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Abstract—1In this paper we investigate a Self-Adaptive Dif-
ferential Evolution algorithm (jDEdynNP-F) where ' and CR
control parameters are self-adapted and a population size
reduction method is used. Additionally the proposed jDEdynNP-
F algorithm uses a mechanism for sign changing of F' control
parameter with some probability based on the fitness values
of randomly chosen vectors, which are multiplied by the F
control parameter (scaling factor) in the mutation operation of
DE algorithm. The performance of the jDEdynNP-F algorithm is
evaluated on the set of 7 benchmark functions provided for the
CEC’2008 special session on high-dimensional real-parameter
optimization.

[. INTRODUCTION

HE general problem tackled using an optimization

algorithm is to find & so as to optimize f(Z); & =
{z1,22,..,xp}. D is the dimensionality of the function.
Domains of the variables are defined by their lower and upper
bounds: ;10w Tjupp; J € {1,..., D}.

Differential Evolution (DE) is a floating-point encoding
evolutionary algorithm for global optimization over contin-
uous spaces [30], [23], [15]. Although the DE algorithm
has been shown to be a simple yet powerful evolutionary
algorithm for optimizing continuous functions, users are still
faced with the problem of preliminary testing and hand-
tuning of the evolutionary parameters prior to commencing
the actual optimization process [32]. As a solution, self-
adaptation [5], [6], [13] has been found to be highly benefi-
cial in automatically and dynamically adjusting evolutionary
parameters such as crossover rates and mutation rates, and
to do this without any user interaction.

The main objective of this paper is a performance eval-
uation of our self-adaptive differential evolution algorithm,
named jDEdynNP-F which uses a self-adapting mechanism
on the control parameters F' and CR [9], [11], a method for
gradually reducing population size [10] during the optimiza-
tion process, and a new mechanism for exchanging the sign
of control parameter F'. The performance of the algorithm
is evaluated on the set of benchmark functions provided
for the CEC’2008 special session on high-dimensional real-
parameter optimization [31].

The article is structured as follows. Section II gives an
overview of work dealing with DE. Section III shortly sum-
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marizes the differential evolution. In Section IV the differ-
ential evolution jDEdynNP-F algorithm is described. In Sec-
tion V experimental results of our self-adaptive jDEdynNP-F
algorithm on CEC 2008 benchmark functions are presented
and detailed performance analysis of the algorithm is given.
Section VI concludes the paper.

II. RELATED WORK

Differential Evolution (DE) algorithm belongs to Evolu-
tionary Algorithms (EAs). Historically, scaling EAs to large
size problems have attracted much interest, including both
theoretical and practical studies [31]. The DE algorithm was
proposed by Storn and Price [30], [29], and since then the
DE algorithm has been modified and widely used in many
researches, practical applications, etc. [23], [7], [1], [17], [4],
[12], [21], [25], [26].

The TDE algorithm [14] used the new trigonometric
mutation operation. Teo [32] proposed a DE algorithm with a
dynamic population sizing strategy based on self-adaptation,
while F' and CR control parameters are also self-adapted.
Qin and Suganthan [24] proposed Self-adaptive Differential
Evolution algorithm (SaDE), where control parameters F'
and CR are gradually self-adapted using statistical learning
strategy. Brest et al. [8] compared some versions of adap-
tive and self-adaptive algorithms: FADE [18], DESAP [32],
SaDE [24], and jDE [9].

Ali [2] proposed a study of the mutation operation in
DE algorithm. He used an auxiliary population set in his
works [2], [3].

To solve high-dimensional problems [20], [31] cooperative
coevolution [22], [28] is used. Liu et al. [19] used FEP
(fast evolutionary programming) with cooperative coevolu-
tion (FEPCC) to speedup convergence rates on the large-
scale problems, Bergh and Engelbrecht [33] used a Co-
operative Approach to Particle Swarm Optimisation (PSO),
Yang, Tang and Yao recently used differential evolution with
cooperative coevolution (DECC) [34]. Gao and Wang [16]
used a memetic DE algorithm for high-dimensional problem
optimization.

III. THE DIFFERENTIAL EVOLUTION ALGORITHM

DE creates new candidate solutions by combining the
parent individual and several other individuals of the same
population. A candidate replaces the parent only if it has
better fitness value. DE has three parameters: amplifica-
tion factor of the difference vector — F', crossover control
parameter — CR, and population size — NP. Original DE
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algorithm keeps all three control parameters fixed during the
optimization process. However, there still exists a lack of
knowledge of how to find reasonably good values for the
control parameters of DE for a given problem [18].

The population of the original DE algorithm [29], [30],
[27] contains NP D-dimensional vectors:

7@ = (29,249, .2 D), i=1,2,.

Ti5 s T ., NP,

where G denotes the generation. During one generation

for each vector, DE employs the mutation and crossover

Operations to produce a trial vector:
G G
w9 ol ( >}

217 127

..., NP.

Then a selection operation is used to choose vectors for the
next generation (G + 1).

The initial population is selected uniformly randomly
between the lower (2 ,10.,) and upper (x,.,p) bounds defined
for each variable x;. These bounds are specified by the user
according to the nature of the problem. After initialization,
DE performs several vector transformations (operations) in
a process called evolution.

A. Mutation operation

Mutation for each population vector creates a mutant
vector:

—»(G) _ {U(G) (G)}

, U D sy NP.

Mutant vector can be created using one of the mutation
strategies. In literature one of the most useful mutation
strategy is [23], [15]:

o “rand/1”: (@) = 79 4 F.(%,,@ - 7,@)

where the indexes ri1,72,73 represent the random and
mutually different integers generated within range [1, NP]
and also different from index 7. Mutation scale factor F' is
within the range [0, 2], usually less than 1.

)

B. Crossover operation

After mutation, a “binary” crossover operation forms the
final trial vector, according to the i-th vector in the current
population GG and its corresponding mutant vector.

(@) _ ’Ui’]'(G) if ru’nd(0> 1) < CR or J = Jrand,
Ui, j - (@) .
Ti otherwise,

i=1,2,..,NPand j=1,2,...,D.

CR is a crossover parameter or factor within the range
[0,1) and presents the probability of creating parameters
for trial vector @ from a mutant vector 7. Index j,qnq is
a randomly chosen integer value within the range [1, NP].
It is responsible that the trial vector contains at least one
parameter from the mutant vector. Here we describe binary
crossover operation. The other one is exponential but it is
rarely used in practice.

If the control parameter values from the trial vector « are
out of bounds, the proposed solutions in literature [30], [29],
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[27], [23] are: they are set on bounds, used as they are (out
of bounds), or are reflected into bounds (when F<1):

Ui (@) )

. (@) )
@ {2 Tjlow — Uy if u < Zjlows
i ..

2" Tjupp — U if u > T upp-

C. Selection operation

The third operation that of the DE algorithm is selection. It
selects according to the fitness value (f(Z)) of the population
vector & and its corresponding trial vector «, which vector
will survive to be a member of the next generation (G + 1).
In case of a minimization problem, the following selection
operation is used:

_(G) e pr=(C ~(@
F(@+D) _ {ui( bt f(“i( ) < f(%'( ),

=(G)

T otherwise.

IV. OUR ALGORITHM

The jDE algorithm [9] uses a self-adapting mechanism on
control parameters F' and CR. Let us first describe the self-
adaptive jDE algorithm, then we will present the dynamic
population size method, and finally we will describe our
algorithm, which is used for experiments in this paper.

A. The Self-adaptive Differential Evolution Algorithm

In [9] the self-adapting control parameter mechanism of
“rand/1/bin” strategy was used. The self-adaptive control
mechanism was used to change the control parameters F
and CR during the run. Each individual in population was
extended w1th two values of the control parameters F(
and C’R< that were adjusted by means of evolution. The
better values of these (encoded) control parameters lead to
better individuals which, in turn, were more likely to survive
in the selection process and produce offspring and, hence,
propagate these better parameter values. The third control
parameter, population size (NP), was not changed during
the evolutionary process in [9].

The self-adaptive control parameters Fi(GH) and CREGH)
are calculated as follows:

G+ _ F, +rand; - F,
i - F.(G>
1

if randy < T,

otherwise,

OR(G+D _ {randg if randy < 19,

CR,EG) otherwise.

They produce control parameters F' and CR in a new
parent vector. The quantities rand;,j € {1,2,3,4} rep-
resent uniform random values within the range [0,1]. T
and 7o are probabilities to adjust control parameters F'
and CR, respectively. 11, T2, F}, F,, were taken fixed values
0.1,0.1,0.1, 0.9, respectively. The new F’ takes a value from
[0.1,1.0] and the new CR from [0,1] in a random manner.
The control parameter values FZ-(GH) and CR§G+1) are
obtained before the mutation operation is performed. This
means they influence the mutation, crossover and selection

operations of the new vector #° 1.
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TABLE I
ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D = 100

FES 1 2 4 5 6 7

1% (Best) 1.1234e+05 | 1.1331e+02 | 2.5674e+10 | 1.2128e+03 | 8.7685e+02 | 1.9808e+01 | -9.0034e+02
7th 1.2617e+05 | 1.1897e+02 | 4.2406e+10 | 1.2536e+03 | 1.0551e+03 | 2.0023e+01 | -8.8232e+02
13" (Median) || 1.3541e+05 | 1.2082e+02 | 4.4896e+10 | 1.2913e¢+03 | 1.1237e+03 | 2.0143e+01 | -8.6512e+02
5.00e + 3 19%h 1.4661e+05 | 1.2282e+02 | 4.9900e+10 | 1.3195e+03 | 1.1929e+03 | 2.0251e+01 | -8.5241e+02
25" (Worst) 1.6494e+05 | 1.2850e+02 | 6.5184e+10 | 1.3765e+03 | 1.2697e+03 | 2.0429e+01 | -8.3771e+02
Mean 1.3630e+05 | 1.2122e+02 | 4.5628e+10 | 1.2889e+03 | 1.1163e+03 | 2.0131e+01 | -8.6670e+02
Std 1.3923e+04 3.7367 8.5890e+09 | 4.5604e+01 | 9.2438e+01 | 1.6217e-01 1.7922e+01
1% (Best) 2.4892 3.2628e+01 | 9.3574e+03 | 2.8500e+02 | 7.9203e-01 | 4.0365e-01 | -1.2017e+03
7th 2.8334 3.4888e+01 | 2.2053e+04 | 3.2962e+02 | 8.5990e-01 | 5.1325e-01 | -1.1724e+03
13" (Median) 3.1589 3.5834e+01 | 3.0970e+04 | 3.4869e+02 | 9.1115e-01 | 5.8703e-01 | -1.1506e+03
5.00e + 4 19" 4.2026 3.8442e+01 | 4.4655e+04 | 3.5664e+02 | 9.4162e-01 | 6.6028e-01 | -1.1330e+03
25" (Worst) 7.1115 4.4748e+01 | 7.7325e+04 | 4.0255e+02 1.0214 7.8441e-01 | -1.1122e+03
Mean 3.7501 3.6921e+01 | 3.4041e+04 | 3.4258e+02 | 9.0875e-01 | 5.8728e-01 | -1.1515e+03
Std 1.2110 3.2655 1.7516e+04 | 2.4548e+01 | 6.5617e-02 | 1.0515e-01 | 2.4061e+01
1% (Best) 5.6843e-14 | 1.2996e-01 | 4.0958e+01 0.0000 2.8421e-14 | 5.6843e-14 | -1.4881e+03
7th 5.6843e-14 | 2.5310e-01 | 7.9455e+01 | 5.6843e-14 | 2.842le-14 | 5.6843e-14 | -1.4815e+03
13" (Median) || 5.6843e-14 | 4.2633e-01 | 1.1336e+02 | 5.6843e-14 | 2.8421e-14 | 5.6843e-14 | -1.4761e+03
5.00e + 5 19*" 5.6843e-14 | 4.9249e-01 | 1.2445e+02 | 5.6843e-14 | 2.842le-14 | 5.6843e-14 | -1.4716e+03
25" (Worst) 5.6843e-14 1.0264 2.4621e+02 | 5.6843e-14 | 2.842le-14 | 5.6843e-14 | -1.4663e+03
Mean 5.6843e-14 | 4.2875e-01 | 1.1158e+02 | 5.4570e-14 | 2.8422e-14 | 5.6843e-14 | -1.4768e+03

Std 0.0000 2.2701e-01 | 4.4760e+01 | 1.1369e-14 0.0000 0.0000 6.2274

Some ideas, how to improve the jDE algorithm, are
reported in [8].

TABLE IV
TYPICAL RUN, WHEN mazn feval =500,000 AND pmaz = 4 ARE
ASSUMED
P | 1+ ] 2 3 4
NP, 200 100 50 25
geny 650 1250 2500 5000
NP, x genp | 125,000 | 125,000 | 125,000 | 125,000

B. Dynamic Population Size

The self-adaptive jDE [9] revised in Section IV-A is not
concerned with the third control parameter NP. This section
revises an improved and more robust version of the self-
adaptive DE algorithm, dealing with population size NP,
called a dynNP-DE algorithm [10]. In [10] we have extended
our self-adaptive jDE[9] algorithm using dynamic population
size.

In the jDEdynNP-F algorithm population size decreases
during the evolutionary process. It could also be possible to
increase the population size when certain criteria is reached
(e.g. population variance drops to a certain predefined lower
bound). But in our case, we never increase population size.

One step of the population size reduction is as follows [10]

2034

(in case of minimization):

~(a o g/ =(G (el
o _ [T @) < S@ES) md 6= G,
' fi(G) otherwise,
M
NP(©&) .
if G = G,
NPE+D — Q(G) _ )
NP otherwise.
NP
1=1,2,.., —.
2

Only a few populations are exposed to reduction. We
denote the generation, whose population is to be reduced,
as Gr. One vector (individual) from the first half (.T:;G))
of the current population and corresponding individual from
the second half (¥ ﬁ,_f:_l) are compared based on their fitness
values and the better one is placed (as a survivor) in the first
half at position ¢ of the current population. The first part of
current population is assumed to be the population which
is to be the parent population in the next generation. In the
proposed reduction scheme the new population size is equal
to half the previous population size.

In this paper we give some remarks about implementation.
The reduction of population size is performed as depicted in
Fig. 1.

We used swap function. Actually, it was unnecessary
to swap those individuals (vectors) and their fitness values
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TABLE 11
ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D = 500

FES 1 2 4 5 6 7
1% (Best) 1.6025e+06 | 1.6207e+02 | 9.5642e+11 | 8.8073e+03 | 1.2569e+04 | 2.1246e+01 | -3.6288e+03
7th 1.7576e+06 | 1.6431e+02 | 1.265%+12 | 9.3208e+03 | 1.4659e+04 | 2.1272e+01 | -3.5721e+03
13" (Median) || 1.7977e+06 | 1.6539e+02 | 1.4190e+12 | 9.4219¢+03 | 1.5154e+04 | 2.1284e+01 | -3.5465e+03
2.50e + 4 19%h 1.8262e+06 | 1.6711e+02 | 1.4752e+12 | 9.4810e+03 | 1.5397e+04 | 2.1292e+01 | -3.5335e+03
25" (Worst) 1.8615e+06 | 1.6838e+02 | 1.5871e+12 | 9.6161e+03 | 1.5924e+04 | 2.1318e+01 | -3.4764e+03
Mean 1.7846e+06 | 1.6553e+02 | 1.3649e+12 | 9.3746e+03 | 1.5003e+04 | 2.1283e+01 | -3.5490e+03
Std 5.9938e+04 1.6684 1.6757e+11 | 1.8424e+02 | 7.1697e+02 | 1.6561e-02 | 3.3857e+01
1% (Best) 2.7745e+04 | 1.2597e+02 | 2.8236e+09 | 4.4326e+03 | 2.5075e+02 | 1.1679e+01 | -4.4533e+03
7th 3.0486e+04 | 1.2767e+02 | 3.5108e+09 | 4.5887e+03 | 2.7978e+02 | 1.2144e+01 | -4.3708e+03
13" (Median) || 3.1897e+04 | 1.2826e+02 | 3.9378e+09 | 4.6260e+03 | 2.9699e+02 | 1.2328e+01 | -4.3434e+03
2.50e +5 19" 3.3575e+04 | 1.2934e+02 | 4.2065e+09 | 4.6538e+03 | 3.1644e+02 | 1.2406e+01 | -4.3227e+03
25" (Worst) 3.5231e+04 | 1.3084e+02 | 4.9603e+09 | 4.6932e+03 | 3.4005e+02 | 1.2889e+01 | -4.2756e+03
Mean 3.1741e+04 | 1.2853e+02 | 3.8791e+09 | 4.6030e+03 | 2.9932e+02 | 1.2268e+01 | -4.3496e+03
Std 2.0179e+03 1.2379 5.5968e+08 | 7.2762e+01 | 2.3789e+01 | 2.7653e-01 | 4.2065e+01
1% (Best) 5.6843e-14 5.9865 5.1621e+02 | 1.1368e-13 | 2.8421e-14 | 1.1368e-13 | -6.9395e+03
7th 5.6843e-14 7.2485 6.2577e+02 | 2.2737e-13 | 2.8421le-14 | 1.1368e-13 | -6.8977e+03
13" (Median) 1.1368e-13 8.0337 6.4456e+02 | 4.5474e-13 | 2.842le-14 | 1.1368e-13 | -6.8876e+03
2.50e + 6 19*" 1.1368e-13 9.2700 6.9820e+02 | 7.9580e-13 | 5.6843e-14 | 1.4210e-13 | -6.8526e+03
25" (Worst) 1.1368e-13 | 1.3115e+01 | 8.7290e+02 | 1.6598e-11 | 5.6843e-14 | 7.1054e-13 | -6.8410e+03
Mean 9.3223e-14 8.4648 6.6115e+02 | 1.4688e-12 | 4.2064e-14 | 1.4893e-13 | -6.8816e+03
Std 2.7847e-14 1.7360 8.2652e+01 | 3.4839e-12 | 1.4492e-14 | 1.1812e-13 | 2.9375e+01

// individuals’ fitness values are already stored in array named cost
for (i=0; i < NP/2; i++) {
if (cost[i] < cost[ NP/2+i]) {
swap(x[i], X[ NP/2+i]);
swap(cost[i], cost[ NP/2+i])

// comparison of two individuals
// swap individuals

// and swap their fitness values

}
NP = NP/2;

// new population size

Fig. 1. The population size reduction using C/C++ language

f(%Z;) and f(fL2p+L), which are stored in array cost at
indexes i and 27+, respectively.' It could be argued that the
assignment should be used rather than swap. It is true that
when using the assignment instead of swap, the algorithm is
slightly faster. We decided to use swap, because we did not
want to change the original DE program code written in C
programming language for calculating population mean and
variance. Another reason for leaving swap in our program is
that the proposed population size reduction is executed very
rarely during the whole optimization process and does not
considerably influence the speed of the algorithm.

How many population size reductions should be performed
and when? There are many possibilities, but perhaps one of
the simplest was presented in [10] and here we shortly revise

'In C/C++ index of array starts at 0.
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it. The stopping criteria in our study and also in this paper has
a predefined number of evaluations, denoted as mazn feval.
Let pmaz be the number of different population sizes used in
the evolutionary process. Then pmax — 1 reductions need to
be performed. NPy = NP;,;; is the initial population size
and NP, (p = 1,2,...,pmax) is the population size after
p — 1 reductions. gen, denotes the number of generations
with population size NP,. In our experiments we used an
equal number of evaluations %ﬂ:iml for each popula-
tion size. Table IV illustrates the case, when we assume:
mazxnfeval = 500,000 (for test problem with dimension
D =100) and pmax = 4. The number of generations gen,,
with the population size NP, is calculated as:

maa:nfevalJ
P

genp = \‘pmaw - NP,

where 7, > 0 is a small integer value greater than 0 when
maxnfeval is not divisible by pmaz. In this case, the
algorithm needs to perform additional r, iterations to reach
a predefined number of iterations in one run. Usually, the
value of r;, is 0. The reduction is performed in the following
generations:
pmax—1
Gr € {geni, genq + gena, ..., Z genp}t.
p=1

We have put special attention to satisty the restriction about
violating the predefined maximum number of evaluations
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TABLE III
ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D = 1000

FES 1 2 3 4 5 6 7
1°¢ (Best) 3.6422e+06 | 1.7336e+02 | 2.9692e+12 | 1.9389e+04 | 3.3277e+04 | 2.1370e+01 | -6.9313e+03
7t 3.9761e+06 | 1.7624e+02 | 3.3363e+12 | 2.0232e+04 | 3.6510e+04 | 2.1393e+01 | -6.7238e+03
13" (Median) || 4.2183e+06 | 1.7675e+02 | 3.5533e+12 | 2.0501e+04 | 3.7364e+04 | 2.1406e+01 | -6.6888e+03
5.00e + 4 19" 4.3016e+06 | 1.7766e+02 | 3.7664e+12 | 2.0707e+04 | 3.8373e+04 | 2.1414e+01 | -6.6697e+03
25" (Worst) 4.3882e+06 | 1.7836e+02 | 4.2294e+12 | 2.0869e+04 | 3.9860e+04 | 2.1419e+01 | -6.6156e+03
Mean 4.1416e+06 | 1.7679e+02 | 3.5746e+12 | 2.0416e+04 | 3.7412e+04 | 2.1402e+01 | -6.7076e+03
Std 2.1952e+05 1.1312 3.3083e+11 | 3.5816e+02 | 1.5201e+03 | 1.4733e-02 | 6.7899%e+01
1% (Best) 2.6946e+05 | 1.5195e+02 | 5.8021e+10 | 1.0851e+04 | 2.1474e+03 | 1.7527e+01 | -8.0670e+03
7th 2.8567e+05 | 1.5394e+02 | 6.5893e+10 | 1.1139e+04 | 2.4524e+03 | 1.7967e+01 | -7.8929e+03
13" (Median) || 2.9371e+05 | 1.5441e+02 | 7.2415e+10 | 1.1179e+04 | 2.5762e+03 | 1.8080e+01 | -7.8557e+03
5.00e + 5 19" 3.0123e+05 | 1.5492e+02 | 7.5357e+10 | 1.1253e+04 | 2.6307e+03 | 1.8203e+01 | -7.8103e+03
25" (Worst) 3.1673e+05 | 1.5663e+02 | 8.1070e+10 | 1.1335e+04 | 2.7789e+03 | 1.8370e+01 | -7.7480e+03
Mean 2.9215e+05 | 1.5443e+02 | 7.0955e+10 | 1.1174e+04 | 2.5314e+03 | 1.8077e+01 | -7.8568e+03
Std 1.2171e+04 | 9.7975e-01 | 5.9926e+09 | 1.1400e+02 | 1.6569e+02 | 1.8138e-01 | 6.8574e+01
1% (Best) 1.1368e-13 | 1.6031e+01 | 1.1359e+03 | 9.2726e-06 | 2.842le-14 | 1.3073e-12 | -1.3593e+04
7th 1.1368e-13 | 1.7592e+01 | 1.1907e+03 | 1.8623e-05 | 2.842le-14 | 4.0074e-12 | -1.3524e+04
13" (Median) || 1.1368e-13 | 1.9318e+01 | 1.2893e+03 | 4.2234e-05 | 2.842le-14 | 6.8496e-12 | -1.3480e+04
5.00e + 6 19" 1.1368e-13 | 2.2206e+01 | 1.3930e+03 | 1.5211e-04 | 5.6843e-14 | 1.0857e-11 | -1.3455e+04
25" (Worst) 1.1368e-13 | 2.3161e+01 | 1.5714e+03 | 1.4753e-03 | 5.6843e-14 | 1.1962e-10 | -1.3424e+04
Mean 1.1369e-13 | 1.9529e+01 | 1.3136e+03 | 2.1668e-04 | 3.9790e-14 | 1.4687e-11 | -1.3491e+04
Std 0.0000 2.2525 1.3635e+02 | 4.0563e-04 | 1.4211e-14 | 2.4310e-11 | 4.6038e+01

proposed at this special session. In our experiments we try to
use such pmax values which imply r, = 0, and in code we
have put an additional stopping condition to check if n feval
reaches the predefined number of evaluations maxn feval.

The revised dynamic population size reduction is exe-
cuted pmax — 1 times per optimization run. The rules for
population size reduction are quite simple and, therefore,
in comparison to the original DE algorithm, our version of
the DE algorithm does not considerably increase the time
complexity.

The characteristics of the proposed population size reduc-
tion are:

« it follows the inspiration of the original DE selection
operation,

« does not require many additional operations, e.g. sorting
of all individuals based on their fitness values, and

e can be implemented efficiently (one population size

reduction requires &£ comparisons of fitness values and

% swapping of inéividuals, on average).
Special attention is needed to preserve minimal require-
ments about the population size of the original DE algorithm,
which is at least 4 for ’rand/1/bin’ strategy (indexes ¢, 71, r2

and 73 must be mutually different (see Formula (III-A)).

C. Our Algorithm

We named our algorithm jDEdynNP-F and used it in
experiments that follow. The jDEdynNP-F algorithm uses
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self-adaptive control parameters F' and CR (Section IV-B)
and dynamic population size (Section IV-A). Additionally,
the jDEdynNP-F algorithm uses a mechanism that changes
the sign of the control parameter ' with some probability
(prob = 0.75) when f(Z,,) > f(Z,,) during the mutation
operation as presented in Fig. 2.

// individuals’ fitness values are stored in array named cost
prob = 0.75;
if (rand < prob && cost[r2] > cost[r3])

F =-F;, // sign change

Fig. 2. The control parameter F' changes sign

Our algorithm optimizes a function as a black box, and
in terms of optimizing high dimensional problems, no coop-
erative coevolution with any divide-and-conquer strategy is
used.

V. EXPERIMENTAL RESULTS

The jDEdynNP-F algorithm was tested on 7 CEC’2008
special session benchmark functions [31]. Each function
required calculations for three different dimensions (D =
100, D = 500, and D = 1000). 25 runs of algorithm were
needed for each function.

Parameter settings used in the experiments were:

o [ was self-adaptive, initially set to 0.5,

« CR was self-adaptive, initially set to 0.9,
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Fig. 4. Convergence graph for problem 7
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TABLE V
ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D = 1000 BY jDEdynNP-F ALGORITHM WITHOUT USING THE SIGN CHANGE OF F' CONTROL

PARAMETER.
FES 1 2 3 4 5 6 7

1% (Best) 1.1368e-13 | 1.7350e+01 | 1.1868e+03 | 6.5144e-04 | 2.8421e-14 | 3.4415e-10 | -1.3578e+04

7th 1.1368e-13 | 1.9321e+01 | 1.3966e+03 | 7.5542e-03 | 5.6843e-14 | 1.1594e-09 | -1.3496e+04

13" (Median) || 1.1368e-13 | 2.1510e+01 | 1.4806e+03 | 1.5775e-02 | 5.6843e-14 | 3.8918e-09 | -1.3468e+04

5.00e + 6 19" 1.1368e-13 | 2.3027e+01 | 1.5933e+03 | 2.0297e-02 | 5.6843e-14 | 1.6011e-08 | -1.3458e+04

25" (Worst) 1.7053e-13 | 2.5730e+01 | 1.8471e+03 | 3.6480e-02 | 5.6843e-14 | 5.1012e-07 | -1.3418e+04

Mean 1.2278e-13 | 2.1199e+01 | 1.5010e+03 | 1.4679e-02 | 5.3433e-14 | 4.9366e-08 | -1.3476e+04

Std 2.1269e-14 2.5289 1.4782e+02 | 9.0288e-03 | 9.4264e-15 | 1.3254e-07 | 3.7444e+01

o NP was adaptive, initial value NP;,;; = D,

o pmaz was fixed during the optimization: pmazr = 3
when D = 100, pmaz = 5 when D = 500, and
pmax = 6 when D = 1000.

One can observe, that pmax values imply that population
sizes after pmax — 1, NP pyqz, are greater than 20 for all
three dimensions (D = 100, D = 500, and D = 1000).

The obtained results (error values f(Z) — f(Z*)) are
presented in Tables I- III.

The optimal solution results are known for benchmark
functions Fj—Fg, while for function Fr optimal solution
value was not given. Values for F; f(&) are presented in
Tables I-III.

For functions Fy (Shifted Sphere Function), Fs (Shifted
Griewank’s Function), and Fg (Shifted Ackley’s Function) the
JDEdynNP-F algorithm successfully found mean solutions
with function error values f(%) — f(&*) < 107% for all
dimensions. Slightly worse results are obtained for func-
tion F, (Shifted Rastrigin’s Function) for dimensions 500
and 1000. The worst results are obtained for functions Fb
(Shifted Schwefel’s Function), and Fg (Shifted Rosenbrock’s
Function).

Convergence graphs for benchmark functions F;—Fg when
D = 1000 are presented in Fig. 3. Graph for function F7
when D = 1000 is depicted in Fig. 4.

System: GNU/Linux x86.64 CPU: 2.4 GHz (2x Dual
Core AMD Opteron). RAM: 8 GB.
Language: C/C++.  Algorithm: jDEdynNP-F — Differential
Evolution (DE), self-adaptive with population size reduction.
Runs/problem: 25. Dimensions: 100, 500, and 1000.
Runtime: 120 hours.

In order to present the amount of improvement achieved
by the mechanism of control parameter F' sign change, we
performed an additional experiment with the jDEdynNP-F al-
gorithm without the F' sign changing mechanism (see Fig. 2).
The obtained results are presented in Table V. If we compare
results in Tables V and III we can see that jDEdynNP-F
algorithm gives better results than the jDEdynNP-F algorithm
without the F' exchanging mechanism for all 7 benchmark
functions when D = 1000.
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VI. CONCLUSIONS

In this paper the performance of the jDEdynNP-F al-
gorithm was evaluated on the set of benchmark functions
provided by CEC’2008 special session on high-dimensional
real-parameter optimization.

A self-adaptive control mechanism was used by the algo-
rithm to change the control parameters (/' and CR) during
the optimization process. Additionally, the algorithm used a
method for gradually reducing population size (NP), and a
mechanism for changing the sign of F' control parameter.

The results of this paper give evidence that the jDEdynNP-
F algorithm is a competitive algorithm for high-dimensional
real-parameter optimization problems. One of future plans
is to apply cooperative coevolution methods to jDEdynNP-F
algorithm.
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