-IL-1 

and anti-IL-6 was small, the reconstitutional trajectory of 

their immune systems followed a similar pattern to those 

patients receiving standard-of-care treatment without immu-

nomodulatory drugs and/or MP.

Reconstructing the cellular recovery of critically ill 
COVID-19 patients

Considering that the NLR levels correlated well with the 

clinical condition of the patients (see above), we next inves-

tigated the recovery of more specific immune cell popula-

tions to eventually define a sequence of events. To do so, we 

used a dual approach. First, we performed curve-fitting along 

the trajectory of the four NLR profiles, in which we deter-

mined the inflection points of each identified immune cell 

population to estimate the moment recovery would begin 

(Fig. 3a, b, Suppl. Table 2). The data from this approach 

Fig. 2  Longitudinal immunoprofiling of peripheral blood profiles 

and integration with clinical features. a Overview of immune cell 

population percentages, grouped by NLR, where R4 indicates the 

most severe neutrophilia/lymphopenia and R1 shows similar values 

to healthy controls (HC). (n: R4 = 31, R3 = 30, R2 = 31, R1 = 31) 

b Neutrophil and lymphocyte percentages, ordered by decreasing 

NLR. (n = 123) c, d Levels of acute phase reactants, C-reactive pro-

tein and ferritin, across all ratio groups. (n: R4 = 30, R3 = 29, R2 = 31, 

R1 = 22) e Distribution of respiratory support levels (n: R4 = 30, 

R3 = 29, R2 = 31, R1 = 22) and f SOFA score of the first 24 h upon 

admission to ICU over the NLR groups. (n: R4 = 12, R3 = 4, R2 = 4, 

R1 = 4) g Longitudinal sampling time points of patients from admis-

sion into Ward and ICU, mid-stay and discharge as grouped by 

NLR. (n: R4 = 31, R3 = 30, R2 = 31, R1 = 31) h Days of revalidation 

upon discharge from ICU as grouped by NLR. (n: R4 = 3, R3 = 11, 

R2 = 11, R1 = 14) a–h Colour indicates NLR group: black: R4, 

green: R3, blue: R2, cyan R1. HC are indicated as black open circles. 

***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05
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were then, in a second phase, combined with the statistical 

comparison of the four NLR groups (Fig. 2a, suppl. Table 3; 

see methods for statistical procedure) to define the eventual 

order by which specific cell populations were recovering. 

We found that, on average across this cohort of patients, 

classical monocytes were the first immune cell population 

to recover followed by naive CD8 + T cells, naive and Th2-

polarized CD4 + T cells. As indicated by our analysis, effec-

tor and memory T cell populations were only restored at 

later stages, including the anti-viral Th1-polarized CD4 + T 

cells [36]. Following this first phase, the non-classical 

monocytes began recovering. From the other professional 

antigen-presenting cells, plasmacytoid dendritic cells (pDC) 

began recovering immediately after the early T cell response 

while myeloid DCs (mDC) only recovered towards R2/R1, 

similar to overall B and NK cell populations. This suggests 

that monocytes, as implied by other studies, could become 

important targets in both understanding COVID-19 disease 

progression as well as improving recovery at the early phase 

of ICU admission [37].

Functional recovery of monocytes

Antigen-presentation by monocytes, pDCs and/or mDCs 

plays a vital role in the initiation of an efficient adaptive 

immune response to viral infections [38–42]. As previ-

ously shown, declined levels of HLA-DR expression and 

hence reduced antigen presentation seems to be an early 

hallmark of a trajectory towards severe COVID-19 com-

pared to mild/moderate disease [10, 12]. Considering 

that monocytes are among the first immune cell types to 

recover, we further investigated the functionality of these 

cells across the four NLR profiles during recovery. As 

such, we observed a regain in both the numbers and the 

antigen-presenting capabilities of the monocytes towards 

discharge (Fig. 3c). The first subset to be re-established 

were the classical HLA-DR + monocytes (Cluster (Cl) 3, 

Cl33 and Cl12; Fig. 3c), while it was only in later stages 

of disease progression that the HLA-DR + mDCs were 

restored (see Cl11, Fig. 3c; see also statistics in Fig. 2a).

The early phase of severe COVID19 is characterized 

by a functional shift towards a more immunosuppressive 

spectrum of monocytes, as seen by a downregulation of 

HLA-DR and an enrichment of CD163 + monocytes in R4 

(Fig. 3) [10, 12]. However, longitudinal follow-up shows 

that this shift is reversible, as seen by the recovery of 

HLA-DR expression (suppl. Figure 8) and a relative reduc-

tion in the amount of immunosuppressive CD163 + mono-

cytes (see Cl53 and Cl32; Fig. 3c), leading to a restoration 

of the antigen-presenting phenotype of these cells.

Fig. 3  Overview of cell population abundances in peripheral blood 

profiles. a Abundance of selected populations shown, fitted with 

a dose response curve using a three-parameter logistic model (red 

line). Individual samples coloured by NLR, black open circles for 

healthy controls (HC). (n: R4 = 31, R3 = 30, R2 = 31, R1 = 31) b 

Median abundance per NLR group. Values are scaled per row, dark 

green indicating in which group the cell population is the most abun-

dant. CD4_Tregs had a median of 0 in all profiles, indicated in grey. 

c Overview of all FlowSOM clusters labelled as monocytes. On the 

left, the relative abundance per NLR group (similar to b); on the 

right, the median marker expression for those clusters
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Longitudinal cytokines profiling

In addition to immunophenotyping, we also performed mul-

tiplexed analysis of soluble serum proteins, which included 

32 pro-inflammatory cytokines and chemokines in serum 

samples prepared at concomitant sampling times. The lev-

els of these analytes were subsequently compared to the 

NLR profiles. In line with previous observations [14, 15, 

43, 44], the initial R4 stage of patients arriving at ICU was 

characterized by an increase in IFN-ƴ, TNF-α, IL-2, IL-6, 

IL-7, IL-10, IL-15, IP-10, MCP-1, MIP-1α, MIP-1β levels 

and a reduction in TARC, MDC and IL1-α, suggestive of a 

pro-inflammatory cytokine signature, often referred to as 

a “cytokine storm” (Fig. 4a). This signature was steadily 

reversed as patients attained a normal R1 stage. Similarly, 

CRP and ferritin were also significantly higher in R4 and 

gradually decreased as patients reached R1, suggestive of a 

return to baseline following an acute phase induction of the 

immune system (Fig. 2c, d). Clustering analysis to uncover 

patterns in cytokine profiles across the various NLR groups 

further confirmed that pro-inflammatory cytokine levels 

collectively reduced along the duration of an ICU stay 

(Fig. 4b). On the other hand, MDC and TARC, two consti-

tutive chemokines designated as CCL17 and CCL22 that 

are regulated at a post-translational level, increased back to 

normal levels [45].

Even though the levels of cytokines within the R1 pro-

file remained comparable between COVID-19 patients and 

healthy individuals, we observed altered expression levels 

of TNF-α, IL-18, IL1-α, MCP-1 and MIP-1α, between the 

two study groups (Fig. 4a; healthy controls are indicated as 

hollow black circles in the figure). It remains to be investi-

gated how long it would take for these levels to normalise; 

however, despite their aberrant profiles, patients were still 

able to leave the ICU for their recovery.

Integrative mapping of the immune response 
during recovery

Considering the important interplay between immune cells, 

cytokines and chemokines during severe COVID-19, we also 

performed an integrative, similarity matrix-based correla-

tive statistical modelling analyses (Fig. 5) to uncover asso-

ciative patterns along the duration of a patient’s recovery 

Fig. 4  Cytokine and chemokine profiling according to the peripheral 

blood profiles. Serum levels of 32 pro-inflammatory soluble proteins 

were determined by multiplexed ELISA concurrent with the whole 

blood sampling times. a Box plots illustrate the correlation of the 

level of the significantly different cytokine/chemokine with the out-

lined R1–4 (log10 scale, filled circle presents a COVID-19 patient, 

black empty circle illustrates a healthy control patient). (n: R4 = 29, 

R3 = 25, R2 = 28, R1 = 25) b Heatmap generated by clustering analy-

sis of the cytokine expression signatures across R1–4. ***p ≤ 0.001, 

**p ≤ 0.01, *p ≤ 0.05
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at ICU. As recently determined, critically ill COVID-19 

patients are characterized by a strong dysregulation of the 

immune reaction against the SARS-CoV-2 virus, whereby 

normally highly concerted interplays of cyto/chemokines 

and specific immune cell populations become disentangled 

[8]. In line with above observations, our similarity matrix 

analyses also revealed an intense correlation between vari-

ous immune cells and cyto/chemokines (a putative indi-

cation of ongoing immunological interactions) in the R4 

critically-ill COVID-19 patients (Fig. 5a), such that these 

correlations progressively “normalized” or decreased in 

terms of number of intense clusters when traversing from R4 

to R1 (Fig. 5a–d), thereby indicating that apart from above 

quantitative shifts, there was also a qualitative shift in pos-

sible immune-interactions when going from critically-ill to 

recovering COVID-19 patients.

Furthermore, the immunological characteristics of these 

clusters within the four blood profiles were of particular 

interest considering the importance of both neutrophils and 

lymphocytes in marking the health status of COVID-19 

Fig. 5  Integration analysis of the blood profiles and cytokine levels. 

Pearson correlation-driven similarity/correlation matrix analysis of 

cytokines/chemokines and mass cytometry data across the different 

COVID-19 patient’s NLR subgroups i.e., R4 (a), R3 (b), R2 (c) and 

R1 (d). This matrix is a statistical modelling representation wherein 

statistically stable correlations between variables across different 

patients facilitates their co-clustering as indicated by the dendro-

grams. The diagonal correlation value is 1, which denotes the highest 

possible statistically-significant correlation value that is “centering” 

our correlation matrices
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patients. Interestingly, neutrophils exhibited proficient cor-

relation with mainly adaptive immunity-relevant cytokines 

(e.g., IFN-ƴ, IP-10/CXCL10, IL-2, IL-13, IL-15), pro-

neutrophilic IL-8 and CD163 + classical-monocytes in R4 

(Fig. 5a). However, in R3, apart from the above-mentioned 

cytokines, neutrophils gained correlation with TNF-α, 

IL-10, MCP-1/CCL2, ƴδT cells, IL-17 and effector/naive 

CD4 T cells, a sign of slightly better (albeit pro-inflamma-

tory) cross-talk with adaptive immune cells and some degree 

of immunoregulation (IL-10/IL-17) (Fig. 5b). However, the 

neutrophil-centred clusters considerably “contracted” in 

R2/R1 (Fig. 5c, d); ultimately resulting in a ‘homeostatic’ 

cluster in the R1 subgroup, wherein neutrophils co-clustered 

with naive CD4 + /CD8 + T cells, a sign of immune response 

resolution and pro-homeostatic orientation [46].

On the level of lymphocytes, the most striking phenotypes 

were observed in the R4 profile (Fig. 5a); whereas, patterns 

in R3/R2 were largely transitional and ultimately culminated 

into a “contracted” lymphocytic correlative-compartment in 

R1 (Fig. 5b–d). More specifically, in R4 patients (Fig. 5a), 

the typically infection-resolving lymphocytic compartment 

(e.g. Th1/Th2 cells, effector/memory CD4/CD8 T cells) had 

relatively fewer correlations with various effector-function 

cytokines, including IFN-ƴ, TNF-α, IL-2, IL-15, thereby 

indicating a certain degree of immunological dysregulation. 

Most of these lymphocytes also had considerable negative 

correlation with neutrophils. Interestingly TNF-α, Th17 

and Tregs formed a cluster together which might be a sign 

of pro-inflammatory signalling since Tregs and Th17 have 

been shown to reciprocally stimulate each other via TNF-

signalling pathway [47]. We believe that in the current con-

text, this crosstalk might play a disease-potentiating role in 

COVID-19 severity. These discords were largely ameliorated 

from R3 to R1 (e.g. Th17 gaining correlation with Th1/Th2/

Tfh and activated-CD8 T cells in R1) thereby indicating that 

better lymphocytic activity/regulation is beneficial for the 

recovery of COVID-19 patients.

In conclusion, the above qualitative analyses revealed that 

neutrophil/lymphocyte-associated inflammation undergoes 

considerable changes in terms of co-associative immune-

components between R4 and R1, such that a relatively con-

tracted neutrophil cluster with a pro-homeostatic orienta-

tion and a contracted lymphocyte cluster defines favourable 

recovery for COVID-19 patients.

Discussion

There has been great interest in defining an early labora-

tory parameter that can be predictive of disease severity in 

COVID-19 patients. The muLBSTA score was proposed 

as an approachable predictor of viral pneumonia severity 

prior to the COVID-19 pandemic [48], and has also been 

successfully applied to COVID-19 [49, 50]. However, this 

score does not take into account a key aspect of COVID-

19 pathology, namely the contribution of neutrophils to 

severe/critical disease. The first clinical reports of COVID-

19 patients in Wuhan described elevated neutrophil counts 

and reduced lymphocyte counts, particularly in patients with 

severe disease [49, 51]. This results in a higher neutrophil-

to-lymphocyte ratio, which was also identified as an early 

prognostic marker for severe disease [16, 52]. Meta-analyses 

have confirmed the utility of this ratio not only as a meas-

ure of disease severity [53, 54], but also as a predictor of 

mortality [55]. Importantly, the NLR had a significantly 

higher adjusted odds ratio than cell counts alone, CRP, 

lymphocyte-to-monocyte ratio, or platelet-to-lymphocyte 

ratio [18], thus highlighting the benefit of this ratio over 

other comparative leukocyte ratios or routinely measured 

laboratory parameters.

Here, we have performed a longitudinal study in which 

consecutive peripheral blood samples of 40 surviving 

COVID-19 patients were analysed via high-dimensional 

mass cytometry analysis, thus allowing us to uncover 

detailed insights in the amount and functionality of the white 

blood cell (WBC) compartment. Importantly, using fresh, 

non-cryopreserved whole blood samples, our study allowed 

the analysis of both granulocytes, from which neutrophils 

take the mainstay and play an important role in COVID-

19 [56] (see also below), in addition to the most important 

populations of monocytes and lymphocytes. Using a whole 

blood phenotyping approach, we could calculate neutrophil-

to-lymphocyte ratios within the same blood samples used 

for our full analysis.

Using those insights, we grouped all measured samples 

based on the NLR, as such identifying four blood profiles 

that defined a biological trajectory through which patients 

evolved at a highly individualized pace during recovery. 

Importantly, despite random grouping, these NLR profiles 

correlated well to various clinical variables, including the 

level of respiratory support needed at concomitant sampling 

times. Another striking observation was the large range of 

NLR levels upon discharge from ICU. This indicates that 

patients with an increased NLR continue to exhibit a broad 

range of physical fitness as supported by the longer revalida-

tion periods required following discharge from ICU.

Beyond general clinical features, this cohort also included 

patients that received various therapeutic interventions, from 

which the use of corticosteroids (CS) was the most promi-

nent. Our analysis showed that the likelihood of patients-

receiving CS therapy correlated well with the duration of 

ICU stay, indicative of a good clinical selection of patients 

for this intervention. In addition, correlation analysis of the 

NLR profiles between patient groups that did and did not 

receive CS therapy suggests that while both groups exhibited 

similar trajectories from high to lower ratio levels, the CS 
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group showed a slower evolution towards a normal ratio. 

While it is known that CS therapy dampens the overall 

immune response [57], the excessive levels of cytokines 

and concurrent defective immune response as observed in 

COVID-19 warrants treatment with CS, in line with other 

studies [23]. Due to the small number of patients-receiving 

anti-IL1 or anti-IL6, we cannot make conclusions towards 

changes in the recovery patterns of their peripheral immune 

system, even though we did not observe obvious differ-

ences with those patients that did not receive these treat-

ments. Overall, the timing of these therapeutic interventions 

remains critical and still requires further optimization [58, 

59]. Indeed, one of the major problems seems to be the delay 

of the innate immune system in efficiently responding to 

SARS-CoV-2 infection, which further delays the subsequent 

adaptive immune response. While this cohort is small, it 

would be useful to track the phenotypes of severe “long-

stay” vs “short-stay” patients as well as non-hospitalized 

COVID “long haulers” to identify early biomarkers to better 

predict immune responses to the virus [60].

The defined biological trajectory also allowed us to fur-

ther elucidate the sequence of events and study the order 

in which particular immune cell populations reappear in 

the peripheral blood including the analysis of certain func-

tionalities. Using this approach, we identified that classical 

monocytes recover first, followed by CD8 + and CD4 + T 

cells. While these observations are in line with other 

smaller studies [25, 37], they will need further corrobora-

tion in larger cohorts. Overall, the underlying biology sug-

gests that protecting and/or reactivating the innate immune 

system (from which the monocytes seem first to recover), 

could be a potential therapeutic strategy. Indeed, based on 

these fundamental insights, therapies aimed at improving 

early monocyte functionality could be an interesting avenue 

to improve the disease course, as suggested by the role for 

MCP1/CCR2 interference therapy in SARS-CoV1 [12, 61] 

but also in COVID-19 as previously suggested [37]. We 

should, however, also look beyond monocytes; a reactiva-

tion of the other members of the innate immune system, 

including DCs and NK cells, could have the potential to 

ignite a stronger adaptive immune response and promote 

faster recovery. It also remains to be seen how specific the 

observed patterns are for COVID-19 and how they diverge 

from other severe respiratory diseases to tailor future inter-

ventions. Moreover, the addition of a comparator cohort on 

non-survivors could make these observations stronger.

In addition to the immune cell profiles, we also assessed 

concurrent levels of various cytokines and chemokines and 

acute phase reactants (i.e. CRP and ferritin). Clustering 

analysis revealed the gradual release of the pathologically 

elevated cytokine and chemokine levels, often referred to 

as a “cytokine storm”, even though the levels in COVID-19 

patients are still lower compared to some auto-inflammatory 

disorders e.g. macrophage activation syndrome. When 

patients evolved toward lower NLR levels, the coordination 

of the immune system recovered with a better alignment 

of cytokines and inflammatory cell types. Indeed, qualita-

tive, correlative matrix analyses further revealed that hyper-

inflammatory neutrophil clusters and dysregulated lympho-

cyte clusters distinguished critically-ill COVID-19 patients. 

Accordingly, amelioration of these features (i.e., contraction 

of neutrophil-clusters down to neutrophil-specific immune-

signalling and consolidation of lymphocyte-clusters to bet-

ter crosstalk between different T cell subsets) marked the 

recovery phase of COVID-19.

Finally, neutrophils are a relatively short-lived and readily 

activated cell type, complicating their inclusion in detailed 

immunophenotyping analyses as samples need to be pro-

cessed immediately after blood collection. Our approach in 

classifying patients by NLR, integrates deep immunophe-

notyping with concomitant neutrophil levels in the same 

blood samples, thus incorporating a key factor in severe 

COVID-19: the aggravated neutrophil response. Neutro-

phils provide a major source of reactive oxygen species in 

an inflammatory response, contributing to tissue damage via 

oxidative stress [62]. Neutrophils also provide a deadly link 

between the innate immune response and pathological blood 

clotting via the formation of neutrophil extracellular traps 

(NETs) [63]. NETs are comprised of an extracellular mesh-

work released from activated neutrophils that is both a toxic 

barrier to pathogens and a scaffold for thrombus formation. 

NETs likely contribute to the severe lung phenotype seen 

in COVID-19, with NETs found not only within vascular 

occlusions in the lung, but also elevated systemically in the 

blood circulation, especially in critically ill patients [64, 65]. 

Pro-inflammatory cytokines, activated platelets, and even 

SARS-CoV-2 itself can lead to activation of neutrophils 

toward NET release [65, 66]. Our results show significant 

elevation of several key cytokines contributing to NET for-

mation, including IL-8, TNF-a, and IL-6. NETs also amplify 

cytokine production by macrophages [67], therefore, allow-

ing potential further exacerbation of the ongoing inflamma-

tory response in COVID-19.

With our results that included analysis of serial sampling 

from patients over their hospital stay, we could identify 

an immunocompromised state along increasing NLR sub-

groups (R2–R4), and also follow recovery of key immune 

populations together with a return to normal NLR (R1). 

Future studies integrating our approach with an in-depth 

analysis of NETosis in neutrophils could provide additional 

insight into key drivers of severe COVID-19 pathology. 

This approach using NLR for classification may be appli-

cable not only for COVID-19, but also in other respiratory 

viral infections, including influenza. Community-acquired 

influenza A infections still account for significant morbidity 

and mortality worldwide, with the next pandemic influenza 
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strain potentially arising in coming years. Outbreaks of 

H7N9 and H5N1 influenza strains have shown similar or 

more severe pneumonia as COVID-19, with lymphopenia 

[68, 69]. NLR was retrospectively seen to be a specific and 

selective marker for mortality in this context as well [70]. 

There has been tremendous progress in our understanding of 

COVID-19 pathology in recent months thanks to the global 

effort undertaken in record time, and this new knowledge 

can be applied to future viral infections with unfortunately 

inevitable pandemic potential.

Supplementary Information The online version contains supplemen-

tary material available at https:// doi. org/ 10. 1007/ s00018- 021- 03808-8.
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