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Abstract
There are a variety of settings where vague prior information may be available on the importance of predictors in high-
dimensional regression settings. Examples include the ordering on the variables offered by their empirical variances (which is
typically discarded through standardisation), the lag of predictors when fitting autoregressive models in time series settings,
or the level of missingness of the variables. Whilst such orderings may not match the true importance of variables, we
argue that there is little to be lost, and potentially much to be gained, by using them. We propose a simple scheme involving
fitting a sequence of models indicated by the ordering. We show that the computational cost for fitting all models when
ridge regression is used is no more than for a single fit of ridge regression, and describe a strategy for Lasso regression that
makes use of previous fits to greatly speed up fitting the entire sequence of models. We propose to select a final estimator
by cross-validation and provide a general result on the quality of the best performing estimator on a test set selected from
among a number M of competing estimators in a high-dimensional linear regression setting. Our result requires no sparsity
assumptions and shows that only a logM price is incurred compared to the unknown best estimator. We demonstrate the
effectiveness of our approach when applied to missing or corrupted data, and in time series settings. An R package is available
on github.

Keywords High-dimensional data · Low variance filter · Lasso · Ridge regression · Missing data · Corrupted data

1 Introduction

Regression with high-dimensional data is nowadays a rou-
tine task in large variety of application areas, ranging from
genomic analysis and medicine to finance and industrial
processes. Perhaps the most popular method is the Lasso
(Tibshirani 1996),which given a responseY ∈ R

n andmatrix
of predictors X ∈ R

n×p solves

argminb∈Rp

{
1

2n
‖Y − Xb‖22 + λ‖b‖1

}
. (1)

Whilst the one of the goals of the Lasso and the many
related penalised regression procedures is to determinewhich
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variables are relevant, in many settings, some vague prior
information on the relative importance of the variables may
be available.

One instance of this concerns the scaling of variables so
they have the same empirical variance before performing the
Lasso optimisation (1). This practice is very common and is
carried out by default in many software packages including
thehighly popularglmnet (Friedmanet al. 2010). The ratio-
nale for this is to ensure that all of the coefficients are treated
in a balanced way; otherwise, coefficients corresponding to
variableswith large empirical varianceswill effectively expe-
rience very little shrinkage whereas those corresponding to
variables with small variances will be penalised heavily. On
the other hand, any information that may be encoded in the
scale of the columns of X is lost. For example, in a setting
where one may expect measurement error to be distributed
evenly over the variables, it is reasonable to suspect that vari-
ables with larger observed variance will be less corrupted by
the error and hence contain more underlying signal. Perhaps
as a result of this, it is also common to remove columns
with the smallest variance as part of pre-processing, a step
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known in themachine learning community as applying a ‘low
variance filter’ (see for example Silipo et al. (2014), Singh
et al. (2017), AbouElhamayed (2018), Langkun et al. (2020),
Saputra et al. (2018), Kalambe et al. (2020)). This is however
a somewhat crude way of using this potential information,
and may eliminate important variables that happen to have a
small variation, a risk which the practice of scaling variables
aims to mitigate.

Another example of potential prior information being
available concerns regression on lagged times series data
when estimating autoregressive processes. It is natural to
assumed that the importance of the historical data typically
decreases with increasing lag, though seasonality consider-
ations may also be incorporated into a final ordering among
the predictors.An a priori ordering or partial ordering on vari-
ables could arise for many other reasons, and in this paper we
will focus on the more general question of how such infor-
mation can be used to improve the final fit.

One approach to incorporating this information involves
modifying the Lasso penalty term allowing individual tuning
parameters λ j to be applied to each variable,

∑p
j=1 λ j |β j |,

the idea being to place a smaller penalty on those coefficients
believed to be more important. Manual reweighting of the
penalty terms is computationally very attractive since it is no
more difficult to compute than the Lasso (1), for which there
exist very fast and reliable algorithms that include this func-
tionality (Friedman et al. 2010). Nardi and Rinaldo (2011)
study this approach in the autoregressive model setting.
Motivated primarily by the time-lagged regression example,
Tibshirani and Suo (2016) propose an alternative approach
involving fitting the Lasso with a monotonicity constraint
imposed on the coefficients with respect to a given ordering.

Whilst these approaches can take great advantage of an
informative ordering, one potential drawback is that when
the ordering is uninformative, their performance can suf-
fer substantially. Indeed, the numerical results in Tibshirani
and Suo (2016) suggest that the practitioner pays a large
price for supplying a randomised ordering. Micchelli et al.
(2010) consider a general norm-based penalty framework
that includes, as an example, a penalty applied to groups
(Yuan and Lin 2006) which respect a specified ordering but
are data-dependent. Such an approach, while less aggres-
sive than a monotonicity constraint on the coefficients or a
reweighting of the penalty, can still suffer if the ordering is
unhelpful. In addition, both this and the approach of Tibshi-
rani and Suo (2016) aremuchmore computationally involved
than a regular Lasso regression, and less suited to the sort of
large-scale settings we have in mind here.

In this work we propose to incorporate a potentially useful
ordering over the variables in the following simple way, out-
lined in more detail in Section 2. We begin by fitting a model
over the full set of variables and then proceed by fitting a
sequence of nested submodels, each time removing a subset

consisting of the least important variables according to our
ordering. A final model is then selected by cross-validation.
We show thatwhen using ridge regression, by arranging com-
putations appropriately, the cost for performing regressions
on all p nested subsets of variables given by the ordering is
the same as that of a single fit on the full set of variables. We
also describe a strategy for speeding up computations when
the Lasso is used.

The statistical performance of our nested regression
approach depends on cross-validation being able to select
a good model from among the candidates given by the order-
ing, which in the case where the ordering is uninformative
will most likely be close to that obtained from regressing on
the full model, but could come from a regression on a much
smaller set of variables for an informative ordering. In Sec-
tion 3we give an oracle inequality bounding the performance
of the coefficient estimate performing best on test data from
among a sequence of estimates showing that the number of
competing estimates only affects the performance logarith-
mically. In our context, these estimates will be derived from
regressing on different subsets of variables, but the resultmay
be of independent interest.

In Section 4 we present the results of numerical experi-
ments on simulated and real data that demonstrate the utility
of our nested regression method. We study settings where
order informationmay arise through knowledge of the degree
of measurement error in the covariates, heterogeneous levels
ofmissingness among the variables, and chronological order-
ing among variables derived from time series. We conclude
with a discussion and proofs are deferred to the Appendix.
An R package implementing our proposed methodology is
available at https://github.com/bgs25/OrderRegression.

2 Methodology

In this section we present our nested regression framework
for incorporating potential prior ordering information when
fitting high-dimensional regression models. We first present
our general approach before describing specific versions for
Lasso and ridge regression in high-dimensional linear mod-
els.

2.1 Using ordering information

Consider a general regression problem, with response vector
Y ∈ R

n and matrix of predictors X ∈ R
n×p, of the form

argminb∈Rp {�(Y , Xb) + Pλ(b)} , (2)

where � is some loss function and Pλ a penalty indexed by a
regularisation parameter λ. Suppose that we have a reorder-
ing π1, . . . , πp of variables 1, . . . , p with π j expected to be
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at least as important a predictor as πk when k ≥ j . We then
specify indices p = j1 > j2 > · · · > jK = 1 from which
we obtain a collection of nested subsets S1 ⊃ · · · ⊃ SK
with Sk = {π1, . . . , π jk }. When K � p we typically choose
the k j such that sizes of the subsets decrease exponentially,
so |Sk |/|Sk+1| ≈ |S1|/|S2| for k = 1, . . . , K − 1, and
SK = {π1}. This is partly motivated by the logarithmic cost
associated with including extraneous variables in a Lasso
regression.

Let us introduce the notation [ j] = {1, . . . , j} for j ∈ N,
and for any nonempty S ⊆ [p], let XS ∈ R

n×|S| be the
submatrix of X consisting of the those columns indexed by
S.

Given a grid of tuning parameters λ1 > · · · > λL , for each
k ∈ [K ] and l ∈ [L]we perform optimisation (2)withλ = λl
and regressing only on those variables indexed by Sk , i.e. with
XSk in place of X , to give a vector of coefficient estimates
β̂k,l ∈ R

p with β̂
k,l
j = 0 for all j /∈ Sk . If our ordering were

informative in that for some large k, Sk contained the set of
important variables, regressions performed on Sk would be
unhampered by the potentially large number of unimportant
variables in [p] \ Sk . For example, it may be the case that
conditions on the design matrix such as the irrepresentable
condition (Zhao and Yu 2006) or the compatibility condition
(Van de Geer and Bühlmann 2009) that guarantee the Lasso
performs well are met by XSk but not the full design matrix
X . Our new tuning parameter is the pair (k, l), which we
typically select by cross-validation.

One potential issue with the approach outlined above is
that particularly if K is large, the computational burden of
performing the K × L regressions may be large. We now
explain how for both ridge regression and sparsity inducing
penalties such as the Lasso, the computation can be organised
so the cost is manageable even with large-scale data.

2.2 Application to Lasso regression

We now consider nested regression using the Lasso (1) as
our base regression procedure. Similarly to how warm starts
greatly speed up the computation of a Lasso solution path
compared to separately computing coefficient estimates at
each λl (Friedman et al. 2010), we can utilise {β̂k,l}Ll=1 to
speed up computation of {β̂k+1,l}Ll=1. The key observation

is that if for a given (k, l), β̂
k,l
j = 0 for all j /∈ Sk+1, then

β̂k+1,l = β̂k,l , so no further computation is required. The
finer the grid (i.e. the larger K is), the more computation can
be skipped and thus the greater the relative gains of using this
are (as demonstrated in Fig. 1). This strategy can also be used
for other penalised regression approaches that yield sparse
solutions, such as the relaxed Lasso (Meinshausen 2007),
the adaptive Lasso (Zou 2006) and MCP (Zhang 2010), or

regression procedures using sparsity inducing penalty func-
tions with losses other than squared error loss.

In the case of the Lasso, a further speedup may be realised
by recognising that the bulk of the computation in the solu-
tion path occurs when computing the tail of path, i.e., those
solutions with small values of the tuning parameter. In many
settings, such solutions will not be needed as they will not
be selected by cross-validation. The square-root Lasso offers
an approach to eliminate these solutions without needing to
compute them. The square-root Lasso (Belloni et al. 2011;
Sun and Zhang 2012) is given by

β̂sq(λsq) ∈ argminb∈Rp

{‖Y − Xb‖2/
√
n + λsq‖b‖1

}
. (3)

By comparing the KKT conditions of the optimisation above
and those of the Lasso, it may be shown that the solu-
tion paths of the Lasso (1) and the square-root Lasso are
identical, but are parametrised differently. Specifically, writ-
ing β̂(λ) for a Lasso solution (1) with tuning parameter λ

and σ̂ (b) := ‖Y − Xb‖2/√n for b ∈ R
p, we have that

β̂(λ) is in fact a square-root Lasso solution with tuning
parameter λsq = λ/σ̂ (β̂(λ)), provided σ̂ (β̂(λ)) > 0. Con-
versely, any square-root Lasso solution β̂sq(λsq) is also a
Lasso solution with β̂(λ)with λ = λsqσ̂ (β̂sq(λsq)), provided
σ̂ (β̂sq(λsq)) > 0. Furthermore, λ 
→ λ/σ̂ (β̂(λ)) is a well-
defined non-decreasing function; see Shah and P. Bühlmann
(2019, App. B) for a derivation.

One key advantage of the square-root Lasso is that there
exist theoretically rate-optimal choices of the tuning param-
eter, such as 1.1

√
2 log(p)/n, that do not depend on the

unknown variance of the noise. In practice however, such
theoretically motivated choices tend to be conservative in
that they are too large, and are typically out-performed by
cross-validation at least from the perspective of prediction
error. However they can nevertheless be helpful as a crite-
rion for terminating the computation of the Lasso solution
path at a λl > λL . Writing λ(λsq) = λsqσ̂ (β̂sq(λsq)) for a
maximal σ̂ (β̂sq(λsq)) for instance1, if we take λsq to be say
half of a theoretically optimal choice of tuning parameter (in
our experiments we used 0.5 times the choice suggested in
Sun and Zhang (2013)), cross-validation is unlikely to select
anyλl < λ(λsq), and so such solutions need not be computed.

Applying the two measures outlined above yields sub-
stantial reduction in the effort required to compute a full
set of solution paths across all nested subsets, as shown in
Fig. 1. Algorithm 1 below describes how our nested regres-
sion approach is implemented. The sets A(k, l) record which
variables have been included in the solution path for variable
set Sk at λ = λl .

1 The quantity σ̂ (β̂sq(λsq)) defined by (3)may not be unique as β̂sq(λsq)

may not be unique.
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Fig. 1 Computation time of
Algorithm 1 as a function of the
number of subsets K when
applied to the Riboflavin dataset
(Dezeure et al. 2015), where
n = 71 and p = 4088
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Algorithm 1 Algorithm for nested Lasso regression
Input: Matrix of predictors X ∈ R

n×p , response Y ∈ R
n , nested sets

of variables S1 ⊃ · · · ⊃ SK , tuning parameter grid λ1 > · · · > λL ,
square-root Lasso parameter for early stopping λsq > 0 (we use 0.5
times the choice of Sun and Zhang (2013))

1:
2: Set A(0, l) = {1, . . . , p + 1} for l = 1, . . . , L and β̂k,0 = 0 for

k = 1, . . . , K
3: for k = 1, . . . , K do
4: for l = 1, . . . , L do
5: if A(k − 1, l) ⊆ Sk then
6: Set β̂k,l = β̂k−1,l and A(k, l) = A(k − 1, l)
7: else if ‖Y − X β̂k−1,l‖2/λl ≤ √

n/λsq then
8: Compute β̂k,l = argminβ:βSck

=0{ 1
2n ‖Y − Xβ‖22 + λl‖β‖1}

using β̂k,l−1 as an initial estimate
9: Set A(k, l) = { j : β̂k,l = 0}
10: else
11: Set β̂k,l = β̂k,l−1 and A(k, l) = A(k, l − 1)
12: end if
13: end for
14: end for
Output: {β̂k,l : k ∈ {1, . . . , K }, l ∈ {1, . . . , L}}

2.3 Application to ridge regression

We now turn to the case where ridge regression (Hoerl and
Kennard 1970) is the base procedure in our nested regression
approach. Given a tuning parameter λ > 0, the solution on
the full set of variables is given by

(XT X + λI )−1XT Y = XT (XXT + λI )−1Y , (4)

with the right-hand side computable in O(n2 p) operations
in the case n � p. We will consider the specific case where
K = p, and so without loss of generality, we may assume
Sk = {k, . . . , p}. We will show that for a fixed λ and test set
Z ∈ R

n′×p, computation of the full collection of test set pre-
dictions for ridge regression solutions across all S1, . . . , Sp
also requires only O(n2 p) operations, provided n′ ≤ n
(which we will from now assume). Applying this across a

grid of L tuning parameter values then gives a total cost of
O(Ln2 p) for determining the (k, l) pair by cross-validation,
when the number of folds is constant.

To achieve this, it will be convenient to compute predic-
tions corresponding to Sp first, and then use this to obtain
the predictions for Sp−1, and hence Sp−2 and so on, as we
now explain. Let us fix k ≤ p. The out-of-sample predic-
tions corresponding to (4) applied to matrix of predictors
XSk+1 := X (1) and test data ZSk+1 := Z (1) are given by

Z (1)(X (1))T {X (1)(X (1))T + λI }−1Y . (5)

Let us suppose that Z (1)(X (1))T ∈ R
n′×n and A := (X (1)

(X (1))T + λI )−1 ∈ R
n×n have been computed; note these

are required in calculating (5) which then needs only an addi-
tional O(n2) operations to compute.We now explain how the
corresponding quantities for X (2) := (Xk, X (1)) = XSk and
Z (2) := (Zk, Z (1)) = ZSk may then by retrieved in O(n2)
steps, where Xk ∈ R

n and Zk ∈ R
n′
are the kth columns of

X and Z respectively. First observe that

Z (2)(X (2))T = Z (1)(X (1))T + Zk X
T
k ,

so Z (2)(X (2))T may be formed using O(nn′) operations.
Next applying the Sherman–Morrison–Woodbury rank one
update formula, we see that

{X (2)(X (2))T + λI }−1 = {X (1)(X (1))T + Xk X
T
k + λI }−1

= {X (1)(X (1))T + λI }−1 − AXk XT
k A

1 + XT
k AXk

,

with right-hand side easily obtained from A in O(n2) com-
putations. We thus see that the entire set of solutions may be
computed using O(pn2) operations.

In practice we compute the full model first using the sin-
gular value decomposition of X to obtain the full solution
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path for this model, with an analogous rank-one-update to
that above applied to progress to smaller models.

To illustrate the speed with which this enables the models
to be computed, we again used the Riboflavin dataset (see
Section 4.2). We trained the models on 50 observations and
computed predictions for the remaining 21 across a sequence
of 100 tuning parameter values and K = p variable subsets.
Thus, the total number tuning parameter pairs consideredwas
408 800; the full computation for all of these on a standard
laptop took under 100 seconds. We obtained an estimated
mean squared prediction error of 0.318 for the model fitted
only on the top 169 nodes, compared to 0.399 for the full
model.

3 Theory

Our proposed nested regression scheme for incorporating
potential prior information in high-dimensional regression
involves consideration of a number of different estima-
tors corresponding to different tuning parameter values and
subsets of variables. The statistical performance relies on
cross-validation being able to select a good estimator from
among these. In this section we study this general problem
in the context of the high-dimensional linear model,

Y = Xβ + ε, (6)

for a simplified form of cross-validation. Specifically, we
suppose that we have available candidate estimators β̂(1),

. . . , β̂(M) ∈ R
p trained on data (Y tr, X tr), independent of

test data (Y , X) ∈ R
n × R

n×p, which we will treat as fixed.
In the context of the previous section, M would be LK . With
these we compute

β̂ ∈ argmin
b∈{β̂(1),...,β̂(M)}

‖Y − Xb‖22. (7)

The candidate estimators could, for example, have been
obtained via Lasso or ridge regression; however we consider
amore general setting that allows for arbitrary candidate esti-
mators.

Suppose that the rows of X are i.i.d. with mean zero and
covariance � ∈ R

p×p. We compare the performance of β̂

to that of the unknown best estimator among β̂(1), . . . , β̂(M)

defined by

β̂∗ ∈ argmin
b∈{β̂(1),...,β̂(M)}

(β − b)T�(β − b). (8)

While a large M can be expected to result in β̂∗ and β being
closer, naturally it will result in a larger discrepancy in the
performance of β̂∗ and β̂. Theorem 1 however indicates that

the price to pay is only logarithmic in M . The implication for
our nested regression scheme is that K and L can be chosen
to be relatively large subject to computational constraints;
while they may not be optimal statistically, they will not be
too far off.

Theorem 1 Suppose that X = W�1/2 where W ∈ R
n×p

has independent mean-zero sub-Gaussian entries with vari-
ance proxy ν2. Suppose linear model (6) holds with the
components of ε mean-zero, independent and sub-Gaussian
with variance proxy σ 2. Then for any c1, c2 > 0 with
c1 < n/ logM − 1 , we have that with probability at least
1 − 2M−c1 − 2M−c2 ,

‖�1/2(β̂ − β)‖2 ≤ 1 + 


1 − 

‖�1/2(β̂∗ − β)‖2 + 1

1 − 


2
√
2σ

√
1 + c2

√
logM

n
, (9)

where 
 = 2
√
2ν(1 + c1)1/4{(logM)/n}1/4.

Note that no sparsity assumptions on β are required, and p
can be arbitrarily large compared to n. In addition, no require-
ments are placed on the quality of the candidate estimators
which can be arbitrarily good or bad, though this will be
reflected in β̂∗ of course.

In practicewewould use cross-validation rather than a sin-
gle training and test split of the original data as considered in
our setup here. However existing results on cross-validation
are not available in the sort of generality we consider here; in
particular they do require sparsity assumptions and are tied
to particular estimators such as the Lasso (Feng andYu 2019;
Chetverikov et al. 2021).

We remark that another option for comparing the different
models output could be AIC or BIC, which have the advan-
tage of not requiring test data. However, such information
criteria would not have a way of discriminating between the
complexity a model fitted on r variables selected out of set
Sk ⊂ [p], or one selected out of the full set of p variables
SK . On the other hand, cross-validation implicitly provides
a way of doing this: the model selected out of the full set
of variables may have a greater degree of over-fitting which
would be exposed by performance on the test set.

4 Numerical experiments

In this section we explore the properties of our nested regres-
sion approach in a range of scenarios, using both simulated
and real data. In Section 4.1 we consider different levels of
‘informativeness’ in the orderings, and the effect that this
has on the prediction error of the final model. Section 4.2
explores the effect of varying the number of subsets K using
two real datasets. Sections 4.3 and 4.4 again use real data, this

123



52 Page 6 of 12 Statistics and Computing (2022) 32 :52

time exploring how our approach can be used with missing
or corrupted data. Lastly, in Section 4.5 we run our method
on a dataset to predict avocado prices, illustrating the use of
our approach in a time series context. For our nested regres-
sion approach, we use the Lasso with 5-fold cross-validation
and the default grid of 100 tuning parameters as chosen by
glmnet on the full model S1.

4.1 Quality of ordering

In order to see the effect of different variable orderings on
the performance of themodel, we sample orderings weighted
by a vector ρ ∈ [0, 1]p of probabilities using the sample
function in R (R Core Team 2021) supplied with the ρ as the
prob argument. This uses so-called size-biased sampling
as described in Pitman and Tran (2015). For example, a
neutral (or uninformative) ordering would have this vector
as (1/p, . . . , 1/p) (where p is the number of variables), as
all permutations are equally likely.

After a model has been constructed, with a true support
S, we specify the j th entry of ρ for j = 1, . . . , p by

ρ j =
{

η/(p + (η − 1)|S|) if j ∈ S

1/(p + (η − 1)|S|) otherwise,

where η > 0 is the ‘probability ratio’. A choice of η > 1
means that the ordering is more likely to favour signal vari-
ables (meaning the ordering is likely to be useful), whereas
η < 1 means the ordering will prefer non-signal variables
(meaning that the ordering will be actively unhelpful). The
vector ρ is used as the weight vector for sampling a permu-
tation which was then used as the ordering.

We consider a linear model (6) with design matrices sam-
pled with n = 100 and p = 1000, with i.i.d. mean-zero
Gaussian rows with covariance matrix �. Tests were run
with four different choices of �:

1. � jk = 1{ j=k}
2. � jk = 0.9| j−k|
3. (�−1) jk = 0.4| j−k|/5 (≈ 0.833| j−k|)
4. � jk = 0.5 + 0.51{ j=k}.

Three different sparsities for β were used: 5, 10, and 25 vari-
ables, with the variables with non-zero coefficients selected
uniformly at random. Three regimes for populating the non-
zero entries in β were used: two constant (0.5 and 1.5), and
one random, where coefficients are drawn as independent
U (0, 2) random variables. We fixed the number of subsets
K to be 100; in these examples, the results were relatively
insensitive to the choice of K provided it was sufficiently
large, a phenomenon expected to hold more generally given
the result of Theorem 1. The tests were repeated 500 times

with glmnet used to perform the regressions in the case
with K = 1.

It is interesting to note in Fig. 2 that an adversarially bad
ordering does not give rise to any worse performance than
a neutral one. There is reason to believe that this should be
preferable: in a setting where an ordering is not actively help-
ful (i.e. it is either neutral or adversarially poor) then wewish
for our procedure to select the full model, S1. If the ordering
is sufficiently bad that the increase in loss for the submodels
is larger than the variance of the test error, there is a greater
chance that S1 will be selected.

4.2 Riboflavin and Prostate data

Tests were performed on the riboflavin dataset (available in
R package hdi (Dezeure et al. 2015); n = 71, p = 4088)
and the prostate dataset (available in R package spls (Chun
and Keleş 2010); n = 102, p = 6033) to explore the perfor-
mance improvements attained by using our nested regession
approach. With the former dataset, which has a continuous
response, we used a Lasso regression with squared error loss,
and with the latter, which has a binary response, we used an
�1-penalised logistic regression. Prediction error was esti-
mated by cross-validation error with 5-folds; within each of
the folds cross-validation was also used to select the model.
A range of values of K were used for each dataset shown by
the ticks on the plots in Fig. 3. The ordering used for both
of these was the one induced by the scales of the columns in
the matrices of predictors. As mentioned in the introduction,
this order is often used more directly in a low variance filter-
ing step, particularly with gene expression data (Singh et al.
2017).

We see in both of these examples that the prediction error
appears to improve after using a nested regression approach
instead of ordinary Lasso models (which is equivalent to a
K = 1). With the both the riboflavin data and the prostate
data, the error then increases slowly as K increases. This
behaviour is to be expected from (9) where the the bound
on the right-hand-side is typically decreasing in M = LK ,
whereas the final term is increasing in M .

Only 8 values of K were used for the prostate data due to
computational constraints, as for logistic regression models
we used a simple loop over �1-penalised logistic regressions
rather than the approach described in Section 2.2. Each test
was repeated 2000 times which different splits used in the
cross-validation schemes in each run.

4.3 Corrupted data

Herewe consider a settingwhere an ordering among the vari-
ables arises through corruption of the entries of the design
matrix.We used the ‘muscle-skeletal’ dataset from theGTEx
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Fig. 2 Mean squared prediction errors (MSPE) of our nested regression
method as the logarithm of the probability ratio η varies: 0 relates to a
neutral choice of ordering, larger and negative means a more adversar-
ially bad choice, larger and positive means a more informative choice.

Left–Right: 5, 10, 25 signal variables; Top–Bottom: 0.5, 1.5, U [0, 2]
signal coefficients. Colours for settings are 1. black, 2. red, 3. blue, 4.
green. The dotted lines correspond to the errors achieved by the standard
approach on the same data. (Color figure online)
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(left) and prostate (right) datasets for different K , with squared error
and misclassification losses respectively. The error bar is ±2 standard

deviations and the dotted line depicts the prediction error of a standard
�1-penalised regression

project2, which has 491 rows and 14 713 columns, as our
uncorrupted dataset. We preprocessed the data as in Shah
et al. (2020) by removing the effect of measured and esti-
mated confounders. We took as a response variable a column
randomly selected (anew in each run) from thematrix, mean-
ing that for our experiment n = 491 and p = 14 712.

2 https://gtexportal.org

We then artificially corrupted the data by independently,
for each j replacing with probability ρ j each entry in j th
column of the matrix of predictors by independent standard
Gaussian random variables. In order to obtain an ordering
we assume knowledge of the ranking of the ρ j . In practice,
if this is not known then an estimate can still be useful, as
even if a practitioner has only a very vague notion of which
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Fig. 4 Proportion of variance explained (larger is better) by the Lasso and our nested regression scheme incorporating ordering information for
each of the corruption regimes

are more likely to be corrupted, we see in Section 4.1 that it
can still be beneficial to use such an ordering.

We tested performance in four settings, each with a dif-
ferent vector ρ controlling the corruption probabilities of
the variables. We constructed ρ1, . . . , ρp for each of the
four settings as follows (before randomising the order of
ρ1, . . . , ρp):

1. ρ j = 0.5 for j = 1, . . . , �0.2p� and 0 otherwise
2. ρ j = 0.5 for j = 1, . . . , �0.5p� and 0 otherwise
3. ρ j = 0.5 for j = 1, . . . , �0.8p� and 0 otherwise
4. ρ j = min{0.95, ( j − 1)/p}

Thedatawere split intofive folds; for eachof these amodel
was fitted on the complementary four with entries corrupted
according the settings above. These models were themselves
tuned using five-fold cross-validation. We set K = 25 for all
experiments, which were repeated 2000 times.

4.4 Heterogeneousmissing data

Here we consider the missing data setting, where in a given
design matrix X , each entry Xi j is missing independently
with probability ρ j . In contrast to the previous section, here
it is observed exactly which entries are missing. This means
that the ranking of the variables by their overall missingness
is known, with no additional knowledge assumed.

Data are missing homogeneously in the case where ρ j ≡
ρ, i.e. the entries in X are all missing with equal probability.
In this case, the probability ρ can be estimated and there are
well-studied methods for computing Lasso solutions, such
as discussed in Loh et al. (2012). However, the setting we
consider here includes heterogeneous missing data. Within
high-dimensional statistics there are methods that accom-
modate heterogeneous missingness in principal components

analysis (Zhu et al. 2019) and in regression problems (Rosen-
baum et al. 2013; Datta et al. 2017).

In order to implement our approach in this setting, we first
observe that the Lasso objective can be written as

1

2n
Y T Y − 1

n
bT XT Y + 1

2n
bT XT Xb + λ‖b‖1, (10)

which depends on X only through the vector XT Y/n and
matrix XT X/n. Indeed, this is the starting point of existing
approaches for performing regression on high-dimensional
data with missing entries (Loh et al. 2012; Rosenbaum et al.
2013; Datta et al. 2017). In the case where X has some miss-
ing entries, the above quantities can be estimated by

̂ jk = X̃ T
j X̃k/|{i : Xi j and Xik not missing}| (11)

γ̂ j = X̃ T
j Y/|{i : Xi j not missing}|, (12)

where X̃i j = Xi j if Xi j not missing, and 0 otherwise. These
quantities can be substituted into the update steps in comput-
ing solutions to the following surrogate objective function

β̂ ∈ argminb∈Rp

{
−bT γ̂ j + 1

2
bT ̂b + λ‖b‖1

}
. (13)

Note that ̂ is not in general positive semidefinite, which
would be needed in order for (13) to have a finite minimum.
To overcome this difficulty, Datta et al. (2017) suggest pro-
jecting ̂ onto the cone of positive semi-definite matrices via
argmin∈Sp

+ ‖ − ̂‖∞, which restores the convexity of the

problem. Here we will use a simpler approach replacing ̂

with ̂psd := ̂ +�min(̂)Ip, where �min(̂) is the smallest
eigenvalue of ̂. This is equivalent to the addition of a fixed
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ridge penalty term in the objective function

β̂ ∈ argminβ∈Rp

{
−βT γ̂ j + 1

2
βT ̂psdβ + λ‖β‖1

}

= argminβ∈Rp

{
−βT γ̂ j + 1

2
βT ̂β + λ‖β‖1

+1

2
�min(̂)‖β‖22

}
. (14)

Tests were performed on the same ‘muscle-skeletal’ dataset
as in Section 4.3, again randomly selecting a variable in each
replicate to use as the response. Three missing data regimes
were used, each determined by a vector ρ ∈ [0, 1]p specify-
ing the independentmissingness probability of each variable:

1. ρ j = 0.25 for all j ,
2. ρ j = ( j − 1)/3p, then randomising the order of ρ,
3. ρ j = 0.3 for j = 1, . . . , �0.5p� and 0 otherwise, then

randomising the order of ρ.

The data were split into five folds; for each of these a
model was fitted on the complementary four with missing
entries according to the settings described. These models
were themselves tuned using five-fold cross-validation, with
scores computed using the estimates ̂ and γ̂ . Experiments
were repeated 250 times.

Figure. 5 displays the proportion of variance explained by
the both the vanilla Lasso and by our approach with K =
25 in each of the above settings. As expected, there is no
improvement in Setting 1 from using a nested regression
approach, as themissingness is homogeneous so the ordering
will be uniformly random. In the other two settings, using our
approach with the knowledge of which variables are missing
more frequently allows us to fit models that provide better
predictions.

4.5 Avocado data

Here we study historical data on avocado prices and sales
volume in multiple US markets available on Kaggle [Kig-
gins]. For this experiment we consider predicting the price
using an autoregressive model, and use the 53 markets for
which full weekly price data is available for both ‘conven-
tional’ and ‘organic’ varieties from the beginning of January
2015 to the end of March 2018.

A design matrix was compiled using all 106 time series,
using the previous 52 values for each of one, thus resulting in
a 5512 (= 52× 106)-dimensional model, with 117 observa-
tions. For each avocadovariety andmarket, amodelwasfitted
on the first 78 weeks of data and then tested on the remaining
39 weeks to assess performance. Unlike in the other exper-
iments where the model was tuned using cross-validation,

here we wish to respect the chronological ordering of the
observations. We therefore train on the first 39 observations,
then validate on the next 39 in order to select the model,
falling within the set-up of Theorem 1. Once our model is
selected we then retrain it on all 78 of the training observa-
tions before testing on the hitherto-unseen test set of the last
39 observations.

The ordering of variables we used with our nested regres-
sion scheme was motivated by the following considerations.
For a univariate time series with no seasonal effects, we
would typically order the variables by ranking them from
most to least recent (with most recent being the most ‘impor-
tant’). Here there are effectively 106 time series which are
observed weekly, so there may be some seasonal effect.

The ordering used here was constructed by first splitting
the time series into groups of decreasing ‘importance’ as
follows:

1. the particular time series that we are modelling;
2. the complementary variety to the time series we are mod-

elling (e.g. were wemodelling Albany-conventional, here
we would take Albany-organic);

3. everything else.

Within each of these groups, the reading from 52 weeks (one
year) previous was first in the ordering, with the rest ordered
from newest to oldest.

Each of the response vectors were scaled to have unit vari-
ance. Fig. 6 contains mean squared prediction error for each
time series, fitted with both vanilla Lasso models, as well as
our approach with K = 10 and K = 100. In both cases,
using our approach substantially improves the quality of the
predictions and that K = 10 gives the largest improvement.
This illustrates the flexibility of our approach with respect to
the origin of the ordering over the variables, and how it can
improve prediction performance in a range of scenarios. The
median times for the 106 regressions were 1.32s for K = 1,
1.53s for K = 10 and 3.46s for K = 100.

5 Discussion

In this work we have introduced a simple and general nested
regression approach for using potential prior information on
the importance of variable in a regression problem. Such
prior information may be available in a variety of settings of
interest, including time series analysis, settings with missing
data, and where some corruption of the data is suspected,
among many others. We have described a simple computa-
tional strategy for implementing approach with the Lasso,
and ridge regression, and provided in Theorem 1 some theo-
retical support for our schemevia a general result on selecting
estimators in high-dimensional linear regression settings. It
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Fig. 5 Proportion of variance explained (larger is better) by the Lasso and our nested regression scheme incorporating ordering information for
each of the missing data regimes.
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would be of interest to extend this result to encompass gen-
eralised linear models, for example, and also aggregation
schemes such as stacking (Wolpert 1992). Another open
question is whether there is a data-dependent choice of the
number of subsets K that can be used.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
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Appendix

Proof of Theorem 1

We begin with the so-called basic inequality

1

n
‖X(β̂ − β)‖22 ≤ 1

n
‖X(β̂∗ − β)‖22 + 2

n
|εT X(β̂∗ − β̂)|,

(15)

which follows from the fact that ‖Y−X β̂‖22 ≤ ‖Y−X β̂(m)‖22
for allm ∈ {1, . . . , M}. We will first control the second term
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on the right-hand side of (15). Since the entries of ε are
independent σ -sub-Gaussian distributed and independent of
X , we have that with probability at least 1 − 2M−c2 ,

2

n
|εT X(β̂(m) − β̂)| ≤σ

√
8(1 + c2)

√
logM

n
1√
n
‖X(β̂(m) − β̂)‖2

for all m = 1, . . . , M . In particular, since β̂∗ ∈ {β̂(1), . . . ,

β̂(M)}, it follows that
1

n
‖X(β̂ − β)‖22 ≤1

n
‖X(β̂∗ − β)‖22 + σ

√
8(1 + c2)√

logM

n

1√
n
‖X(β̂ − β̂∗)‖2

≤1

n
‖X(β̂∗ − β)‖22 + σ

√
8(1 + c2)√

logM

n

(
1√
n
‖X(β̂∗ − β)‖2

+ 1√
n
‖X(β̂ − β)‖2

)
, (16)

using the triangle inequality in the final line. Now, we use
the observation that for a, b, c ≥ 0,

a2 ≤ b2 + c(a + b)

�⇒ a2 − ca ≤ b2 + cb

�⇒
(
a − 1

2
c

)2

≤
(
b + 1

2
c

)2

�⇒ a ≤ b + c.

Application of this to (16) yields

1√
n
‖X(β̂ − β)‖2 ≤ 1√

n
‖X(β̂∗ − β)‖2

+ σ
√
8(1 + c2)

√
logM

n
. (17)

Now let uswrite δm := β̂(m)−β andvm := �1/2δm/
√

δTm�δm
so ‖vm‖2 = 1. Then

δTm
(
� − 1

n X
T X

)
δm

δTm�δm
= vTm

(
Ip − 1

n
WTw

)
vm

= 1 − 1

n
vTmW

TWvm

= 1 − 1

n

n∑
i=1

V 2
mi

where Vm := Wvm . Note that each of the n entries of Vm
are independent, centred, and sub-Gaussian with variance

proxy ν2 and EV 2
mi = 1. Recall that for a general random

variable U that is centred and ω-sub-Gaussian, U 2 −E[U 2]
is sub-exponential with parameters (32ω4, 4ω2). Thus, 1 −
1
n

∑n
i=1 V

2
mi is a centred sub-exponential random variable

with parameters ( 1n 32ν
4, 1

n 4ν
2) by the additivity property

of independent sub-exponential random variables. Therefore
for each m,

P

(∣∣∣∣∣
δTm(� − 1

n X
T X)δm

δTm�δm

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− tn(t ∧ 8ν2)

64ν4

)

and so

P

(
max

m∈{1,...,M}

{∣∣∣∣∣
δTm(� − 1

n X
T X)δm

δTm�δm

∣∣∣∣∣
}

≥ t

)

≤ 2M exp

(
− tn(t ∧ 8ν2)

64ν4

)
.

We then have that with probability at least 1 − 2M−c1 for
some constant c1 > 0,

∣∣∣∣(β̂(m) − β)T
(

� − 1

n
XT X

)
(β̂(m) − β)

∣∣∣∣
≤ 8ν2

√
1 + c1

√
logM

n
(β̂(m) − β)T�(β̂(m) − β)

for allm = 1, . . . , M . In the abovewe have used the assump-
tion that c1 +1 < n/ logM which implies that (t ∧8ν2) = t
for our choice of t . On this event it follows that for each m,

∣∣∣∣ 1√
n
‖X(β̂(m) − β)‖2 − ‖�1/2(β̂(m) − β)‖2

∣∣∣∣
≤ 2

√
2ν(1 + c1)

1/4
(
logM

n

)1/4

‖�1/2(β̂(m) − β)‖2,

which gives the following inequalities

1√
n
‖X(β̂ − β)‖2 ≥

(
1 − 2

√
2ν(1 + c1)

1/4
(
logM

n

)1/4
)

‖�1/2(β̂ − β)‖2,
1√
n
‖X(β̂∗ − β)‖2 ≤

(
1 + 2

√
2ν(1 + c1)

1/4
(
logM

n

)1/4
)

‖�1/2(β̂∗ − β)‖2.

Combining these with (17) gives that with probability at least
1 − 2M−c1 − 2M−c2 ,
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‖�1/2(β̂ − β)‖2 ≤ 1 + 


1 − 

‖�1/2(β̂∗ − β)‖2

+ 1

1 − 

2
√
2σ

√
1 + c2

√
logM

n

where 
 = 2
√
2ν(1 + c1)1/4((logM)/n)1/4, as required. ��

References

Abou Elhamayed, S.H.: Comparative study on different classification
techniques for spam dataset. Int. J. Comput. Commun. Eng. 7(4),
189–194 (2018)

Belloni, A., Chernozhukov, V., Wang, L.: Square-root lasso: pivotal
recovery of sparse signals via conic programming. Biometrika
98(4), 791–806 (2011)

Chetverikov, D., Liao, Z., Chernozhukov, V.: On cross-validated lasso
in high dimensions. Annal. Stat.(Forthcoming), (2021)
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