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Abstract

Penalized likelihood approaches are widely used for high-dimensional regression. Although many methods have been proposed

and the associated theory is now well developed, the relative efficacy of different approaches in finite-sample settings, as

encountered in practice, remains incompletely understood. There is therefore a need for empirical investigations in this

area that can offer practical insight and guidance to users. In this paper, we present a large-scale comparison of penalized

regression methods. We distinguish between three related goals: prediction, variable selection and variable ranking. Our

results span more than 2300 data-generating scenarios, including both synthetic and semisynthetic data (real covariates and

simulated responses), allowing us to systematically consider the influence of various factors (sample size, dimensionality,

sparsity, signal strength and multicollinearity). We consider several widely used approaches (Lasso, Adaptive Lasso, Elastic

Net, Ridge Regression, SCAD, the Dantzig Selector and Stability Selection). We find considerable variation in performance

between methods. Our results support a “no panacea” view, with no unambiguous winner across all scenarios or goals, even

in this restricted setting where all data align well with the assumptions underlying the methods. The study allows us to make

some recommendations as to which approaches may be most (or least) suitable given the goal and some data characteristics.

Our empirical results complement existing theory and provide a resource to compare methods across a range of scenarios and

metrics.

Keywords Simulation study · High-dimensional regression · Penalized regression · Lasso · Variable selection · Prediction

1 Introduction

In a wide range of applications, it is now routine to encounter

regression problems where the number of features or covari-

ates p exceeds the sample size n, often greatly. Even in

the simple case of linear models with independent Gaussian

noise, estimation is nontrivial and requires specific assump-

tions. A common and often appropriate assumption is that of

sparsity, where only a subset of the variables (the active set)
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have nonzero coefficients, with the number s0 of such active

variables usually assumed much smaller than p.

Penalized methods augment the regression log-likelihood

with a penalty term that encodes a structural assumption such

as sparsity. Recent years have seen much progress in theory

and methodology for penalized regression (see Bühlmann

and van de Geer (2011), for a lucid account). However,

while the theoretical developments have been remarkable

and insightful, they cannot go as far as telling the user which

method to use in a given finite-sample setting. Meanwhile,

rapid methodological progress has meant a wide range of

plausible approaches to choose among.

The present study performs a systematic empirical com-

parison of a number of penalized regression methods, which

could provide some guidance for users when selecting

methods for specific applications. We consider seven pop-

ular approaches (Lasso, Adaptive Lasso, Elastic Net, Ridge

Regression, SCAD, the Dantzig Selector and Stability Selec-

tion) and a range of data-generating scenarios. It is obvious

that large departures from modeling assumptions can pro-
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duce poor results. Here, our intention is not so much to look at

robustness to such departures, but rather to look at variation

in performance even in the favorable case where assump-

tions broadly hold (i.e., for data generated from sparse linear

models).

In the simulations, we vary a number of factors in a rela-

tively fine-grained manner within an essentially full factorial

design (i.e., all combinations of factors). Furthermore, in

addition to synthetic data (covariates and responses are sim-

ulated), we also consider semisynthetic data (real covariates

but simulated responses, using gene expression data from

cancer samples) which allows us to study method perfor-

mance under a more realistic covariate correlation structure.

We distinguish between three goals: prediction, variable

selection and variable ranking. We consider variable ranking

in addition to selection due to the fact that in many applica-

tions, users are interested in guidance for follow-up studies

or data acquisition. Then, highlighting variables in a suitable

rank order is particularly important.

We find that for many scenarios there is substantial varia-

tion in performance between methods (i.e., choice of method

is influential). However, there is no unambiguous winner

across scenarios (i.e., details of the data-generating setup

matter), and this is despite the fact that we focus on a rel-

atively narrow class of scenarios broadly favorable to the

approaches employed. Relative performance also depends

on the specific goal.

Our study allows some broad recommendations to be

made based on the goal and on characteristics of the data

that are known, or can be determined, by the user (e.g., cor-

relation structure). We find that Lasso and Adaptive Lasso are

usually competitive for ranking when there is no or very weak

correlation between variables, and Ridge Regression is often

a good choice in more highly correlated scenarios. For pre-

diction, Lasso is competitive in most scenarios (correlated

or uncorrelated). Choice of method for selection depends

on whether the user would rather keep false positives low

or maximize the number of active variables discovered. For

the former, our results suggest Stability Selection is the best

option, and for the latter, Adaptive Lasso performs well when

variables have no or very weak correlation and Elastic Net

when variables are more highly correlated. Lasso typically

offers a reasonable compromise between controlling false

positives and discovering true positives.

We also find evidence of an interesting “phase transition”-

like behavior for SCAD, where it goes from being the

best performing approach to the worst as scenario difficulty

increases. SCAD is therefore highly variable and so carries

more risk as a choice of approach. Ridge Regression and

Adaptive Lasso can also perform particularly poorly relative

to other approaches in some scenarios for prediction. Further-

more, our results and associated simulation and plotting code

(see “Code and data availability” section) provide a resource,

allowing users to check in detail how the methods considered

here fare against each other across many scenarios and also

to extend the study with other (existing or novel) approaches.

In addition to the main simulation study, we extend some

data-generating scenarios in specific directions to further

explore properties of the methods. Specifically, we inves-

tigate how performance changes under a different covariate

correlation structure to that explored in the main study, we

explore sensitivity of Stability Selection to its tuning param-

eters and we examine the impact of heterogeneous regression

coefficients on selection performance.

A number of previous papers have examined the empirical

performance of penalized regression methods. Meinshausen

and Bühlmann (2010) consider large p problems from

a selection perspective. Bühlmann and Mandozzi (2014)

is a more comprehensive study using semisynthetic data

and evaluating screening or ranking properties in high-

dimensional settings. Hastie et al. (2017) consider both low-

and high-dimensional settings with a focus on prediction. In

contrast to previous work, our design is considerably more

comprehensive and systematic. We use finer grids on factors

including n, p, s0 and signal-to-noise ratio (SNR) so that our

results cover a wider range of designs, allowing us to more

fully investigate the trends in relative performance. We also

consider several types of multicollinearity, so we can better

understand this practically important factor. Furthermore, we

evaluate all three of prediction, selection and ranking, using

specific performance metrics for each. To limit scope, we do

not consider Bayesian approaches here but note that there

have been some interesting empirical comparisons of fre-

quentist and Bayesian methods (including Celeux et al. 2012;

Bondell and Reich 2012; Perrakis et al. 2019).

The remainder of the paper is organized as follows. In

Sect. 2, we outline the methods compared and describe

our simulation strategy, including the data-generating fac-

tors considered. We also give details of how the methods are

implemented and the performance metrics used. Section 3

presents the results from our main simulation study. For each

goal, we present some key observations and provide a sum-

mary with some recommendations. Results from additional

simulations appear in Sect. 4. We conclude with a discussion

in Sect. 5.

2 Methods

2.1 Model setting and notation

We focus on the best studied high-dimensional regression

setting, namely the sparse linear model with independent

Gaussian noise. That is, we consider models of the form

y = Xβ + ǫ, (1)
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where y = (y1, y2, . . . , yn)
T is a vector of responses, X =

[x1, . . . , xp] a n × p design matrix, β = (β1, . . . , βp)
T a

vector of (true) coefficients and ǫ = (ǫ1, ǫ2, . . . , ǫn)T are

the errors. We use S = { j : β j �= 0} to denote the active set

with s0 = |S| the number of active variables. (Below, we also

refer to active variables as “signals.”) We focus on the case

where p > n and where s0 is small (i.e., a sparse setting).

Unless otherwise noted, ǫ ∼ Nn(0, σ 2In), σ > 0, where

Nn is the n-dimensional Gaussian and In the n×n identity

matrix.

2.2 Themethods considered

A general penalized estimate for linear regression takes the

following form:

β̂λ = argmin
β

1

2n
‖y − Xβ‖2 +

p
∑

j=1

Pλ(β j ) (2)

where Pλ(β j ) is a penalty function applied to each compo-

nent of β and λ ≥ 0 is a tuning parameter that controls the

amount of penalization. We consider several specific meth-

ods outlined below.

Lasso The Lasso estimator (Tibshirani 1996) takes the form

given in (2) with an L1-norm penalty: Pλ(β j ) = λ|β j |. This

shrinks coefficients toward zero, with some set to exactly

zero, and λ controls the amount of shrinkage and degree of

sparsity.

The theoretical properties of the Lasso have been well

studied, and an extensive treatment can be found in Bühlmann

and van de Geer (2011). We provide a very brief summary

of the conditions for consistent selection and prediction.

Allowing p ≫ n, under a sparsity assumption on β, Lasso

is consistent for prediction for values of λ in a suitable

range of the order
√

log(p)/n. Additional assumptions can

be made on the design matrix X to improve the rate of con-

vergence for prediction error and to obtain consistency for

estimation. For consistent variable selection, further non-

trivial assumptions need to be made. One is a “beta-min”

assumption that requires coefficients for active variables to

be sufficiently large. If we then further assume a restrictive

assumption on the design matrix X, called the irrepresentable

condition (Zhao and Yu 2006) (or equivalently the neigh-

borhood stability assumption; Meinshausen and Bühlmann

2006), which places restrictions on correlation between vari-

ables, then Lasso is consistent for variable selection for

λ ≫
√

log(p)/n.

We highlight three important points arising from the

above: First, that the conditions required for consistent

selection are much stronger than those for consistent predic-

tion; second, that λ should be larger for consistent variable

selection than for consistent prediction; and third, that the

prediction-optimal λ (estimated using, for example, cross-

validation) can lead to inclusion of many false positives

(Meinshausen and Bühlmann 2006).

Ridge Regression Ridge Regression (Hoerl and Kennard

1970) uses an L2-norm penalty in (2): Pλ(β j ) = λβ2
j . This

shrinks coefficients toward zero, but results in non-sparse

solutions because it is not singular at the origin. It also has

a grouping effect where correlated variables have similar

estimates. Note that Ridge Regression is the only method

considered here that does not perform variable selection per

se.

Elastic Net The Elastic Net estimator (Zou and Hastie 2005)

is (2) with a penalty

Pλ(β j ) = λ

(

α|β j | + (1 − α)β2
j

)

. (3)

That is, L1- and L2-norm penalties combined with an addi-

tional parameter α ∈ [0, 1] (α = 1 and α = 0 correspond to

Lasso and Ridge, respectively). This combines some of the

benefits of Ridge while giving sparse solutions. In the p > n

setting, Lasso can select at most n variables, but Elastic Net

has no such limitation.

SCAD SCAD (Fan and Li 2001) uses the following penalty

in (2):

Pλ(β j ) =

⎧

⎪

⎨

⎪

⎩

λ|β j |, if |β j | ≤ λ

− |β j |2−2aλ|β j |+λ2

2(a−1)
, if |β j | ∈ (λ, aλ]

(a+1)λ2

2
, if |β j | > aλ

(4)

where a > 2 and λ > 0. This is a non-convex, quadratic

spline function by which small coefficients are shrunk toward

zero with a Lasso penalty, while large coefficients are not

penalized. The resulting estimator is, unlike Lasso, nearly

unbiased for large coefficients. Fan and Li (2001) and Fan

et al. (2004) also show that SCAD enjoys an oracle property

(assuming some regularity conditions)—it is simultaneously

consistent for variable selection and estimation, where the

latter is as efficient (asymptotically) as the ideal case when

the true model is known in advance. For further details on the

properties of SCAD, see Fan and Lv (2010) and references

therein.

Adaptive Lasso Adaptive Lasso (Zou 2006) uses a Lasso

penalty with weights in (2): Pλ(β j ) = λω j |β j |. Simi-

lar in spirit to SCAD, Adaptive Lasso aims to eliminate

the bias in the Lasso by shrinking larger coefficients less

than smaller ones. This coefficient-specific regularization is

achieved using the weights ω j , which are taken to have the

form ω j = 1/|β̃ j |γ , where β̃ j is an initial estimate for β j and

γ>0. Larger initial estimates give rise to smaller weights and

so receive less shrinkage. The ordinary least squares estimate
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and Ridge Regression estimate are suggested as initial esti-

mates by Zou (2006). Adaptive Lasso also enjoys the oracle

property (for suitable choices of λ).

Dantzig Selector The Dantzig Selector estimator (Candes

and Tao 2007) takes a different form to that in (2), namely:

β̂λ = argmin
β

{

‖β‖1 : ‖XT (Y − Xβ) ‖∞ ≤ λ

}

. (5)

The Dantzig Selector and the Lasso are closely connected as

discussed in Bickel et al. (2009), and under certain conditions

on the design matrix, Lasso and Dantzig provide the same

solution (Meinshausen et al. 2007; James et al. 2009).

Stability Selection This is a general approach by which to

combine variable selection with data subsampling to obtain

more stable selection and control the number of false posi-

tives. Specifically, M random data subsamples of size ñ < n

are generated by sampling without replacement. Applying

a variable selection procedure, with regularization param-

eter λ, to these datasets gives a score 	̂λ, j indicating the

frequency with which variable j is selected among the M

iterations. Let Λ denote the set of considered values for the

regularization parameter. Then, a set of “stable variables”

is obtained by choosing those variables that have selection

probabilities larger than a cutoff value πthr ∈ (0, 1) for any

λ ∈ Λ.

In contrast to the methods described above, Stability

Selection does not require setting of the parameter λ, but

instead requires the cutoff πthr to be chosen. Meinshausen

and Bühlmann (2010) provide theoretical results showing

how πthr can be chosen to achieve a user-specified upper

bound Ṽ on the expected number of false positives E[V ],
assuming a fixed set of regularization parameters Λ. Alter-

natively, the user can fix πthr and then the theory shows how

Λ should be chosen to achieve the desired upper bound on

E[V ]. In our study, we use the Lasso as the variable selection

procedure with Stability Selection.

2.3 Simulation setup

We generate values for the response vector using model (1).

We set β to have s0 nonzero entries (all set to 3 except in

Sect. 4.3 where we consider heterogeneous coefficients) and

then set σ to obtain a desired SNR, defined here as SNR =
√

βTXTXβ/(nσ 2).

We consider synthetic data, where both covariates and

responses are simulated, and semisynthetic data, where

covariates are real and responses are simulated.

2.3.1 Synthetic data

We consider the following two designs with synthetic covari-

ates:

– Independence design All p covariates are i.i.d. standard

normal.

– Pairwise correlation design The p covariates are par-

titioned into B blocks, each of size pB = p/B.

All covariates are standard normal but with correlation

between any pair of covariates within the same block

set to ρ. Covariates in different blocks are independent

of each other. The number of active variables within a

block is s B
0 for the first s0/s B

0 blocks, with the remaining

blocks containing no active variables.

2.3.2 Semisynthetic data

We consider semisynthetic data using real covariates from

The Cancer Genome Atlas (TCGA) study. We use gene

expression data from TCGA ovarian cancer samples (The

Cancer Genome Atlas Research Network 2011).1 The dataset

contains 594 samples and expression levels for 22,277 genes.

The samples are a mixture of primary tumor (569), recurrent

tumor (17) and normal tissue (8). We randomly subsam-

ple the samples and genes to obtain a n × p design matrix

X = [x1, . . . , xp]. Those samples not included in X are used

as test data.

Signals are allocated among the p predictors to give either

“low”- or “high”-correlation designs, using an approach sim-

ilar to Bühlmann and Mandozzi (2014):

– “Low”-correlation design We allocate s0 signals at ran-

dom among x1, . . . , xp.

– “High”-correlation design We use the following proce-

dure to form correlated blocks:

(i) Form a block of pB = 10 predictors consisting of

the two predictors x̃1 and x̃2 that are most correlated

and the eight other predictors that are most correlated

with x̃1

(ii) Allocate s B
0 signals to this block by designating x̃1

and the s B
0 − 1 predictors that are most correlated

with it as signals

(iii) Repeat steps (i) and (ii), but remove from considera-

tion any predictors already allocated to a block, and

continue repeating until s0 signals have been allo-

cated.

1 Specifically, we use the dataset provided in Supplementary Appendix

of Tucker et al. (2014); the dataset is available at http://bioinformatics.

mdanderson.org/Supplements/ResidualDisease.
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Table 1 Factors varied in the

simulation study and values

considered

Factors Values considered

All designs

Sample size, n 100, 200, 300

Dimensionality, p 500, 1000, 2000, 4000

Sparsity, s0 10, 20, 40

Signal-to-noise ratio, SNR 0.5a , 1, 2, 4

Synthetic (pairwise) correlation design only

Block size, pB 10, 100

Pairwise correlation within a block, ρ 0.5, 0.7, 0.9

Number of signals per block, s B
0 1, 2, 5

Semisynthetic (“low”/“high”) correlation designs only

Block size, pB 10

Number of signals per block, s B
0 1, 2, 5

Note that for the correlation designs, the s B
0 signals per block apply to the first s0/s B

0 blocks only
a All designs except synthetic pairwise correlation design

Table 2 Combinations of

p, pB , s0 and s B
0 explored in the

(synthetic and semisynthetic)

correlation designs

p pB B = p

pB s0 s B
0

1 2 5

Synthetic (pairwise) correlation design only

500 100 5 10 ✗ ✓ ✓

20 ✗ ✗ ✓

40 ✗ ✗ ✗

1000 100 10 10 ✓ ✓ ✓

20 ✗ ✓ ✓

40 ✗ ✗ ✓

2000 100 20 10 ✓ ✓ ✓

20 ✓ ✓ ✓

40 ✗ ✓ ✓

4000 100 40 10 ✓ ✓ ✓

20 ✓ ✓ ✓

40 ✓ ✓ ✓

All correlation designs

* 10 ∗ * ✓ ✓ ✓

✓ indicates that the combination is included, and ✗ indicates that the combination is not included. For pB = 10,

* denotes all combinations of p and s0

The p variables in each of our simulation scenarios are

selected completely at random from the original dataset, so

the correlation structure among the p variables is represen-

tative of the original data. In the “low”-correlation design,

the correlation between a given signal and any other variable

is, on average, the same as the average correlation between

all p variables. In the “high”-correlation design, the aver-

age correlation between all p variables will follow the same

distribution as in the “low”-correlation design. However, by

identifying correlated blocks and allocating signals within

these blocks as described above, a given signal is now more

likely to have higher correlation with some non-signals and,

for s B
0 >1, with some other signals.

2.3.3 Systematic exploration of data-generating factors

We consider the effects of the various data-generating fac-

tors in a systematic way via 2394 simulation scenarios, each

corresponding to a different configuration. The values con-

sidered for each factor are shown in Table 1, and we cover

the majority of combinations of the factors. One exception

is for correlation designs, we exclude some combinations of

s B
0 and B = p/pB which violate the necessary constraint

s B
0 ≥ s0/B (see Table 2). Also, SNR=0.5 is not considered

for the synthetic correlation design.
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2.4 Method implementation

Tuning parameters are set to reflect the way methods would

typically be used by users. For Lasso, Elastic Net, Ridge

Regression, SCAD, Adaptive Lasso and Dantzig Selector, λ

is set via tenfold cross-validation (CV). Following Bühlmann

and Mandozzi (2014), we implement two versions of Elastic

Net with α = 0.3 and α = 0.6, referred to as heavy Elastic

Net (HENet) and light Elastic Net (LENet), respectively. For

SCAD, we set a = 3.7, as recommended by Fan and Li

(2001). For Adaptive Lasso (AdaLasso), we use the Ridge

Regression estimate as the initial estimate to calculate the

weights and set γ = 1. For Stability Selection, we set the

number of iterations to M = 100 with subsample size ñ =
⌊0.632n⌋ and selection probability cutoff πthr = 0.6 (the R

package defaults; see below). We do not place any explicit

control on the expected number of false positives E[V ] (i.e.,

we consider the full range of regularization parameters Λ).

An exception to this is for selection in the semisynthetic data

analysis, where we set Ṽ , the upper bound on E[V ], to 10.

However, we assess sensitivity to these tuning parameters in

Sect. 4.

We use available R packages to implement the meth-

ods: glmnet for Lasso, Elastic Net, Ridge Regression and

Adaptive Lasso (Friedman et al. 2010); ncvreg for SCAD

(Breheny and Huang 2011); flare for Dantzig Selector (Li

et al. 2015); and c060 for Stability Selection (Sill et al.

2014). Covariates are standardized, and the response vector

is centered. We run all methods on all simulation scenar-

ios with the exception of Dantzig and AdaLasso: Dantzig

is run only for the synthetic independence design, and syn-

thetic correlated design with p = 500 and p = 1000, due to

its computational demands under multicollinearity for large

p; Adaptive Lasso is not run for the synthetic correlated

design. For each simulation scenario, we show results aver-

aged across 64 simulated datasets.

2.5 Performancemetrics

We distinguish between prediction, variable selection and

ranking and use the following metrics.

Prediction To assess predictive performance, we use the root-

mean-squared error (RMSE). For each simulation scenario,

we generate training data with sample size n and test data with

sample size ntest = 500. Models are fitted on training data

to obtain coefficient estimates β̂cv and prediction error, cal-

culated as RMSE = ‖ytest − Xtestβ̂cv||2/
√

ntest, where ytest

and Xtest are the test responses and design matrix, respec-

tively. Stability Selection focuses on variable selection, and

we therefore do not include it in assessment of predictive

performance.

Variable selection For assessment of variable selection, we

use true positive rate (TPR) and positive predictive value

(PPV):

TPR = TP

TP + FN
∈ [0, 1]; PPV = TP

TP + FP
∈ [0, 1], (6)

where TP, FP and FN are the number of true positives, false

positives and false negatives, respectively. Ridge Regression

does not perform variable selection per se and is therefore

excluded from this evaluation.

Variable ranking For ranking, we assess performance using

the partial area under the receiver operating characteristic

curve (pAUC). This is the area under the curve obtained when

restricting to a maximum of 50 false positives (FPR = 50
p−s0

).

The pAUC calculation requires a score under which to rank

variables j . For Ridge Regression, we rank by s j = |(β̂cv) j |
and for Stability Selection by s j = maxλ∈Λ 	̂λ, j . For

the other methods (Lasso, Elastic Net, SCAD and Dantzig

Selector), we could use |(β̂cv) j | as for Ridge, but due to

sparsity this would involve ranking many covariates with

(β̂cv) j = 0. We instead consider the set of estimated active

sets {Ŝλ : λ ∈ Λ} where Λ is the set of candidate regu-

larization parameters. We consider a covariate to be more

important the longer it remains in Ŝλ as λ increases and more

sparsity is induced. This motivates defining ranking scores

as: s j = max{λ̃ ∈ Λ : j ∈ Ŝλ for all λ ≤ λ̃, λ ∈ Λ} or

s j = 0 if j /∈ Ŝλmin , where λmin = min{λ ∈ Λ}.

3 Main results

Due to the large number of simulation regimes, we focus

below on the key patterns. All performance data and plotting

code are made available on GitHub, allowing specific scenar-

ios to be investigated further (see “Code and data availability”

section). Figures S1–S21, referred to below, can be found in

Supplementary Material.

We first present summary observations that hold across

all the simulation scenarios. We then present results for each

metric in turn: ranking in Sect. 3.2, prediction in Sect. 3.3

and selection in Sect. 3.4. In each of these three sections,

we first present key observations for the synthetic indepen-

dence design and then key observations for the correlation

designs (both semisynthetic and synthetic designs). We then

end each section by providing a summary with a recommen-

dation regarding choice of method.

3.1 Observations from across all simulation
scenarios

An approximate guide to simulation scenario difficulty Fig-

ure 1 shows the performance metrics versus rescaled sample
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Fig. 1 Ranking (a), prediction

(b) and selection (c, d)

performance versus the rescaled

sample size

r = n/(s0log(p − s0)) for

synthetic independence design

scenarios with SNR = 2. Line

color indicates method. Note

that Stability Selection and

Ridge Regression are not

included in the assessment of

prediction and selection

performance, respectively. See

Sect. 2.5 for details of metrics;

pAUC = partial area under the

receiver operating characteristic

curve, RMSE =

root-mean-squared error, TPR =

true positive rate, PPV =

positive predictive value

0.00

0.25

0.50

0.75

1.00

5

10

15

20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8 1 2 4 0.4 0.6 0.8 1 2 4

r = n s0log(p−s0)

p
A

U
C

R
M

S
E

T
P

R

P
P

V

(A) (B)

(C) (D)

Lasso AdaLasso LENet HENet Ridge SCAD Stability Dantzig

size r , for the synthetic independence design with SNR = 2.

The quantity r equals n/(s0 log(p − s0)) (see Wainwright

2009) and is motivated by scaling results for consistent Lasso

variable selection. Large (small) values of r can be inter-

preted as large (small) sample size relative to dimensionality

and sparsity. We observe a clear overall trend of better pAUC

(Fig. 1a) and TPR (Fig. 1c) for all methods as r increases,

with performance leveling off for larger values of r . The trend

is similar for RMSE as r increases (Fig. 1b). The behavior

of PPV is method-dependent and the overall trend is non-

monotonic as r increases (Fig. 1d). Performance with varying

r was qualitatively similar for other SNR values and also for

correlation designs (see Fig. S1 for independence design with

SNR = 0.5 and Fig. S2 for a semisynthetic correlation design

with SNR = 2). Therefore, although the motivation for r lies

in asymptotic theory for variable selection, we found that

r and SNR together serve as a useful approximate guide to

the difficulty of each simulation scenario for all three tasks

(selection, ranking and prediction). We make use of this char-

acterization below.

LENet is between Lasso and HENet The performance of

LENet is invariably between that of Lasso and HENet for

all metrics. For example, ranking performance of LENet lies

between Lasso and HENet for 98% of synthetic data scenar-

ios where there is a “salient” difference in pAUC between

Lasso and HENet. (For our purposes here, we take a dif-

ference in pAUC of larger than 0.01 to be “salient.”) We

therefore exclude LENet below to aid presentation.

Dantzig Selector is similar to Lasso The Dantzig Selector

mostly performed similarly to Lasso (see red and brown lines

in Fig. 1 and see also Fig. S3), in line with theory (e.g., Mein-

shausen et al. 2007; Efron et al. 2007). However, Dantzig is

more computationally expensive than Lasso (Meinshausen

et al. 2007). For example, when (n, p, s0) = (100, 500, 10)

and SNR = 1 in the synthetic independence design, Dantzig

takes around 1500 s to compute the whole solution path,

while Lasso takes less than one second. In the interest of

brevity, we also exclude Dantzig in the presentation of results

below.

No overall winner; large differences For all metrics, there is

no one method that consistently performs best across all or

the majority of the scenarios. Moreover, relative differences

in performance can be large in some scenarios. Even in the

textbook context of synthetic independence design scenarios

shown in Fig. 1d, the median percentage relative decrease in

PPV between the methods with the highest and lowest scores
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Fig. 2 Ranking performance (pAUC) versus p for a subset of synthetic independence design scenarios. Each panel represents a different combination

of n, s0 and SNR. Line color indicates method and x-axis is on a log scale. See also Figure S4

is 77%. Across all 2394 scenarios considered, the median per-

centage relative decrease is 46% for pAUC, 14% for RMSE,

61% for TPR and 68% for PPV.

3.2 Ranking

3.2.1 Independence design: synthetic data

Figure 2 shows ranking performance for a subset of inde-

pendence design scenarios (see also Figure S4 where perfor-

mance of pairs of methods is plotted against each other for

all independence design scenarios).

SCAD transition in performance The performance of SCAD

relative to other approaches varies substantially across sce-

narios. SCAD can offer the best performance in “easier”

scenarios (e.g., Fig. 2b, black line), but does not retain

this advantage as scenario difficulty increases. In particular,

SCAD undergoes a transition from best to worst performing

method with an unfavorable change in n, p, s0 or SNR (see

Fig. 2c for such a transition with increasing p).

An L2 penalty, AdaLasso and Stability Selection provide

no substantive benefit over Lasso Apart from SCAD in

“easy” settings, none of the approaches perform notably

better than Lasso (see Figs. 2 and S4). Moreover, Stabil-

ity Selection, HENet and Ridge sometimes perform worse

than Lasso (e.g., Fig. 2b). AdaLasso performs essentially the

same as Lasso (Fig. S4), but can give small gains in pAUC

over Lasso when SNR is small (see blue line in Fig. 2e for

p = 500).

3.2.2 Correlation designs

For the semisynthetic data, we focus on the “high”-correlation

design (see Sect. 2.3.2) because results for the “low”-

correlation design are in good agreement with those from

the synthetic independence design (see Figs. S5 and S6).

This is because the covariates are very weakly corre-

lated on average. (Mean absolute correlation coefficient

between covariate pairs is 0.08.) Performance tends to

be a bit worse for the “low”-correlation design than for

the independence design (Fig. S5). We also note that,

for ranking, AdaLasso typically performs slightly better

than Lasso in the “low”-correlation design, whereas they

mostly had equal performance in the independence design

(Fig. S6).
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ios are also shown in each panel (“Ind”). Line color indicates method
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The semisynthetic and synthetic data results are broadly

similar, so we focus on the semisynthetic data results and

mainly use the synthetic data to investigate the impact of

varying correlation strength ρ and block size pB ; these

parameters were either fixed (pB = 10) or not directly con-

trolled (in the case of ρ) for the semisynthetic data.

Figure 3 shows ranking performance, as a function of

number of signals per block s B
0 , for a subset of the “high”-

correlation semisynthetic design scenarios with p = 2000.

(analogous results for p = 500 are shown in Figure S7).

Results for the synthetic independence design are also shown

in each figure panel for reference (denoted by “Ind”). Fig-

ure 4 shows ranking performance, as a function of correlation

strength ρ, for a subset of pairwise correlation synthetic

design scenarios. To aid presentation of results, we fix

(n, p, s0) = (200, 4000, 40) or (200, 1000, 10) which give

r = 0.6 (“hard”) or r = 2.9 (“easy”), respectively, and also

fix SNR = 1 (analogous results for SNR = 2 and 4 are shown

in Figure S8).

Improved performance relative to the independence design

for some scenarios Correlated covariates have a negative

effect on ranking performance relative to the synthetic inde-

pendence design when there is one signal per block (compare

crosses with corresponding s B
0 = 1 circles in Figs. 3 and 4).

Performance then often improves as s B
0 increases, particu-

larly for HENet and Ridge Regression (e.g., yellow and green

lines in Fig. 3b for semisynthetic data; contrast also the first

and second columns in Fig. 4 for synthetic data). This can

lead to an improvement in performance relative to the inde-

pendence design when s B
0 >1, with the largest improvements

typically for HENet and Ridge in “harder” settings with small

r or SNR. For example, in Fig. 3b where r = 1.3 and SNR = 2,

HENet and Ridge have an increase in pAUC of 0.13 and

0.21, respectively relative to the independence design when

s B
0 = 5.

For the synthetic data, we also find that an increase in

block size pB has an opposite effect to s B
0 , with a decrease in

pAUC (contrast first and third columns in Fig. 4). Increasing
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0 (number of signals per

block). All results shown are for SNR = 1 and n = 200 (see Figure S8 for

SNR = 2 and 4). The top row has (n, p, s0) = (200, 1000, 10), giving

r = 2.9, and the bottom row has (n, p, s0) = (200, 4000, 40), giving

r = 0.6. For comparison, results for the corresponding independence

design scenarios are also shown (“Ind”; these data points are identical

across the panels in each row). Line color indicates method

correlation strength ρ typically has a detrimental effect. Only

in the case of “harder” scenarios (small r or SNR) with small

block size and several signals per block, performance can be

enhanced by increasing ρ, most notably for Ridge Regression

(see, e.g., yellow line in Fig. 4f where r = 0.60, pB = 10

and s B
0 = 5).

Taken together, the above means that it is in “hard” scenar-

ios when block size pB is small and blocks consist of highly

correlated variables of which several are active (i.e., large ρ

and s B
0 ) that we see the largest gains from correlation relative

to the independence design, for HENet and Ridge (contrast

yellow and green crosses and circles in Fig. 4f).

We also find that SCAD tends to be the most negatively

affected by correlation (see, e.g., black in Fig. 3a).

HENet and Ridge Regression outperform other methods

The positive influence of correlation on the ranking perfor-

mance of HENet and Ridge Regression means that they now

have the best pAUC scores in most scenarios with small

block sizes and s B
0 >1, with Ridge outperforming HENet.

For example, for the semisynthetic data scenario in Fig. 3e

where SNR = 0.5, Ridge substantially outperforms all other

approaches when s B
0 = 5, with an improvement in pAUC of

0.24 over the second best method, HENet. HENet itself also

improves over Stability Selection with a difference in pAUC

of 0.13. There was no such benefit from an L2 penalty in

the corresponding independence design scenario (crosses in

Fig. 3e).

We also observe in the small block size (pB = 10) syn-

thetic data results that the gains in pAUC from an L2 penalty

over Lasso become larger as correlation strength ρ increases

(contrast yellow and red lines for ρ = 0.5 and ρ = 0.9

in Fig. 4b). These advantages from an L2 penalty are either

smaller or not present at all in the corresponding larger block

size scenarios with pB = 100 and s B
0 >1 (fourth column in

Fig. 4), suggesting that the proportion of covariates in a block

that are signals is important. We investigated this by increas-

ing s B
0 to 40 in the pB = 100 scenarios shown in Fig. 4h

(where r = 0.60, SNR = 1 and s B
0 = 5) and indeed found

that salient improvements over Lasso are then obtained with
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an L2 penalty: pAUC = 0.42, 0.13 and 0.07 for Ridge, HENet

and Lasso, respectively when ρ = 0.9.

The largest benefits from an L2 penalty are therefore for

scenarios with small, highly correlated blocks with many

signals per block. In general, benefits from an L2 penalty

appear to be more prevalent for the semisynthetic data than

the synthetic data. This is likely due to the covariate correla-

tion structure being less rigid for the semisynthetic data, with

covariates being weakly correlated across blocks as opposed

to independent.

SCAD transition in performance SCAD again displays its

characteristic transition behavior with decreasing r or SNR

in the correlation design (see, e.g., Fig. S7), but due to it

typically being the most negatively affected by correlation,

the number of “easy” scenarios where SCAD performs best

is reduced.

SCAD’s sensitivity to correlation means there can also be

a transition with increasing s B
0 . In “easy” settings with large

r or SNR, SCAD can perform best when there is only one

signal per block (and also in the corresponding independence

design), but perform worst when there are many signals per

block (see, e.g., Fig. S7G). We also have a transition with

increasing ρ for the synthetic data (e.g., Fig. S8D).

Stability selection and AdaLasso mostly outperform Lasso

Stability Selection and AdaLasso remain competitive rela-

tive to Lasso, as in the independence design (Figs. 3, 4).

Moreover, they now offer notable improvements over Lasso

for some scenarios with sufficiently large s B
0 , and r or SNR

(see, e.g., purple and blue lines vs. red line in Fig. 3b and

purple vs. red line in Fig. 4b). However, they are usually out-

performed by HENet and Ridge Regression, except in a few

“easy” scenarios (e.g., s B
0 = 1 in Figs. 3a, S7C).

3.2.3 Summary and recommendations

For settings with uncorrelated or very weakly correlated

covariates,2 Lasso or AdaLasso are usually competitive for

ranking and so can be considered as good choices. When one

is confident of being in an “easy” scenario with sufficiently

large r and SNR, SCAD could be considered here as it may

perform notably better than Lasso and AdaLasso, but using

SCAD carries more risk due to the high variability arising

from its transition behavior.

For settings with more highly correlated covariates, we

confirm that Ridge Regression is a good option since it out-

performs or is competitive with the other approaches in most

scenarios. Since SCAD rarely outperformed other methods

2 Here, we are assuming that uncorrelated variables are also indepen-

dent, so that the independence design simulations apply. For very weak

correlation, the semisynthetic “low”-correlation design applies.

and is very sensitive to changes in scenario properties, we

would suggest it is not a good option for correlated settings.

3.3 Prediction

3.3.1 Independence design: synthetic data

Figure 5 shows predictive performance for a subset of

independence design scenarios (see also Figure S9 where

performance of pairs of methods is plotted against each other

for all independence design scenarios).

An L2 penalty and AdaLasso provide no substantive benefit

over Lasso An L2 penalty offers very little benefit for predic-

tion, with Ridge performing substantially worse than all the

other methods in many scenarios of moderate-to-large SNR

(see, e.g., Fig. 5a). When SNR is small, HENet and Ridge per-

form similarly to Lasso (see, e.g., Fig. 5e–h). The exception

is for small r scenarios, where small improvements in predic-

tion error can be seen for HENet and Ridge relative to Lasso

(see, e.g., p = 500 in Fig. 5d). AdaLasso performs similar

to or worse than Lasso and performs particularly badly for

smaller SNR, where it has the highest prediction error (see,

e.g., blue line in Fig. 5e–h).

SCAD transition in performance SCAD has a similar tran-

sition property for prediction as for ranking (see above), but

with the difference that SCAD does not become the worst

performing method as scenario difficulty increases; Ridge or

AdaLasso still performs worse (black line in Fig. 5c).

3.3.2 Correlation designs

For prediction performance in the “low”-correlation semisyn-

thetic design, see Figure S10, where performance of pairs of

methods is plotted against each other. Relative performance

of methods agrees well with the synthetic independence

design (Fig. S9).

Figure 6 shows predictive performance for a subset of

the “high”-correlation semisynthetic design scenarios with

p = 2000 (analogous results for p = 500 are shown in

Figure S11), and Fig. 7 shows predictive performance for a

subset of pairwise correlation synthetic design scenarios with

SNR = 1 (analogous results for SNR = 2 and 4 are shown in

Figure S12).

Performance improvements relative to the independence

design when s B
0 = 1 Predictive performance worsens with

increasing number of signals per block s B
0 (see Fig. 6), and

this is primarily due to an increase in the variance of the

response y as a result of the correlation between signals.

For the same reason, in the synthetic data design, increasing

correlation strength ρ leads to higher predictive error when

blocks contain more than one signal (see second and fourth

columns of Fig. 7).
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When there is one signal per block (s B
0 = 1), the signals

are uncorrelated (or very weakly correlated for semisynthetic

data) and so there is no or little increase in the variance of y

relative to the independence design. The correlation between

the signal and non-signals in each block can then result in

a decrease in predictive error relative to the independence

design, and we observe this for the semisynthetic data (com-

pare crosses and s B
0 = 1 circles in Fig. 6d) and synthetic

data (compare crosses and circles in Fig. 7g). For the latter,

we also find that an increase in correlation strength ρ and

increase in block size pB lead to larger decreases in RMSE

(compare Fig. 7e, g).

The method that shows the largest improvements relative

to the independence design is typically Ridge Regression. For

example, in Fig. 6a for s B
0 = 1, Ridge Regression (yellow

circle) has a 25% decrease in RMSE relative to the indepen-

dence design (yellow cross), while all other methods show

little change in RMSE. Ridge regression may benefit the most

because it has a non-sparse solution and, due to the corre-

lation between signals and non-signals in each block, the

correlated designs are also, in a sense, non-sparse.

An L2 penalty and AdaLasso still provide no substantive

gains over Lasso As for the independence design, Ridge and

HENet do not substantively outperform the other approaches

for prediction in any of the scenarios considered here, and

this is the case even though Ridge often benefits the most

from correlation (see above). In “easier” scenarios, Ridge

still performs notably worse than other approaches (e.g.,

Fig. 6a), but in “hard” scenarios with small r , Ridge can

marginally outperform other methods. For example, for the

“hard” semisynthetic data scenario in Fig. 6d where r = 0.3

and SNR = 2, Ridge has a 7% decrease in RMSE relative to

Lasso when s B
0 = 1. HENet also performs marginally bet-

ter than Lasso in these “scenarios”, but typically marginally

worse than Ridge (HENet has a 3% decrease in RMSE rel-

ative to Lasso in the above example). Similar behavior is

observed for “hard” synthetic data scenarios, and this is par-

ticularly noticeable for large correlated blocks (yellow line

in Fig. 7g).

AdaLasso remains similar to or, for small SNR, worse

than the other approaches (see blue lines in Fig. 6).

SCAD transition in performance SCAD again shows tran-

sition behavior, offering modest gains over other methods

when r and SNR are large, and s B
0 is small, but becoming

worse than Lasso, HENet and sometimes Ridge as scenario

difficulty, s B
0 or ρ increases. For example, SCAD performs
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best when r = 3.9 and s B
0 = 1 (Fig. 6a), but worst when

r = 0.3 and s B
0 = 5 (Fig. 6d).

3.3.3 Summary and recommendations

In settings with uncorrelated or very weakly correlated vari-

ables, predictive performance of methods relative to each

other is mostly similar to that for ranking, so we make a sim-

ilar recommendation: that is, use Lasso, or potentially SCAD

if there is confidence that the scenario at hand is “easy”. The

key difference from ranking is that we would not recommend

AdaLasso because it can perform much worse than Lasso.

For more highly correlated settings, Lasso is mostly com-

petitive and so can be considered a “safe” option. Ridge

Regression may provide some small gains in “harder” scenar-

ios, particularly for large correlated blocks, but can perform

much worse than other approaches in “easier” settings.

Therefore, HENet could be a good option here as it can still

offer some gains over Lasso, but is not as sensitive to the

scenario difficulty, remaining competitive where Ridge per-

forms poorly. SCAD and AdaLasso may not be good options

since they do not result in substantive benefits over Lasso or

HENet and can both perform much worse than other methods

in some scenarios.

3.4 Selection

3.4.1 Independence design: synthetic data

Figure 8 shows selection performance for a subset of inde-

pendence design scenarios. See also Figures S13 and S14

where performance of pairs of methods is plotted against

each other for all independence design scenarios.

Stability Selection or SCAD often best for PPV; trade-off

between PPV and TPR All methods achieve optimal TPR=1

when r and SNR are sufficiently large, but can at the same

time have substantial differences in terms of PPV (see, e.g.,

Fig. 8a; range of PPVs≈ 0.1−0.6). SCAD typically offers
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the best PPV in these “easiest” scenarios, followed by Sta-

bility Selection and AdaLasso.3

In scenarios where TPR is sub-optimal (small-to-moderate

values of r or SNR), as could be expected, the relative perfor-

mance of two methods typically follows the rule: If method A

has a higher TPR than method B, then method A will have a

lower PPV (see, e.g., Fig. 8d). For the majority of these sce-

narios, Stability Selection has the highest PPV and lowest

TPR. SCAD performs similar to or better than Lasso, HENet

and AdaLasso in terms of PPV, but similar or worse in terms

of TPR (see, e.g., Figs. 8b–d, S13 and S14). Lasso, HENet

and AdaLasso fail to obtain a PPV higher than 0.55 across all

scenarios, contrasting with a maximum PPV greater than 0.8

for SCAD or Stability Selection. The range of PPVs across

methods decreases as SNR decreases, and for SNR = 0.5, Sta-

bility Selection no longer has an advantage over the other

approaches (Fig. 8e–h).

3 Note that this inferior performance of Stability Selection relative to

SCAD could in part be due to the lack of false positive control in the

implementation of Stability Selection used here.

HENet and AdaLasso provide gains over Lasso for TPR

There is a benefit of using an L2 penalty or AdaLasso for

TPR, but it comes at the cost of poorer false positive control.

Across the majority of scenarios, HENet has small gains in

TPR (of at most 0.1) over Lasso, but the converse is true for

PPV (see, e.g., red and green lines in Fig. 8d). AdaLasso

offers the highest TPR, particularly for small SNR where

it provides large gains (of up to 0.35) over all the other

approaches, but again its PPV suffers (see, e.g., blue lines

in Fig. 8e).

3.4.2 Correlation designs

For selection performance in the “low”-correlation semisyn-

thetic design, see Figures S15 and S16, where performance

of pairs of methods is plotted against each other. Relative

performance of methods agrees well with the synthetic inde-

pendence design (Figs. S13 and S14).

Figure 9 shows selection performance for a subset of

the “high”-correlation semisynthetic design scenarios with
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Fig. 8 Selection performance (TPR and PPV) versus p for a subset of synthetic independence design scenarios. Each panel shows TPR (top) and

PPV (bottom) for a different combination of n, s0 and SNR. Line color indicates method. See also Figures S13 and S14

p = 2000 (analogous results for p = 500 are shown in

Figure S17), and Fig. 10 shows selection performance for a

subset of pairwise correlation synthetic design scenarios with

SNR = 1 (analogous results for SNR = 2 and 4 are shown in

Figure S18).

Improved performance relative to the independence design

for some scenarios The influence of correlation design

parameters on selection performance is in line with that seen

for ranking in Sect. 3.2.2. In particular, we find that the largest

benefits from correlation relative to the independence design

are again in “hard” scenarios (small SNR or r ) with small

blocks, strong correlation and several signals per block. For

example, in Fig. 9d for semisynthetic data with r = 0.3,

SNR = 2 and s B
0 = 5, all methods have increased TPR rela-

tive to the independence design, with the largest increase in

TPR of 0.23 for HENet. Similarly, in Fig. 10f for synthetic

data with r = 0.6, SNR = 1, pB = 10, s B
0 = 5 and ρ = 0.9,

the largest increase in TPR is 0.32, again for HENet. These

increases in TPR do not necessarily come with decreases in

PPV of corresponding magnitude; HENet has a similar PPV

to the independence design.
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Fig. 9 Selection performance (TPR and PPV) versus s B
0 for a subset of

semisynthetic “high”-correlation design scenarios. Each panel shows

TPR (top) and PPV (bottom) for a different combination of n, s0 and

SNR. All results shown are for p = 2000 (see Figure S17 for results

with p = 500). For comparison, results for the corresponding indepen-

dence design scenarios are also shown in each panel (“Ind”). Line color

indicates method and x-axis is on a log scale

HENet provides increased gains over Lasso for TPR, while

also being competitive for PPV In the independence design,

we found that HENet has small gains in TPR over Lasso, but

has worse PPV. In the “hard”, correlated scenarios described

above where HENet benefits from correlation, HENet can

give more substantial improvements in TPR over Lasso,

while also remaining competitive in terms of PPV. In the

semisynthetic data example from above (Fig. 9d), HENet has

an increase in TPR of 0.15 relative to Lasso when s B
0 = 5;

the corresponding increase for the independence design was

0.05. At the same time, PPV remains competitive at 0.17 for

HENet and 0.18 for Lasso. This behavior is in line with Elas-
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Fig. 10 Selection performance (TPR and PPV) versus ρ for a subset

of synthetic pairwise correlation design scenarios. Each panel shows

TPR (top) and PPV (bottom) for a different combination of p and s0

(rows), and pB and s B
0 (columns). All results shown are for SNR = 1

and n = 200 (see Figure S18 for SNR = 2 and 4). The top row has

(n, p, s0) = (200, 1000, 10), giving r = 2.9, and the bottom row has

(n, p, s0) = (200, 4000, 40), giving r = 0.6. For comparison, results

for the corresponding independence design scenarios are also shown

(“Ind”; these data points are identical across the panels in each row).

Line color indicates method

tic Net enjoying the grouping effect property for correlated

variables.

Stability Selection can be best for PPV, but is sensitive to

correlation As for the independence design, Stability Selec-

tion typically performs best in terms of PPV, followed by

SCAD, and they perform worse in terms of TPR (purple

and black lines in Figs. 9 and 10). However, Stability Selec-

tion and SCAD are sensitive to correlation. For example,

in the SNR = 0.5 semisynthetic data scenario with s B
0 = 1

shown in Fig. 9b, the substantial improvements in PPV pro-

vided by Stability Selection in the independence design are

mostly lost. Also in line with the independence design, the
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advantage Stability Selection provides for PPV reduces as

SNR decreases, with little to no advantage remaining for

SNR = 0.5; here, all approaches have a similar performance,

with AdaLasso typically performing worst (Fig. 9e–h).

AdaLasso no longer competitive for TPR AdaLasso offered

the best performance for TPR in the independence design, but

this is no longer the case as HENet has a similar or higher

TPR, and AdaLasso is still not competitive for PPV (semisyn-

thetic data; green and blue lines in Fig. 9).

3.4.3 Summary and recommendations

Since there is a trade-off between PPV and TPR, the best

method to use depends on the aim. If the aim is primarily

to have a low false positive rate, then Stability Selection is

a good choice for both correlated and uncorrelated covari-

ates, since it is likely to provide the best PPV. If the focus

is more on maximizing the number of signals selected, then

AdaLasso results in a TPR that dominates the other methods

in most uncorrelated and very weakly correlated scenarios.

However, it loses its advantage in more highly correlated

designs, where HENet performs best. Lasso could be used to

obtain a compromise between the two aims. If the scenario

at hand is thought to be particularly “easy” with high r or

SNR and covariates are uncorrelated or very weakly corre-

lated, SCAD may provide the best PPV while retaining a

competitive TPR.

4 Additional investigations

Below we extend the main simulations above in three direc-

tions. Section 4.1 investigates a synthetic data Toeplitz

correlation design, Sect. 4.2 explores sensitivity of Stability

Selection to its tuning parameters and Sect. 4.3 investigates

the ability of methods to detect weak signals when coeffi-

cients are heterogeneous.

4.1 Toeplitz correlation design

We now consider method performance for synthetic data with

a Toeplitz correlation design. This is as for pairwise corre-

lation, but with covariates x j1 and x j2 within the same block

having correlation 0.95| j1− j2|. We only consider block sizes

of pB = 100 that have two active variables per block, s B
0 = 2,

with their positions, j ′1 and j ′2, within a block chosen such

that | j ′1 − j ′2| = 7, to give a correlation of 0.957 ≈ 0.7.

Figure 11 compares performance in the Toeplitz design

against that in the corresponding pairwise correlation design

(ρ = 0.7) for SNR = 2 and all possible combinations of n,

p and s0 (see Figs. S19 and S20 for SNR = 1 and SNR = 4,

respectively). Performance is typically similar for the two

designs or worse in the Toeplitz design. For prediction, Ridge

Regression is most negatively affected by Toeplitz correla-

tion, while SCAD is most affected for the other metrics.

On the one hand, the pairwise correlation design could be

considered more difficult than the Toeplitz design because the

average correlation between signals and non-signals (within

a block) is higher for pairwise than for Toeplitz (0.7 vs. 0.19).

However, on the other hand, the Toeplitz design could be con-

sidered more difficult because there are several non-signals

that are more strongly correlated with the signals than the sig-

nals are with each other; for the pairwise correlation design,

all signals and non-signals within a block are correlated with

equal strength. The generally poorer performance observed

for the Toeplitz design therefore suggests that having strongly

correlated signals and non-signals is more detrimental than

a higher average correlation.

Relative performance of methods in the Toeplitz design

is generally consistent with that seen for the corresponding

pairwise correlation design. For ranking, the impact of an L2

penalty (relative to Lasso) is larger under the Toeplitz design

than the pairwise design, with Ridge performing relatively

well when SNR = 1, but poorly when SNR = 4.

4.2 Stability selection tuning parameters

Stability Selection has several tuning parameters: the sub-

sample size ñ, an upper bound Ṽ for E[V ] (the expected

number of false positives), and either a threshold πthr on the

selection probabilities or a set of regularization parameters

to consider Λ (see Sect. 2.2). Making appropriate choices for

these parameters is non-trivial. Here, we explore the effects

of varying ñ, Ṽ and πthr on selection performance.

We simulated data (as described in Sect. 2.3) with SNR = 2,

n = 200, p = 1000 and s0 = 10 or 20 (giving r = 2.90

or 1.45 respectively) for the independence design, and the

pairwise correlation design with pB = 10, s B
0 = 2 and

ρ = 0.7. We applied Stability Selection with all possi-

ble combinations of the following tuning parameter values:

Ṽ ∈{1, 5, 10, 15, 20}, πthr ∈{0.6, 0.9} and ñ = ⌊nγ ⌋ where

γ ∈{0.4, 0.5, 0.6, 0.7} is the subsample proportion.

Figure 12 shows that, in general, as Ṽ or γ increases, or

πthr decreases, the number of selected variables increases,

resulting in higher TPR, but lower PPV. An exception is for

s0 = 20, where, for the most conservative choices of the

parameters (γ = 0.4, Ṽ = 1 and πthr = 0.9), in addition

to a very poor TPR, PPV is also low on average (see solid

line, γ = 0.4 in Fig. 12g, h). Here, selection is too stringent

and the majority of signals are missed. When the underlying

model size is smaller (s0 = 10), the most conservative param-

eter choices are again sub-optimal in terms of performance

(Fig. 12e, f), but the same is also true for the least conserva-

tive choices (γ = 0.7,Ṽ = 20 and πthr = 0.6; Fig. 12a, b).

However, in the scenarios considered here, being too strin-
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Fig. 11 Comparison between

Toeplitz correlation and

pairwise correlation designs for

ranking, prediction and selection

performance. Performance in

the Toeplitz correlation design is

plotted against performance in

the corresponding pairwise

correlation design with

ρ = 0.7, s B
0 = 2 and pB = 100.

Each point corresponds to a

method (indicated by color) and

a single (n, p, s0) triplet. (The

resulting value of the rescaled

sample size r is indicated by

symbol.) Results shown are for

SNR = 2 (see Figs. S19 and S20

for SNR = 1 and SNR = 4) and

are averages over 64 replicates
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gent seems to have a more deleterious effect on performance

than being too lenient.

Results from the main simulations, where we set ñ =
⌊0.632n⌋, πthr = 0.6 and had no explicit false positive con-

trol Ṽ (i.e., the full range of regularization parameters Λ

was considered; see Sect. 2.4), are indicated by crosses in

Fig. 12a–d. Performance in the main simulations is most sim-

ilar to that of the largest Ṽ considered here (Ṽ = 20), but

with better TPR and worse PPV (except for s0 = 10 where

TPR is already optimal and so there is only a decrease in

PPV).

4.3 Heterogeneous coefficients

In the main simulations, all nonzero coefficients were

assigned the same value. Here, we consider detection of

signals with heterogeneous coefficients for three methods:

Lasso, HENet and SCAD. We simulated data (for the inde-

pendence design) as described in Sect. 2, except instead of

s0 active variables all having coefficient 3, half of them had

coefficient β ′ and the other half had coefficient cββ ′ where

cβ ∈ [0, 1]. We chose β ′ =
√

18/(1 + cβ
2) such that with

fixed SNR, E(σ 2) remains the same as in the homogeneous

β’s case. Note that cβ = 1 gives the main simulation setup

with homogeneous coefficients. Informed by the main sim-

ulations, we set n = 300, s0 = 40, p = 4000 and SNR = 2

or 4, guaranteeing that when nonzero coefficients all take the

same value, we are in a relatively “easy” scenario where the

majority of the signals can be detected.

Figure 13 shows that as cβ decreases, signals with smaller

coefficients are less likely to be detected, resulting in a

decrease in TPR. All methods fail to detect the very weak

signals when cβ = 0.1 (i.e., only the stronger 50% of the sig-

nals are detected giving TPR≈0.5). Consistent with the main

simulations, SCAD has better false positive control (higher

PPV) than Lasso and Elastic Net when SNR is large, and this

is especially the case when cβ is near 0.1 or 1 (contrast black
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Fig. 12 Stability Selection tuning parameter sensitivity. Each panel

shows TPR (top) and PPV (bottom) versus subsample proportion γ .

Within each panel, line type indicates Ṽ , the upper bound for the

expected number of false positives. Top row of panels corresponds to

threshold probability πthr = 0.6 and bottom row to πthr = 0.9. Each

column corresponds to a different simulation scenario: the synthetic

independence design (“Ind”) with n = 200, p = 1000, SNR = 2, and

s0 = 10 or 20, or the corresponding synthetic pairwise correlation

design scenarios with ρ = 0.7, pB = 10 and s B
0 = 2. Black crosses

in the top row of panels show performance observed in the main sim-

ulations where πthr = 0.6, γ = 0.632 and there was no explicit false

positive control Ṽ . Results are averages over 100 replicates

line with red and green lines for PPV in Fig. 13b). The “U”

shape of the SCAD PPV curve here is likely due to the fact

that bias is largest when cβ is moderate, which leads to selec-

tion of more variables to compensate. (SCAD is known to be

nearly unbiased for strong signals; for large cβ , all signals

are relatively strong, while for small cβ the s0/2 weaker sig-

nals have such a small influence that the underlying model

is well approximated by a model with s0/2 strong signals

and no weak signals.) In contrast, Lasso and Elastic Net are

biased estimators, so their PPVs are not as affected. SCAD

also seems to have higher power to detect the weaker signals

when SNR is large and cβ is moderate (see TPR in Fig. 13b).

However, as observed in the main simulations, SCAD is more

sensitive to SNR and so is less competitive in “harder” scenar-

ios (SNR = 2; Fig. 13a). Lasso has higher PPV than HENet,

and this is largely unaffected by changes in cβ . Differences

in TPR between HENet and Lasso decrease as cβ decreases,

until they both have a similar performance for cβ = 0.1.

(Note that which method performs best depends on SNR.)
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Fig. 13 Influence of

heterogeneous regression

coefficients on selection

performance. TPR (solid lines)

and PPV (dotted lines) are

plotted against the coefficient

scaling factor cβ for the

independence design with

(n, p, s0) = (300, 4000, 40) and

SNR = 2 (a) or SNR = 4 (b). In

the data-generating linear

model, half of the signals have

coefficient β ′ and the other half

have coefficient cββ ′ (see text

for details). Note that cβ = 1

gives the main simulation setup

with homogeneous coefficients.

Line color indicates method.

Results are averages over 50

replicates
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5 Discussion

Our results complement theory by shedding light on the

finite-sample relative performance of methods. Many of our

results do align with available theory. For instance, SCAD is

known to have nearly unbiased estimates for coefficients that

are large (relative to noise), explaining why it tends to have

better selection performance in “easy” scenarios. However,

some conditions of theoretical results (asymptotic or finite-

sample) can be hard to verify in practice, and the results do not

directly provide insight into the performance of a method rel-

ative to others, making it difficult to pick a suitable approach

in any given finite-sample setting. Our results suggest that

there is no one method which clearly dominates others in

all scenarios, even in the relatively narrow set of possibilities

considered here (e.g., we did not consider heavy-tailed noise,

non-sparsity, non-block-type covariance etc.). Relative per-

formance depends on many factors and also on the specific

metric(s) of interest.

A challenge of translating results of our empirical study

into practice is that not all of the factors will be known to a

user in a given setting, specifically those that are related to

the unknown signals (e.g., s0). However, domain knowledge

may provide some indication as to, for example, whether

SNR is likely to be high or low, or as to the likely number

of signals, which could then give an idea of the “difficulty”

of the problem. Nevertheless, with the above caveats, we

have been able to make some general observations that in

turn have allowed some broad recommendations to be made

(see Sects. 3.2.3, 3.3.3 and 3.4.3). These recommendations

are primarily based on covariate correlation and focus on

which approach is most likely to perform well across a broad

range of scenarios. The synthetic independence design and

semisynthetic “low”-correlation design resulted in similar

method performance, so we have made a single, joint rec-

ommendation for uncorrelated and very weakly correlated

scenarios, for each metric. For example, for ranking we have

recommended Lasso or AdaLasso for uncorrelated or very

weakly correlated covariates, and Ridge Regression when

variables are more strongly correlated. We have also high-

lighted when a method may be a risky choice. For example,

SCAD is double-edged, dominating in “easier” scenarios

but deteriorating rapidly when conditions become difficult.

Therefore, its high variability means that it should only be

used when one is sure that the scenario at hand is very “easy”.

Six out of the seven approaches considered in our study have
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been recommended for at least one of the goals. (Further

to the above, we recommended Stability Selection for PPV

and Elastic Net for TPR in correlated settings.) The Dantzig

Selector is not recommended in any setting, since it is usu-

ally similar or worse than Lasso and is more computationally

expensive.

The overall average correlation between pairs of covari-

ates is weak in all correlated designs (due to the block

structure for synthetic data and reflecting the correlation

in the real data set for the semisynthetic data). However,

despite this weak average correlation, we have found that

method performance in the synthetic pairwise correlation

design and semisynthetic “high”-correlation design can still

differ greatly to performance in the synthetic independence

design (or semisynthetic “low”-correlation design). This is

because an important factor for method performance is the

magnitude of correlation between signals, or between signals

and non-signals.

For prediction, where we mostly recommended Lasso,

Ridge does particularly badly in many “easier” scenarios, but

it is worth pointing out that most scenarios considered here

were unfriendly to Ridge in the sense of being highly sparse,

and with low overall correlation (across all predictors). In

many areas such as biomedicine, signals can be weak and so

SNR may be at the low end of the values considered here, or

possibly even smaller. In such difficult settings, Ridge may

be a good option and our results indeed suggest this, as the

only scenarios where we saw any benefit of an L2 penalty

for prediction were those with small r and SNR.

We focused on simulations from the sparse linear model

to better understand the variability of performance in a

broadly favorable setting. Extending this systematic empir-

ical approach to (the huge range of) less favorable settings,

spanning many kinds of model mis-specification, could be

illuminating, but experimental design would be nontrivial. As

one example, we revisited a “low”-correlation scenario from

the semisynthetic data analysis, but with a non-Gaussian

error distribution. Figure S21 shows method performance for

all metrics and provides details of data generation. Method

performance deteriorates as non-normality increases. SCAD

is the most affected and mirrors its previous behavior, with a

transition in performance from best to worst as non-normality

increases for ranking and prediction.

Our comparison focused on seven popular penalized linear

regression methods, but there are of course many others that

have been proposed, and some of these are also well known.

For example, there are relatively well-known extensions of

Lasso that have been proposed for data where covariates can

be grouped (Group Lasso; Yuan and Lin 2006) or ordered

(Fused Lasso; Tibshirani et al. 2005). While, for reasons of

tractability, our comparison was restricted to seven methods,

we make our simulation code and method performance data

available, allowing users to add in other approaches of inter-

est into the comparison without the need to regenerate the

results for the seven methods considered here.

Choices of tuning parameters can be crucial. In line with

known results, we saw that standard cross-validation often

yielded overly large models for Lasso and Elastic Net. An

interesting alternative is proposed in Lim and Yu (2016),

where cross-validation is based on an estimation stabil-

ity metric. Compared to traditional cross-validation, this

approach significantly reduces the false positive rate while

slightly sacrificing the true positive rate and achieves similar

prediction but higher accuracy in parameter estimation. For

Stability Selection, in Zou (2010) the author points out that

there is no established lower bound for the expected num-

ber of true positives, and the tuning parameters πthr and Ṽ

have significant influences on the true positive rate. They

also found in their simulation study that the number of false

positives is usually smaller than the specified Ṽ . This sug-

gests that less stringent Ṽ can help improve signal detection

without sacrificing false positive control too much, thus pro-

viding a better balance between the two. This is reflected in

our results in Sect. 4.2.

We explicitly defined the true model in terms of exact spar-

sity (i.e., some coefficients being precisely zero). Although

this is the best studied case, in practice such a notion of spar-

sity may not be realistic and a more reasonable assumption

may be that there are a few strong signals, several moder-

ate signals and even more weak signals, but the majority of

variables are irrelevant with small, but sometimes nonzero

coefficients. In this case, since it may not be possible to find

all relevant variables, a good method might be expected to

detect all strong and moderate signals while removing the

weaker ones. In this vein, Zhang and Huang (2008) consider

the problem where weak signals exist outside the ideal model,

such that their total signal strength is below a certain level.

The authors prove that the Lasso estimate has model size of

the correct order, and the selection bias is controlled by the

weak signal coefficients and a threshold bias.

Due to the comprehensive nature of our simulation study,

we focused on summarizing the predominant trends and rela-

tionships across the scenarios. There will always be some

scenarios which are exceptions to these summaries, but this

in itself motivates the need for extensive simulation stud-

ies. If a simulation study has limited scope, then the derived

conclusions may not generalize beyond the few scenarios

considered. So while such studies may be useful in exploring

and understanding the properties of a method, they may have

limited practical implications for an end user. In contrast, a

large-scale simulation study, such as the one presented here,

can reveal which approaches perform well across a broad

range of scenarios. These approaches may then translate into

being a good or “safe” choice for the user’s setting. In addi-

tion, the study can offer some insight as to whether certain
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methods are best avoided, because they have high variability

across scenarios in the study.
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