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We introduce a high-dimensional quantum encoding based on coherent mode-dependent single-photon

subtraction from multimode squeezed states. This encoding can be seen as a generalization to the case of nonzero

squeezing of the standard single-photon multirail encoding. The advantage is that the presence of squeezing

enables the use of common tools in continuous-variable quantum processing, which in turn allows us to show

that arbitrary d-level quantum states can be generated and detected by simply tuning the classical fields that

gate the photon-subtraction scheme. Therefore, the scheme is suitable for mapping arbitrary classical data in

quantum mechanical form. Regardless of the dimension of the data-set alphabet, the mapping is conditioned on

the subtraction of a single photon only, making it nearly unconditional. We prove that this encoding can be used

to calculate vector distances, a pivotal primitive in various quantum machine-learning algorithms.

DOI: 10.1103/PhysRevA.99.022342

I. INTRODUCTION

A crucial aim of the research on quantum information

technologies is to harness quantum systems so that some

information processing tasks can be achieved with better

performance than is possible with classical computers [1].

To exploit the improvement predicted by the theory, it is

necessary to encode information on a physical system whose

quantum properties can be preserved and controlled in the

laboratory. With this aim, much effort has been devoted to

investigate the use of light as a carrier of quantum information,

due to both its robustness to noise and the availability of

advanced technological tools to control its state (classical or

quantum) [2–4].

As a first step in any information processing task acting on

a classical input—be it communication, data processing, or

universal computation—an encoding must be chosen to write

the input information on the given system. To this end, a cor-

respondence must be established between the possible inputs

and a subset of states of the carrier system. The choice of the

encoding then determines the physical implementation that

corresponds to the logical processing of information. Light

is described in quantum mechanics by an infinite-dimensional

Hilbert space [5,6], whereas common communication or com-

putational tasks are defined in terms of finite alphabets [1].

A common choice is then to encode information in a finite-

dimensional subspace of a single mode, such as that spanned

by states with a finite number of photons (Fock states) or with

a definite single-photon property (e.g., polarization or orbital

angular momentum states). A much-celebrated variation to

*fra.arzani@gmail.com
†a.ferraro@qub.ac.uk

these schemes involves multiple modes instead, and it is given

by the so-called dual- [7] or multirail [2] encoding. In the lat-

ter, information is stored in the presence or absence of photons

in each of a set of spatial or temporal modes of the radiation.

All these encodings belong to the realm of what is com-

monly known as discrete-variable (DV) quantum information

(finite-dimensional quantum systems). However, states with

a definite number of photons can, as of now, be produced

only probabilistically, making the setup not easily scalable.

Moreover, protocols devised within this paradigm often re-

quire photon counting, which is experimentally demanding,

especially when high efficiency is required.

An alternative approach is to encode information using the

whole infinite-dimensional Hilbert space. The typical observ-

ables of interest are then the quadratures of the field, akin to

mechanical position and momentum, which have a continuous

spectrum. For this reason, this choice corresponds to the so

called continuous-variable (CV) regime [8–10]. Among the

advantages of the latter are the facts that (i) entangled and

nonclassical states can be produced deterministically using

squeezed states and (ii) states can be detected using the highly

efficient scheme of homodyne measurements [11,12]. On

the other hand, the mathematics become considerably more

involved due to the need of dealing with infinite dimensions

and the direct correspondence with finite-dimensional logical

qubits is lost.

A common way to recover such correspondence is to

encode a single logical qubit into a single infinite-dimensional

system by using the symmetries of certain states—for exam-

ple, the translational symmetry of GKP states (introduced by

Gottesman, Kitaev and Preskill) [13] or the parity symmetry

of cat and binomial states [14–16]. Such strategies allow us to

use a discrete alphabet that nevertheless can be manipulated

using the mathematical and experimental machinery typically
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applied in the CV approach. In this paper, we move from

such strategies and, rather than encoding single DV systems

in single CV systems, we propose to encode the former into

multiple instances of the latter. In this sense, we introduce

a CV counterpart of the standard DV dual- and multirail

encoding. More formally, as will be described below, the

zero squeezing limit of our encoding corresponds to the DV

multirail encoding.

Here, we will focus on states that are produced by coher-

ently1 subtracting one photon from several modes that are

each in a squeezed state. Our interest is mainly motivated by

recent theoretical [17,18] and experimental [19–24] advances

in the production of these kinds of states, that showed how to

coherently subtract single photons from multimode squeezed

states (MMSSs) via the interaction in a nonlinear crystal with

an appropriate classical field.

We develop our analysis along two main directions. First,

we study how quantum information can be encoded in the

multimode code space corresponding to a single qudit (d-

dimensional quantum system) or an ensemble of qubits. The

advantage of our scheme with respect to the usual multirail

DV approach lies in the fact that the presence of squeezing

enables the use of common tools in CV quantum optical

processing. This, in turn, allows us to show that arbitrary

qudits can be generated and detected via simply tuning the

classical fields that drive the photon-subtraction scheme. We

also investigate how parity measurements—which can be

related to homodyne measurements—can be used to discrim-

inate between basis states in the multimode code space.

The resilience of the proposed scheme with respect to the

main noise mechanisms is also analyzed, finding that high

levels of squeezing make the code space less resilient to

losses.

The second direction we explore consists of considering

the mapping of classical strings of data on the photon-

subtracted state. In general, mapping classical data into quan-

tum states constitutes an unavoidable initial step, which is

essential to any further quantum processing of the input, in-

cluding the proper evaluation of the processing performances

[25,26]. In our case, this mapping is enabled by the fact that,

as said, arbitrary high-dimensional states can be generated by

tuning the classical gate fields which, in turn, can directly

encode the classical data. Remarkably, the fact that only

one probabilistic event is needed to produce a logical state

(regardless of the size of the input data alphabet) implies that

the classical to quantum mapping is nearly unconditional. We

propose two protocols that exploit this mapping to compute

either the scalar product or the distance between classical

data vectors by measuring a single quadrature of the field.

The interest here lies in the widespread application of these

primitives for quantum-enhanced machine-learning schemes

[27–29], e.g., in distance-based clustering algorithms for su-

pervised pattern recognition [30].

1Here the word coherently refers to the fact that the single photon

subtraction is applied on a coherent superposition of modes. This

is not the same meaning as in “coherent states,” also common in

quantum optics. In the following, the distinction should be clear from

the context.

The rest of the paper is structured as follows. In Sec. II,

we recall the physics of mode-dependent single-photon sub-

traction. We then describe the encoding in Sec. III, where we

also detail how information can be extracted by measurements

that discriminate between elements of the computational ba-

sis, and how the main sources of noise affect the encoding.

Section IV is devoted to the encoding of classical data and

the computation of scalar products and vector distances. Con-

clusive remarks in Sec. V complete the paper. Appendix A

reports some examples of interesting encoded states while in

Appendix B a universal set of operations is defined that could

be used to process the encoded information.

II. MODE-DEPENDENT SINGLE-PHOTON SUBTRACTION

We now introduce some notations and recall how coher-

ent photon subtraction from squeezed time-frequency modes

works. Consider a MMSS |S〉, composed of M modes and

written as

|S〉 =
M

⊗

j=1

|s j〉e j
, (1)

where each |s j〉e j
= S(s j )|0〉e j

is a squeezed state of mode

e j (x, ω) with squeezing parameter s j , {e j (x, ω)} being an

orthonormal set of modes of the electric field, which are func-

tions of the position x and frequency ω. We denote by σ j the

corresponding annihilation operators. States in Eq. (1) have

been experimentally realized in various contexts [31–35],

producing and detecting quantum states across up to a million

modes [36]. As a relevant example, we bear in mind the

case of MMSS generated by parametric down-conversion of

a frequency comb. In particular, in the simple case of a comb

with a Gaussian spectrum, the spectra of the copropagating

squeezed modes can be approximated with Hermite-Gauss

functions [33,37]. A sum-frequency conversion process can

then be used to up-convert part of the light from a mode f

defined as

f (x, ω) =
∑

j

c∗
j e j (x, ω), (2)

with c j ∈ C,
∑

j |c j |2 = 1. This can be accomplished by

mixing the MMSS with a strong coherent pulse (gate field)

in a nonlinear crystal [17]. By choosing the phase matching

conditions for a noncollinear configuration, the up-converted

light is emitted in a different direction with respect to the

transmitted MMSS and gate beams. Thus, the process can

be modeled as an effective weak beam splitter interaction

[18]. The activation of a single-photon detector [e.g., an

avalanche photodiode (APD)] placed on the path of the up-

converted signal can then herald the subtraction of a photon

from the MMSS. If the process is perfect, the photon comes

with certainty from mode f . As was theoretically shown in

Ref. [17] and recently experimentally demonstrated [22], with

the appropriate phase-matching conditions and disergarding

the spatial dependence, the spectrum of the mode f essentially

coincides with the spectrum of the gate field. The correspond-

ing annihilation operator is thus defined by

b =
∑

j

c jσ j, (3)
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and the state of the transmitted MMSS after the detection of a

photon is a multimode photon-subtracted (MMPS) state:

|MMPS〉 =
∑

j

γ j

∣

∣s
p

j

〉

e j

⊗

i �= j

|si〉ei
. (4)

Here |sp

j 〉e j

= N jσ j |s j〉e j
denotes a photon-subtracted state

with N j a normalization factor. Due to the factors N j , the

complex coefficients γ j do not coincide with the c j ones;

however, they are fully determined by the latter. When the

normalization factors N j are taken into account, it is then

possible to find the appropriate gate that will produce a

photon-subtracted state as in Eq. (4) with arbitrarily chosen

coefficients γ j .

III. ENCODING

The photon-subtracted states in Eq. (4) can be rewritten as

|MMPS〉 ≡
M

∑

j=1

γ j | j〉, (5)

where | j〉 represents a MMSS in which a single photon has

been subtracted from mode e j :

| j〉 =
∣

∣s
p

j

〉

e j

⊗

i �= j

|si〉ei
. (6)

The relevant observation here is that the states | j〉 are orthog-

onal since they belong to subspaces with definite parity, in

terms of photon population. In particular, one has that

〈i| j〉 ∝ 〈si|ei

∣

∣s
p

i

〉

ei

〈

s
p

j

∣

∣

e j
|s j〉e j

= 0, (7)

since squeezed states only contain even photon components

and photon-subtracted squeezed states only contain odd pho-

ton components. We will refer to states | j〉 as the compu-

tational basis, each value j corresponds to a symbol of a

finite alphabet, and Eq. (5) introduces an abstract notation for

an encoded qudit. If the number of modes in M is 2n, the

span{| j〉} is isomorphic to C
2n and the qudit can be thought

to represent n qubits.

Experimental tomography of the photon-subtraction pro-

cess demonstrated a purity of more than 90% for the superpo-

sition of 16 modes at different frequencies [22]. Hence, it is

in principle possible to realize a highly accurate single-mode

subtraction with a large experimental tunability of the coeffi-

cients γ j in Eq. (5) which, in particular, is nearly independent

of the number of modes in the system. This means that any,

ideally arbitrary, state of a qudit with dimension M can be

generated. Equivalently, any superposition of n qubits can be

realized with a single photon subtraction from M = 2n modes.

Some examples can be found in Appendix A. Clearly, the

number of modes scales exponentially with the number of

qubits, but the number of single-photon operations needed is

constant, namely equal to one.

As mentioned, the present encoding can be regarded as a

generalization of the usual DV multirail encoding. There, a

single photon is prepared in an arbitrary superposition of M

spatially separated modes via a passive interferometer. The

relation to the encoding here introduced stems from the fact

that a photon-subtracted squeezed state is equivalent to a

squeezed single photon states, namely:
∣

∣s
p

j

〉

e j
= N jσ jS(s j )|0〉e j

≡ N
′
jS(s j )|1〉e j

. (8)

As a consequence, the encoded state |MMPS〉 in Eq. (4)

represents an arbitrary single-photon superposition over M

modes (that could in principle be spatially separated) to which

a multiple squeezing operator ⊗M
j=1S(s j ) has been applied. In

the zero-squeezing limit, |MMPS〉 states thus correspond in

fact to the usual multi-rail encoding2.

We recall that, in standard multi-rail encoding, the in-

terferometer parameters need to be set accordingly to the

state to be generated, a procedure that is typically hard to

implement especially in bulk optics or whenever a high degree

of tunability is required, and it can be implemented only via

advanced integrated devices [38–40]. The scheme presented

here overcomes these issues entirely, since the superposition

determining the MMPS states can be set simply by tuning

the gate field parameters—namely, modifying the spectral

components of the strong coherent gate that drives the non-

linear crystal [17]. In other words, due to the experimental

possibility to select the subtracted mode, many resource states

could be generated without modifying the physical setup. The

limitation in the code dimension is the number of modes

which can be simultaneously squeezed and addressed by

photon subtraction [22,23,33,41]. The code rate is given by

the success rate of the single-photon subtraction: it is mainly

driven by the gate power which has been limited to ∼2 kHz

[22] to avoid spurious or multiphoton events.

Another interesting feature of this scheme is that single-

photon detectors are not necessarily needed, given that all

modes are populated. In fact, as we will show below, highly

efficient homodyne detection can be used at the measure-

ment stage. In addition, the detected modes can be tuned by

appropriately selecting the local-oscillator fields for homo-

dyning, as shown experimentally in Refs. [33,41]. This in

turn implies that a variety of different unitary transformations

(in particular, any mode mixing operation [41,42]) can be

implemented on the generated states by embedding them in

the measurement.

Distinguishing elements of the computational basis

We saw that the parity features of the computational basis

elements imply that the latter form an orthonormal set of

states. In principle, it is thus possible to perfectly discriminate

them. However, experimental imperfections will lead to a

partial overlap and, consequently, a nonzero probability of

failing to distinguish these states. The two most relevant

kinds of imperfections in this context are nonideal photon

subtractions and losses before the detection. The former is due

to the incomplete mode selectivity of the subtraction process,

and it has been already considered for the characterization

of the experimental platform in Ref. [22]. This is also the

easiest to describe, because it only shuffles modes within the

finite-dimensional code space spanned by the basis elements.

2Notice that, in practice, the scheme here introduced cannot be

used to generate multirail encoding though, since the probability of

subtracting a photon vanishes for zero squeezing.
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Losses, on the other hand, need to be described in the infinite-

dimensional Hilbert space of the EM field. We shall analyze

the two types of errors separately in the following.

Many figures of merit can be used to assess the perfor-

mance of state discrimination. We will focus on the state

fidelity under a specific kind of measurement based on the

parity operator (defined below). The latter is a sensible choice

due to the parity properties of the computational-basis state.

In particular, we define

J =
∑

j

( j�̃ j ), (9)

with

�̃ j =
∑

k

|2k + 1〉〈2k + 1| j ⊗ I j̄ (10)

a modified parity operator on mode j, that acts as the identity

on all other modes. Note that �̃ j = �̃
†
j = (�̃ j )

2
, so �̃ j is a

projector. Therefore, we have

J| j〉 = j| j〉. (11)

Even if it is experimentally challenging to measure the

parity of many modes, the mean value of the parity operator,

� j =
∑

n

(−1)n|n〉〈n| j ⊗ I j̄ = 1 − 2�̃ j, (12)

is related to the value of the Wigner function at the origin

of the phase space and can be measured through homodyne

detection. In fact, given a generic single-mode state ρ, the

Wigner function evaluated at point α of the phase space is

given by [43,44] (since we are dealing with a single mode, we

drop the subscript j for clarity)

W (α) =
2

π
〈D(α)�D(α)†〉

= Tr

[

ρ
2

π

∑

n

(−1)nD(α)|n〉〈n|D(α)†

]

=
2

π

∑

n

(−1)n pn(α), (13)

where pn(α) is the occupation probability of the n-photon

state after the state ρ has undergone a phase-space displace-

ment operation D(−α) by an amount −α 3. The extension to

the multimode case is trivial. The average value of the parity

operator, which is sufficient to discriminate the basis elements

| j〉, coincides with no displacement as

W (0) =
2

π
〈�〉 . (14)

Direct evaluation of the Wigner function at any point in

the phase space can be made by photon counting after a

displacement operation [43,45], but it can also be recovered

more conveniently by cascaded optical homodyne, as pro-

posed in Ref. [46]. In the particular case of the parity operator,

where only the Wigner function at the origin of the phase

3Recall that 〈D(α)�D(α)†〉 = Tr[ρD(α)�D(α)†] = Tr[D(α)†

ρ D(α)�] = Tr[D(−α) ρ D(−α)†�]

space is needed, the probability pn(0) can be simply obtained

from phase-randomized homodyne measurements [47]. This

is straightforward to realize experimentally and, crucially, the

complexity of this measurement setup (including the total

number of measurements) increases only linearly with the

number of modes M.

1. Errors from imperfect photon subtraction

A perfect single-mode photon subtraction from one of the

squeezed modes can be represented as a map

P j : |S〉 �→ N jσ j |S〉〈S|σ †
j = | j〉〈 j|. (15)

An imperfect subtraction from the mode j, that we denote by

I j , can be modeled as a multimode process characterized by

a subtraction matrix χ ( j) such that [22]

I j : |S〉 �→
∑

kl

χ
( j)

kl

√

NkNlσk|S〉〈S|σ †
l

=
∑

kl

χ
( j)

kl
|k〉〈l|.

(16)

The matrix χ ( j) has the same properties of a density matrix.

In fact, it can be identified with the density matrix in the qudit

basis of the state ρ̃ j , corresponding to a distorted element of

the computational basis. The matrices χ ( j) can be obtained

experimentally via a tomography of the subtraction process. It

is then easy to compute the fidelity between the ideal state | j〉
and its realistic realization ρ̃ j as

F̃ j ( j) = 〈 j|ρ̃ j | j〉 = χ
( j)
j j , (17)

or between ρ̃ j and any basis state |k〉 �= | j〉

F̃k ( j) = 〈k|ρ̃ j |k〉 = χ
( j)

kk
. (18)

This has the operational meaning of probability that ρ̃ j will

pass a test to check whether ρ̃ j = |k〉〈k|, minimized over all

possible measurement strategies [48]. Note that 〈k|ρ̃ j |k〉 is

also the probability of getting the outcome k when measur-

ing J on the state ρ̃ j , so J optimally discriminates between

computational-basis states, which a posteriori justifies its

definition.

We can also easily compute the probability to get a wrong

outcome m �= j when performing a measurement in the com-

putational basis, as defined by J in Eq. (9), on a an imperfect

basis state ρ̃ j :

∑

m �= j

Pr(J = m|ρ̃ j ) = 1 − Tr(�̃ j ρ̃ j ) = 1 − χ
( j)
j j . (19)

Note that the fidelity and the error probability do not depend

on the squeezing level since, as mentioned above, the imper-

fection of photon subtraction considered here only shuffles

states in the qudit-space, whose definition is independent of

the amount of the squeezing in each mode.

We can then assess the robustness of computational-basis

states in Eq. (6) to imperfect subtraction from the matrix χ
(l )
jk

,

which can be in turn determined experimentally via tomog-

raphy of the subtraction process [22,49]. As an example, in

the follwing we have considered data from Ref. [49] (partially

published in Ref. [22]). The values of χ
( j)

kk
measured from the

tomography of the photon-subtraction from M = 4 squeezed

modes are reported in the following table:
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k

j 1 2 3 4

1 .972 .023 .001 .001

2 .031 .932 .032 .002

3 .007 .045 .893 .046

4 .004 .005 .07 .857

This shows that the error probability is below 15% in the

worst case.

The subsequent table shows instead the fidelity between

two nonideal basis states,

F̃ ( j, k) = Tr[

√

√

ρ̃ j ρ̃k

√

ρ̃ j]
2 = Tr[

√

√

χ ( j)χ (k)
√

χ ( j)]2,

(20)

which can also be taken as a measure of distinguishability,

although the interpretation as error probability no longer holds

for two generally mixed states. One obtains

k

j 2 3 4

1 0.1 0.01 0.01

2 0.14 0.01

3 0.19

where again values closer to zero correspond to better distin-

guishability.

2. Errors from losses before the detection

Losses before the detection stage can occur due to actual

optical losses, imperfect mode-matching, or to finite quantum

efficiency of the detectors. A simple model that is commonly

used for these situations consists of assuming that each mode

of the signal field is coupled through a beam splitter of

transmittivity τ j to an ancillary mode in the vacuum state,

which is then traced out. For the sake of clarity, we make

the simplifying assumption that losses affect each mode in

the same way τ j = τ . The loss super-operator Lτ acting

on the multimode density matrix is then factorized as Lτ =
L⊗n

1,τ with each = L1,τ a single-mode loss operator with pa-

rameter τ . We denote by

ρ̄ j = Lτ [| j〉〈 j|] (21)

the jth state of the computational basis after losses have

occurred. Since computational-basis states are factorized in

the basis of squeezed modes,

| j〉〈 j| = |s1〉e1
〈s1| ⊗ . . . ⊗ N j

∣

∣s
p

j

〉

e j

〈

s
p

j

∣

∣ ⊗ . . . , (22)

the fidelity

F̄ j = 〈 j|ρ̄ j | j〉 (23)

between | j〉 and ρ̄ j also factorizes as the product of fidelities

of single-mode states:

F̄ j = N
2
j 〈 j|a†

jL1,τ (a j |s j〉〈s j |a†
j )a j | j〉

×
∏

k �= j

〈sk|L1,τ (|sk〉〈sk|)|sk〉. (24)

Each term in this product is an overlap between a pure

and a mixed state and is thus easily computed as an overlap

integral between the respective Wigner functions [5]. The

results are shown in Fig. 1 as a function of the squeezing

parameter, assumed to be the same across all modes for

simplicity. Since losses degrade the squeezing, the fidelity

decreases when the squeezing is increased. The effect is more

severe when more modes are used to define the code space.

This is also corroborated by the fidelity F̄ ( j, k) between two

states after losses, which shows that a smaller amount of

losses is sufficient to make two states less distinguishable if

the initial squeezing is higher (see Fig. 2). In this case, since

both states are mixed, we need to use the Uhlmann formula

for the fidelity [48] and we used a truncated representation on

the Fock basis for a numerical computation.

FIG. 1. Contour plots of the fidelity F̄ j [see Eq. (23)] for photon-subtracted states with 2q modes, namely, encoding q qubits, as a function

of the initial squeezing and of the transmittivity of the beam splitter used to model losses.
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FIG. 2. Contour plots of the fidelity F̄ ( j, k) between two photon-

subtracted states ρ̄ j and ρ̄k after losses as a function of the initial

squeezing and of the transmittivity of the beam splitter used to model

losses.

We also compare the degradation under losses of our

photon-subtracted encoded states with the so-called even cat

state [5], which is a superposition of two coherent states

|cat, α〉 ∝ |α〉 + | − α〉, (25)

since its use has also been proposed for encoding a qubit in

a single mode of radiation in several quantum-information

protocols in hybrid CV-DV schemes. The results are shown

in Fig. 3 and they have to be compared with the first plot

in Fig. 1, where a single qubit is encoded in two modes via

photon subtraction. Note that since Lτ,1 is invariant under

rotations of phase space, we only need to study the impact

of losses as a function of |α|. Although the horizontal axes of

the two pictures are not directly comparable, it is clear that

the degradation of cat states when their amplitude increases is

larger than the degradation of photon-subtracted states when

the initial squeezing is increased. Moreover, while a relatively

large amplitude (|α| � 2) of the cat states is required for |α〉
and |−α〉 to be orthogonal—therefore, for the encoding to

FIG. 3. Contour plots of the fidelity between an ideal cat state

with the degraded version after losses have occurred, as a function of

|α| and of the transmittivity of the beam splitter used to model losses.

work—large squeezing is not required for multidimentional

encoding in photon-subtracted states. Only nonzero squeezing

is in fact required to have nonvanishing probability of sub-

tracting a photon from the superposition of modes.

IV. ENCODING CLASSICAL DATA

AND MEASURING VECTOR DISTANCES

The encoding of classical information in a quantum state

is the starting point of any quantum protocol that aims at

showing any kind of advantage when compared with a clas-

sical counterpart. A key feature of the described protocol is

that the encoded states can be generated simply via tuning the

field gate. In particular, the encoding of a stream of classical

data in a quantum state is here conditioned on one single

nondeterministic photon detection, while the dimension of the

involved Hilbert space is determined by the number of modes

that can be deterministically squeezed in the initial MMSS.

In the following, we investigate the possible advantage

of computing vector overlaps (as scalar product) and vector

distances via the proposed encoding.

A. Encoding two data vectors and measuring

their scalar product

Given two complex vectors �y = {y1, .., yN } and �z =
{z1, .., zN }, their components can be can be encoded in the

coefficients γ j in Eq. (5) via two photon-subtraction (PS)

experiments that produce the two states:

|PS〉1 =
∑

j

y j

∣

∣s
p

j

〉

m j

⊗

i �= j

|si〉mi
≡

∑

j

y j | j〉, (26)

|PS〉2 =
∑

j

z j

∣

∣s
p

j

〉

m j

⊗

i �= j

|si〉mi
≡

∑

j

z j | j〉. (27)

If we identify with �k the parity operator for the mode k

and with |Ŵ〉 = |PS〉1 ⊗ |PS〉2 the total state involving the

two photon subtraction experiments, the probability of getting

simultanoeusly the value −1 when the parity is measured in

the same mode in the two experiments is given by

|〈Nk|1〈Nk|2|Ŵ〉|2 = |ykzk|2, (28)

where �k|Nk〉 = −|Nk〉. Thus,the measurement of occurrence

of negative-parity coincidence in couples of modes with same

index in the two experiments estimates all the terms |ykzk|2
appearing in the scalar product between the two vectors �y

and �z. It has to be noted that the method scales linearly with

the number of modes as it requires 2N parity measurements,

while the full tomography of the total state |Ŵ〉 would require

2N2 measurements.

B. Encoding the distance of two data vectors

A second, even more convenient scenario is when the

difference between the two vectors is already given as a string

of classical data. We will now show that, in this case, the

distance

d2(�y,�z) =
∑

i

|yi − zi|2 (29)
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can be obtained as the variance of the quadrature operator of

solely one mode, which in turn can be measured efficiently

via homodyne detection.

Before addressing the calculation of the distance between

two arbitrary vectors, let us first consider M independently

squeezed modes and suppose we can encode a generic M-

component vector �h in the photon subtracted state:

|ψ〉 =
M

∑

j=1

h j

∣

∣s
p

j

〉

e j

⊗

i �= j

|si〉ei
. (30)

It is easy to compute that

〈ψ |qr |ψ〉 = 0 (31)

for any r. Let us turn to the variance of the quadratures. It

is clear that the computation is the same for any mode, and

the choice of position or momentum is irrelevant since we did

not specify the sign of the squeezing parameter. So, we can

consider q1 without loss of generality. We define for simplicity

A ≡ 〈ψ |q2
1|ψ〉. We have

A =
M

∑

j,r=1

h jh
∗
r

(〈

s
p

j

∣

∣

e j
⊗ 〈s| j̄

)

q2
1

(∣

∣sp
r

〉

er
⊗ |s〉r̄

)

, (32)

where

|s〉 j̄ =
⊗

t �= j

|st 〉et
. (33)

The terms with j �= r are zero, since each is proportional to a

product of the form
〈

sp
r

∣

∣

er
|sr〉er

= 0. (34)

For j = r, there are two possibilities:

j = r = 1 ⇒
〈

s
p

1

∣

∣

e1
q2

1

∣

∣s
p

1

〉

e1
= 3e2s1/2, (35)

j = r �= 1 ⇒ 〈s1|e1
q2

1|s1〉e1
= e2s1/2. (36)

It follows that

〈ψ |q2
1|ψ〉 =

3

2
e2s1 |h1|2 +

e2s1

2

M
∑

j=2

|h j |2. (37)

The normalization of |ψ〉 and the orthogonality of the states

| j〉 imply

M
∑

j=1

|h j |2 = 1. (38)

To compute the norm of a vector of arbitrary complex num-

bers �x, one could choose a gate field corresponding to

�h = Nx

(

β

�x

)

, (39)

where β is a complex number chosen by the experimenter and

Nx =
1

√

|β|2 + |�x|2
. (40)

The input vector �x does not need to be normalized and β

can be chosen arbitrarily [as long as it is not zero, because

otherwise the measured quantity no longer depends on �x, see

Eq. (41)]. The normalization constant need not be computed.

In a sense, it is precisely the fact that the physicality of the

state enforces normalization that allows us to avoid computing

the vector distance explicitly, replacing its computation by a

measurement. Plugging Eqs. (39) and (40) into Eq. (37) we

find

A =
3

2
e2s1

|β|2

|β|2 + |�x|2
+

e2s1

2

|�x|2

|β|2 + |�x|2

= e2s1

(

|β|2

|β|2 + |�x|2
+

1

2

)

. (41)

For |�x|2 → 0, the probability of subtracting from the first

mode goes to 1, so the variance of q1 tends to that of a photon-

subtracted squeezed mode. For |�x|2 → ∞, the probability of

subtracting a photon from the first mode goes to zero, and the

variance of q1 tends to that of the squeezed vacuum. We find

|�x|2 =
3 − 2e−2s1 A

2e−2s1 A − 1
|β|2. (42)

Note that only one quadrature has to be measured regardless

of the length of the vector �x. This means that the norm of the

vector �x could be computed with a constant number of oper-

ations, namely this algorithm has O(1) complexity, compared

to the standard O(n), linear in the length of the vector. It is

interesting to note that the sensitivity of the measured quantity

A with respect to |�x|2 increases with the squeezing. In fact,

dA

d|�x|2
∝ e2s1 . (43)

Notice that this does not depend on the squeezing of the

remaining modes. Of course, said squeezing does have an

impact on the overall process, as it affects the subtraction

probability. This is also roughly proportional to the square of

the power of the gate field, which is in turn related to |β|2 +
|�x|2 4. The expected waiting time to have enough subtraction

events to collect a reasonable statistics for an estimate of A

will then be longer for small values of |�x|2 but it is anyway

bounded because of the finite value of β.

To evaluate the distance between two vectors �y and �z, one

could use the full N = m + 1 modes system to encode

�h =
(

β

�y −�z

)

(44)

(where m is the length of �y and �z) and then measure the

variance of q1. Note that N = m + 1 squeezed modes are

needed, but this has to be compared with the linear scaling

one would have in the dimension of the classical registers

needed to store the vectors in classical algorithms and is a

space complexity problem rather than time.

As for the encoding procedure, if the vectors �y and �z are

given in the form of frequency-shaped strong coherent pulses,

4Encoding vectors of larger norm would require more power, so the

maximum available power will ultimately limit the class of vectors

that can be encoded in this scheme. Also, if the power of the gate

is too large, the probability of more than one subtraction becomes

nonnegligible.
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the gate pulse for the subtraction needed to encode the coeffi-

cients yi − zi on the photon-subtracted MMSS can be obtained

as follows. First, apply to each a frequency-dependent atten-

uation accounting for the subtraction probability from each

of the squeezed modes. This is known beforehand from the

characterization of the MMSS and the photon subtractor and

can be done with a fixed device (for example, a pulse shaper).

Then mix the two beams on a balanced beam splitter. The

output mode of the beam splitter containing the difference of

the amplitudes of the input beams is then used as a gate. The

complexity of this procedure is again independent of number

of modes.

V. CONCLUSIONS

The generation of photon-subtracted optical states has been

the subject of intensive experimental efforts for more than a

decade [50–58]. This is motivated by both applicative and fun-

damental considerations, given that the access to these types

of states could improve the performance of a variety of quan-

tum information tasks [59]—–including estimation [60] and

teleportation protocols [61–63]—and allow for homodyne-

based loophole-free nonlocality tests [64–68]. More in gen-

eral, photon-subtracted states can be used as resources for

tasks that require quantum non-Gaussianity or Wigner nega-

tivity [69,70], and in fact they have been proposed as building

blocks to implement universal non-Gaussian operations [71]

and hard-to-sample nonuniversal dynamics [72]. In addition,

arbitrary single-mode quantum states can be engineered when

multiple feedback-controlled photon-subtraction operations

are applied sequentially [73]. Here we have shown how, in

a multimode setting, they could be used for general quantum

encoding purposes. Specifically, we introduced a multidimen-

sional quantum encoding which is based on multimode CV

states of light. The code dimension is determined by the

number of light modes which can be simultaneously occupied

by squeezed vacua, and the information is encoded on the

coefficients of the superposition of photon-subtraction events,

which are in turn coherently applied to the squeezed modes

and triggered by a single photon event.

The encoding is a generalization of the multirail encoding

and it coincides with the latter in the limit of zero squeezing.

A noteworthy difference of our scheme with respect to the

standard multirail approach is that it requires only one single

photon detector (at the encoding stage), as we propose the

use of homodyne detection. Moreover, the adjustment of

the encoding coefficients requires only the control on the

spectral components of a gate beam in a coherent state (ul-

timately controlled via a spatial light modulator) and not the

arrangement of several interferometric parameters via optical

components (beam splitters, phase shifters). Notice that the

encoding does not require a large amount of squeezing per

mode: any nonzero squeezing is sufficient to ensure a measur-

able rate of subtraction events—which is, in any case, mainly

driven by the amplitude of the gate field. Our results suggest

that large values of squeezing are in fact detrimental for the

encoding, making the computational basis states less robust

to losses. This implies a trade-off between resilience to losses

and the rate of generation, as the number of subtraction events

in a given time is proportional to the mean photon number

in the subtraction mode, the power of the gate field, and the

square of the nonlinear susceptibility [17]. Low squeezing

values imply low photon numbers and thus lower rates. This

can to some extent be compensated, for fixed nonlinearity,

increasing the power in the pump beam. However, at high

gating power, spurious effects may appear, such as dark counts

on the heralding detectors due to second-harmonic generation

of the gate field, that degrade the quality of the subtraction

process.

We stress that our investigations are mostly motivated

by the experimental readiness of much of the technology

required. The coherent single-photon subtraction has been

demonstrated on a space of 16 modes [22] and applied on mul-

timode squeezed and entangled states [24]. The production of

multimode quantum states involving a large number modes,

up to 60 for frequency modes and up to 106 for temporal

modes, has already been demonstrated in different experi-

mental setups [33,34,36]. The tailoring of nonlinear processes

based on spectral and temporal modes represents an active

area of research on its own, as reviewed in Ref. [4], and we

can reasonably expect the extension of coherent single-photon

subtraction to a larger number of squeezed modes. Besides

the number of nonvacuum modes, the dimension of the code

space is only limited by the specifics of each setup (e.g., the

number of up-conversion modes that can be phase-matched

simultaneously and the resolution of the pulse-shaping device

used to produce the gate pulse). It is thus interesting to

explore new ways to exploit the resulting states for quantum

information processing. The results we report suggest that be-

sides producing interesting high-dimensional quantum states

(qudits), of which we also give some explicit examples in

Appendix A, the tunability of the subtraction mode can be

exploited to map arbitrary classical data to quantum states, as

well as process them. We showed this by providing in Sec. IV

two schemes to compute the distances of two encoded vectors,

which may have a wide range of applications; for example, in

clustering algorithms for machine learning. The coefficients

can be transferred to the multimode state of the field that

shapes the subtraction mode, and the norm or the distance

are shown to be proportional to the mean values of simple

observables: either the parity or the square of a quadrature

operator.

In summary, these findings represent a first step in the use

of MMPS squeezed states for quantum information process-

ing, with the potential to lead to more advanced tasks, such

as universal quantum computation. We only briefly consider

this last application in Appendix B. Although we can formally

construct a universal set of gates, their experimental realiza-

tion lies outside the reach of current experimental capabilities.

The possibility to construct more experimentally accessible

sets of transformations remains an open question that we leave

to further investigation.
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APPENDIX A: EXAMPLES OF ENCODED STATES

We can easily see that interesting classes of states can

be obtained by simply tuning the coefficients γ j in Eq. (4),

which are controlled by the classical gating field. To fix the

ideas, consider 2n independently squeezed modes and the

corresponding states | j〉 in which a photon has be subtracted

from mode e j [see Eq. (6)]. These could represent an n-qubit

system in which | j〉 corresponds to the binary representation

of j. For example, for n = 2, neglecting normalization after

photon subtraction,

| j = 0〉 =σ0|s0〉m0
|s1〉m1

|s2〉m2
|s3〉m3

↔ |00〉,
| j = 1〉 =|s0〉m0

σ1|s1〉m1
|s2〉m2

|s3〉m3
↔ |01〉,

| j = 2〉 =|s0〉m0
|s1〉m1

σ2|s2〉m2
|s3〉m3

↔ |10〉,
| j = 3〉 =|s0〉m0

|s1〉m1
|s2〉m2

σ3|s3〉m3
↔ |11〉.

(A1)

A two-qubit encoded cluster state [74], for example, would

then correspond to

|G2〉 =
1

2
(|00〉 + |01〉 + |10〉 − |11〉)

=
1

2

∑

j

(−1)δ j3
∣

∣s
(p)
j

〉

e j

⊗

i �= j

|si〉ei
, (A2)

where δ jk denotes the Kronecker delta. Cluster states have

plenty of applications in quantum information; for example,

they are known to be universal resources for measurement-

based quantum computing if combined with an appropriate set

of measurements. These usually include so-called Pauli mea-

surements and at least one non-Clifford gate [75]. The latter

requires measurements that are usually considered harder to

implement. This difficulty can be circumvented using magic

state injection [76], which roughly involves coupling an eigen-

state of the desired non-Clifford operator to the cluster state.

It is easy to imagine that the resulting extended resource

state can again be written as a MMPS state by tuning the

coefficients in Eq. (4). The catch is, of course, that it is difficult

to write, let alone realize, even Pauli measurements on the

encoded states. Nevertheless, the present paper may moti-

vate the search for an experimental scheme to perform such

measurements and, if such a scheme was found, a plethora

of protocols could readily be implemented as the resource

states are already available. We conclude by giving two more

examples of interesting states that could be produced with

the present setup. Hypergraph states are a generalization of

cluster states containing edges between more than two qubits

that were introduced to study the entanglement properties of

some quantum algorithms [77]. An edge between three qubits

may be understood as the result of applying a Z on the third if

the state of both the other two is |1〉. The smallest nontrivial

hypergraph involves three qubits and the encoded version can

be written

|Hyp3〉 =
1

√
8

7
∑

j=0

(−1)δ j7
∣

∣s
(p)
j

〉

e j

⊗

i �= j

|si〉ei
. (A3)

Finally, fingerprinting designs a class of communication pro-

tocols where two parties, Alice and Bob, have two strings

of n bits a and b and a third party, Charles, has to decide

whether a = b. Charles can communicate with Alice and Bob,

but Alice and Bob cannot communicate. Their goal is to send

the minimum amount of information to Charles, still allowing

him to decide whether a = b with small error probability.

Quantum mechanics allows an exponential reduction [78] of

the amount of information that Alice and Bob have to send by

using an error correcting code E : {0, 1}n → {0, 1}M such that

E (a) = x, E (b) = y and then encoding x and y in the states

|hx〉 =
1

√
M

M
∑

j=0

(−1)x j | j〉, (A4)

|hy〉 =
1

√
M

M
∑

j=0

(−1)y j | j〉, (A5)

where x j (y j) is the value of the jth bit of x (y). This also

nicely matches our representation of MMPS states.

APPENDIX B: UNIVERSAL SET OF GATES

We have seen that a single photon-subtraction acting co-

herently on M modes can initialize an M-level system to an

arbitrary state. Let us now briefly address the question of the

operations required to perform arbitrary quantum processing

of the information stored on M modes via the encoding here

introduced. For the sake of this Appendix, we will only focus

on the case of M = 2d (namely, on a high dimensional system

that emulates a multiqubit one).

At the logical level, a universal set of qubit gates consists

of all possible single-qubit unitaries plus an entangling two-

qubit gate. A possible finite universal set of gates is given by

{H, T,CZ}: it is composed of the Hadamard gate, the T gate (a

rotation of angle π
4

around the Pauli Z axis), and the control-

phase CZ , respectively [1]. We will only introduce here the

definitions of such gates in terms of the encoding, leaving the

analysis of their possible implementation to future studies.

Considering the definition of the parity operator given in

Eq. (10), the T gate acting on a logical qubit composed of two

modes is expressed as

T = �̃
π/4
2 . (B1)

The Hadamard gate, again acting on a qubit encoded on two

modes, corresponds to the following transformation:

∣

∣s
p

1, s2

〉

→
1

√
2

(∣

∣s
p

1, s2

〉

+
∣

∣s1, s
p

2

〉)

, (B2)

∣

∣s1, s
p

2

〉

→
1

√
2

(∣

∣s
p

1, s2

〉

−
∣

∣s1, s
p

2

〉)

. (B3)

Finally, the CZ between two logical qubits encoded on four

modes can be written as

CZ =
1

∑

j=0

| j〉〈 j| ⊗

(

1
⊗

k=0

�
k j

k

)

. (B4)
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