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ABSTRACT A semiquantum key distribution (SQKD) protocol allows two users, one of whom is restricted

in their quantum capabilities to being nearly classical, to establish a shared secret key, secure against an

all-powerful adversary. The study of such protocols helps to answer the fundamental question of “how

quantum” must a protocol be to gain an advantage over classical communication. In this article, we design a

new SQKD protocol using high-dimensional quantum states and conduct an information theoretic security

analysis. We show that, similar to the fully quantum key distribution case, high-dimensional systems can

increase the noise tolerance in the semiquantum case. Furthermore, we prove several general security results

which are applicable to other (S)QKD protocols (both high-dimensional ones and standard qubit-based

protocols) utilizing a two-way quantum channel.

INDEX TERMS Quantum cryptography, quantum information theory, quantum key distribution.

I. INTRODUCTION

It is well known that secure key distribution, using only

classical communication, is impossible unless computational

assumptions are placed on the power of the adversary. If

both A and B are able to communicate using quantum re-

sources, however, perfect security is possible and the only

assumption on the adversary required is that she obey the

laws of quantum physics. Quantum key distribution (QKD)

protocols allow two parties (Alice,A, and Bob,B) to establish

a shared secret key, secure against an all-powerful adversary

(Eve, E). Since the �rst QKD protocol developed by Ben-

nett and Brassard in 1984 (the so-called BB84 protocol [1]),

both the theory and practice of QKD has been increasing

dramatically. For a general survey of QKD, both the theory

and practice, the reader is referred to [2]–[4].

Since perfect security for key distribution is impossible

if both A and B are restricted to classical communication

while it is possible if both A and B are “quantum capable,”

a natural question to ask is “what is the middle ground?” A

communication model designed to help answer this question

is the so-called semiquantummodel of cryptography, �rst in-

troduced in 2007 by Boyer et al. [5]. In this model, one party

is “fully quantum” in that they can do anything the protocol

requires of them so long as it is possible according to quan-

tum mechanics. The second party, however, is restricted to

operations which are mathematically equivalent to classical

communication. Thus, one party is quantum while the other

party is “classical.” Since its original introduction in 2007,

there have been numerous new semiquantum key distribu-

tion (SQKD) protocols developed [6]–[12]. There have also

been extensions to the model beyond basic key distribution

including secret sharing [13]–[15], identi�cation [16], and

state comparison [17]–[19].

(S)QKD protocols operate in two stages: �rst is a quan-

tum communication stage whereby users utilize the quan-

tum channel, along with the classical authenticated channel

(which is a classical communication channel that is authenti-

cated, but not secret), to establish a raw key. A and B both

have their own raw key which is a string of classical bits

that are partially correlated (there may be some errors due

to an adversary’s attack or just natural noise) and partially

secret (an adversary may have some information on this raw

key). Thus, this raw key by itself cannot be used directly

as a secret key. Users, therefore, must run a second stage

where, at a minimum, they will execute an error correction

protocol using the authenticated classical channel (leaking

additional information to E) followed by a privacy ampli�-

cation protocol which takes the error-corrected raw key and

hashes it down to a smaller secret key. The relative size of the

secret key compared to the initial raw key (called the key-rate

of the protocol) is a statistic of great importance in QKD

research and bounding it, as a function of observed noise in

the quantum channel, is the main challenge in any (S)QKD

security proof. A related statistic is the noise tolerance of the

protocol which speci�es the noise threshold after which the

adversary has toomuch information and so usersmust simply

abort (e.g., BB84’s noise tolerance is 11% [20], [21]). Before

this tolerance threshold is reached, privacy ampli�cation is

able to give a positive, though potentially small, key (the size

of the secret key decreases as the noise increases due to the
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direct correlation between noise and adversarial information

gain).

As far as semiquantum cryptography is concerned, there

have been, by now, several proofs of security based on key-

rate computations for SQKD protocols and, rather surpris-

ingly, despite the limitations on one of the users, along with

the increased attack strategy space afforded to the adversary

(due to the requirement of a two-way quantum channel al-

lowing quantum resources to travel from A, to B, then back to

A), noise tolerances compare favorably to several fully quan-

tum protocols. In particular, in [22], the noise tolerance of the

original Boyer et al., protocol can approach 11%, the same

as BB84. However, this optimistic result required looking

at numerous mismatched statistics (a technique introduced

in [23], extended for one-way channels in [24]–[26], and

expanded for two-way quantum channels in [22]). Without

these statistics, and only looking at the error rate, Boyer

et al., protocol has a noise tolerance of 6.14%, though this

is only a lower bound and future re�nements to the security

proof techniques may improve this to the 11% found with

mismatched measurements. Currently, the best-known noise

tolerance for an SQKD protocol is from [27] which can attain

a tolerance of 17.8% or even as high as 26% for certain, prac-

tical, quantum channels (a result comparable to BB84 with

classical advantage distillation [28], [29]). Again, this high

tolerance bound required looking at numerous mismatched

measurements.

Designing protocols with increased noise tolerance is an

important task. Encouraged by recent theoretical successes

in fully-quantumQKDusing high-dimensional carriers [30]–

[41] and, in particular, these protocols’ ability to withstand

high channel noise levels [30]–[32], [34] (some approach-

ing 50% noise tolerance as the dimension of the quantum

carrier approaches in�nity [33]), or other interesting prop-

erties, such as the “round-robin” protocol which can bound

Eve’s information based only on the dimension of the sig-

nal [38], we ask, can a high-dimensional quantum communi-

cation channel also bene�t semiquantum key distribution?Or

does this substantial improvement in noise tolerance require

two fully quantum users to truly harness? We note that a

high-dimensional SQKD protocol was introduced in [34],

using a quantum walk as the information carrier, however,

a noise tolerance computation was not performed due to the

great complexity of that protocol and so this question still

remained open (though the methods we develop in this article

may be applicable to other protocols such as this quantum-

walk based protocol).

Besides potential increases in noise tolerance, high-

dimensional systems afford other advantages, namely that

greater communication ef�ciency is possible per signal

(meaning potentially more bits may be sent per signal due to

the increased dimension). Such systems are experimentally

feasible also through, for example, time-bin encoding [42],

[43], or space division multiplexing [44] just to list some

examples. Finally, some protocols, such as the so-called

“round-robin” protocol [38] actually allow users to bound

Eve’s information based only on the dimension instead of

the observed noise. Naturally, there are also disadvantages

to high-dimensional systems, namely in their increased im-

plementation complexity. However, in this article, we focus

primarily on theoretical behavior of these systems, leaving

implementation complexity for future work. For a general

survey of high-dimensional quantum communication, along

with additional information on the advantages and disadvan-

tages of using these systems, the reader is referred to [45].

In this article, we show high-dimensional states can bene�t

semiquantum communication and in doing so, make sev-

eral contributions in this article. We design a new high-

dimensional SQKDprotocol and conduct an information the-

oretic security analysis allowing us to compute a lower bound

on its key-rate based on observed channel noise.Our security

proof introduces several new techniques which may be appli-

cable to other (S)QKD protocols (both standard qubit-based

and future-developed high-dimensional ones including, per-

haps, the quantum-walk SQKD protocol developed in [34]).

Semiquantum protocols rely on a two-way quantum channel

giving the adversary a greater attack strategy space making

security analyses for semiquantum protocols dif�cult, espe-

cially in higher dimensions (all past work involving key-rate

computations have been for the qubit case). As such, our

new methods may prove bene�cial not only for other semi-

quantum protocols, but also fully quantum protocols reliant

on a two way quantum channel (of which there are several

[46]–[51]).

One of themain contributions of our security proofmethod

is to show how a large class of two-way high-dimensional

SQKD protocol may be reduced to an equivalent one-way

fully quantum protocol, making it easier to analyze. This

extends an earlier result of ours in a conference paper [52]

to higher dimensions and a larger class of SQKD protocol.

The techniques here may be applicable to other two-way

protocols. Note that in [48], it was shown how to reduce

some two-way fully quantum QKD protocols to one-way

protocols. However, that method only applied if a certain

symmetry condition was met—a condition that is not possi-

ble to attain for semiquantum protocols and, indeed, for other

“limited-resource” QKD protocols. Thus, our new methods

may shed light on how to prove security for other two-way

QKD protocols, semiquantum or otherwise, which, to this

point, have been intractable to analyze.

Finally, we evaluate our protocol’s performance and de-

termine its noise tolerance for varying dimensions and show

that, indeed, high-dimensional carriers do bene�t the noise

tolerance and ef�ciency of semiquantum protocols. We show

that our protocol’s noise tolerance tends to 30% as the

dimension increases; this result is without requiring any

mismatched statistics. While this is not as high as the 50%

achieved in the fully quantum case [33], this is still higher

than any other SQKD protocol to-date and, considering that

this is a semiquantum protocol, where one participant is

severely limited in their capabilities, is still a very posi-

tive result. This article paves the way for future research in
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higher dimensional systems for semiquantum or two-way

quantum cryptography. By analyzing semiquantum proto-

cols with high-dimensional systems, we further map out

the “gap” between classical and quantum communication

systems.

In this article, we are primarily concerned with a theoret-

ical protocol and not practical attacks or complications in-

volving its implementation. Though, we do mention one po-

tential practical version of our protocol later, we leave its full

security analysis as future work. We note that several fully

quantum high-dimensional QKD protocols have been exper-

imentally implemented and the experimental generation of

high-dimensional entangled states has seen rapid progress

lately [53]–[56]. However, we do not concern ourselves with

an exact analysis of practical implementations of this system

in the semiquantum setting. Instead, we are solely interested

in understanding how high-dimensional quantum states may

bene�t the semiquantum model of cryptography, leaving an

exact study of practical issues as future work.

II. PRELIMINARIES

If ρAB is a density operator (i.e., a Hermitian positive

semide�nite operator of unit trace) acting on Hilbert space

HA ⊗ HB, then, we write ρA to mean the partial trace over

the B portion, namely ρA = trBρAB. Similarly for other, or

multiple, systems. Given a system ρAB which is unmeasured,

and an orthonormal basisV = {|v1〉 , . . . , |vd〉} for the A sys-

tem (which is of dimension d), then, we write ρAVB to mean

the density operator resulting from a measurement of the A

register in this V basis. We use [ψ] to mean |ψ〉 〈ψ |.
We use H(A)ρ to mean the entropy function—either the

classical Shannon entropy (if ρ is a classical state) or the

quantum von Neumann entropy (the context will always be

clear which we mean). Note this implies ρ is a density op-

erator acting on at least some A register (if it acts on others,

we �rst trace out those additional spaces and compute the

entropy in the resulting A space only). von Neumann en-

tropy is de�ned: H(A)ρ = H(ρA) = −tr(ρA log ρA) (where

all logarithms in this article are base two). The conditional

entropy is denoted H(A|B)ρ and de�ned H(AB)ρ − H(A)ρ .

If ρAB is an unmeasured quantum state, then byH(AV |B)ρ we
mean the conditional entropy in the operator resulting from

measuring the A portion of ρAB in the V basis (the B portion

remains unmeasured). By H(AV |BV )ρ we mean the same,

but after also measuring the B portion (in which case the

entire state is classical and so Shannon entropy is used). If the

context is clear, we may drop the subscript. Finally, for a real

number x ∈ [0, 1], we write H(x) to mean the binary Shan-

non entropy, namely H(x) = −x log x− (1 − x) log(1 − x).

Given operator X , we write ||X || to mean the trace dis-

tance. If X is Hermitian and �nite dimensional, then this is

simply the sum of the absolute values of the eigenvalues of

X .

Finally, let ρABE be a quantum state where the A por-

tion is d-dimensional and let V = {|v1〉 , . . . , |vd〉} and U =
{|u1〉 , . . . , |ud〉} be two orthonormal bases. An important

entropic uncertainty relation which will be used later, was

proven in [57] and states that for any quantum state ρABE , it

holds that

H(AV |E )ρ + H(AU |B) ≥ − log c (1)

where c = maxi, j | 〈vi|u j〉 |2. This will be used in our proof

of security later.

A. SEMIQUANTUM CRYPTOGRAPHY

The semiquantum model, as introduced in [5], consists of at

least one “fully quantum” user (typically A) and one “classi-

cal” or “semiquantum” user (typically B). This classical user

is only allowed to interact with the quantum channel in a very

restricted way. In particular, he can choose to do one of two

things on receiving any quantum state from A.

1) Reflect: If he chooses this option, hewill disconnect

from the quantum channel, creating a loop back to A.

In this case, the quantum user is simply “talking to

herself” over a large, looped, quantum channel.

2) Measure and Resend: If he chooses this option, he

will perform a measurement of the quantum state in a

single, publicly known, basis (typically the computa-

tional basis). Based on his measurement result, he will

then send a new quantum state, prepared in this same

basis, back to A.

Clearly, if both users are semiquantum and can only per-

form these two operations, the system is mathematically

equivalent to a classical communication protocol as both

users would be restricted to only operating directly in a sin-

gle, publicly known, basis. Thus, the interest in semiquantum

cryptography is to see how security holds when one user is

quantum, but the other is classical according to the above

functionality.

Note that we are not considering practical device secu-

rity in this article and are only interested in the theoret-

ical properties of semiquantum communication. Thus, we

do not concern ourselves with such attacks as the photon

tagging attack [58], [59] or multiphoton attacks (especially

problematic when B chooses Measure and Resend as he

must reprepare qubits in the observed state). Though interest-

ing, these are outside the scope of this article—techniques

from [7] may prove bene�cial to securing our protocol

against these attacks but we leave this as interesting future

work.

As mentioned earlier, (S)QKD protocols operate, �rst,

through a quantum communication stage. This stage utilizes

the quantum communication channel and the authenticated

classical channel to output a raw key of sizeN bits. From this,

error correction and privacy ampli�cation are run outputting

a secret key of size ℓ(N) bits. The key-rate is de�ned to be the

ratio ℓ(N)/N. We are interested in the theoretical asymptotic

limit. In this case, assuming collective attacks (i.i.d. attacks

where E is free to store a quantum memory system for mea-

surement at any future point in time [2]), it was shown in [21]

VOLUME 1, 2020 4100917



Engineeringuantum
Transactions onIEEE

Iqbal et al.: HIGH-DIMENSIONAL SEMIQUANTUM CRYPTOGRAPHY

and [60] that

r = lim
N→∞

ℓ(N)

N
= inf(H(A|E )ρ − H(A|B)ρ ) (2)

where ρABE is a density operator describing a single iteration

of the quantum communication stage, conditioned on that it-

eration being used to distill raw keymaterial (i.e., not on an it-

eration used only for error checking or an iteration that is later

discarded due to an incompatible basis choice). The in�mum

is over all collective attacks that induce the observed noise

statistics. Above, the A and B registers are the actual classical

raw key bit registers and only the E portion is quantum. It

is this entropy equation, and in particular the von Neumann

entropy H(A|E ), that we are interested in computing and is

the main challenge (computing H(A|B) is generally trivial

given the observed noise statistics).

Our protocol uses higher dimensional systems and, as

such, we must de�ne the bases we work with. For the classi-

cal user, wewill use the computational basis of dimension 2n,

namely {|0 · · · 00〉 , |0 · · · 01〉 , . . . , |1 · · · 11〉} which, when

needed to simplify notation, we will also label equivalently

as {|0〉, |1〉 , . . . , |2n − 1〉}. We use Z to denote this basis.

The quantum user, of course, is not restricted to operating

in only one basis and so we also de�ne the following “F”

basis:

F = {|F0〉, |F1〉 , . . . , |F2n−1〉} (3)

where |Fx〉 = F |x〉 and F is the quantum Fourier transform,

namely

F |x〉 =
1

√
2n

2n−1
∑

y=0

exp(−π ixy/2n−1) |y〉 . (4)

Of course, one may consider other bases that the quantum

user may utilize. However, our protocol will make use of

both the Z and F bases. Note that, for the classical user,

if he chooses Measure and Resend or Reflect, that

operation is performed on an entire n-qubit signal state (e.g.,

he cannot re�ect “half” the qubits and measure the other half

in our model).

III. PROTOCOL

Our protocol is shown in Protocol 1. The protocol operates by

having A send signals of n-qubits each. For each iteration, B

will either Measure and Resend the entire n-qubit state

or he will Reflect the entire state. Whenever A sends a Z

basis state and B chooses to Measure and Resend, they

will add n bits to their raw key. Once a suf�ciently large

raw key has been established, standard error correction and

privacy ampli�cation are run. In the next section, we will

compute a lower bound on the key-rate of this protocol. We

will consider a noisy, but loss-less, quantum channel and

ideal devices. Practical security concerns, though interest-

ing, are outside the scope of this article and would provide

interesting future work. Any collective attack against this

protocol consists of two unitary operators (UF ,UR) where

Protocol 1: n-Dimensional SQKD: �SQKD.

Public Parameters: n: the number of qubits to send per

signal; pM , the probability of choosing Measure and

Resend; pZ , the probability of A choosing the Z basis.

Quantum Communication Stage: The quantum

communication stage of the protocol will repeat the

following until a suf�ciently large raw key has been

distilled.

1) With probability pZ , A prepares a randomly chosen Z

basis state; otherwise she prepares a randomly chosen

F basis state. She records her choice of basis and the

choice of state and sends the resulting n-qubit state to

B.

2) B chooses, with probability pM to

Measure and Resend, measuring all n qubits in

the computational basis and recording the result and

then resending the observed state back to A.

Otherwise, with probability 1 − pM , he chooses

Reflect in which case he re�ects all n qubits back

to A.

3) A measures the returning n qubit system in the same

basis she used to prepare.

4) A and B, using the authenticated classical channel,

divulge their choices (B his choice of

“Measure and Resend” or “Reflect” and A her

choice of basis). If A chose the Z basis and B chose

Measure and Resend, they will use this iteration

to contribute towards their raw key; namely, B will

append his n-bit measurement result string and A will

append her initial state she prepared to their

respective raw keys (in this case, A’s subsequent

measurement result is not used). We call this a

key-distillation iteration. Otherwise, this iteration

(along with a suitably chosen random subset of

key-distillation iterations) may be used for error

detection in the obvious way.

UF is applied in the forward channel andUR is applied in the

reverse.

IV. SECURITY ANALYSIS

We now analyze the security of our protocol. As with

other (S)QKD protocols, we show security against collective

attacks. We will comment on general attacks later. Our se-

curity analysis extends ideas introduced in our conference

paper [52] but to the higher dimensional case and consists

of two main parts: First, we will prove that it is suf�cient

to analyze a particular one-way fully quantum protocol and,

once security is proven there assuming the same channel

observations are made, security of our SQKD protocol fol-

lows immediately. This reduction is very general and can

apply to other SQKD protocols. Thus, to analyze security of

the two-way semiquantum protocol, it suf�ces to consider a

particular one-way protocol which is easier to analyze as E
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only attacks once. Second, we analyze the security of this

one-way protocol through the use of entropic uncertainty

relations, and continuity of conditional von Neumann en-

tropy. The techniques we develop in both steps are often

general and may be applicable to other two-way (S)QKD

protocols.

A. REDUCTION TO A ONE-WAY PROTOCOL

In this section, we show how certain SQKD protocols, of

arbitrary dimensions, may be reduced to a one-way pro-

tocol. Note that in [48], a method of reducing two-way

fully quantum protocols to one-way, entanglement-based

protocols was shown, however, that method only applies

if the original protocol admits a certain symmetry prop-

erty which semiquantum protocols necessarily lack (due to

B’s use of Measure and Resend). As a �rst step, we

�rst consider an intermediate, two-way, SQKD protocol,

which we denote by �ent. This intermediate protocol is

no longer prepare-and-measure, but instead has A prepar-

ing entangled qudits and B performing a CNOT gate when-

ever he chooses Measure and Resend. The protocol is

shown in Protocol 2. It is not dif�cult to see that security of

�ent implies security of�SQKD (i.e.,�ent ⇒ �SQKD where

“⇒” means “implies security of”). Indeed, A’s prepare-and-

measure scheme in �SQKD is equivalent to her preparing the

entangled state of 2n qubits |ψ0〉 = 1
2n/2

∑

a |a, a〉 and send-

ing the right register (consisting of n qubits) to Bwhile keep-

ing the left-half to herself. If B chooses to re�ect, this is noth-

ing more than an identity operation whereas if he chooses

to Measure and Resend, then by applying CNOT gates

targeting his register and then measuring at some future time,

this is equivalent to him measuring immediately. Finally,

when qubits return to A, she may measure both n qubit reg-

isters in the same basis—standard arguments [2], [6] show

that her measurement of the A1 register is equivalent to her

initially preparing the state she observes at this later point.

Furthermore, a collective attack against this protocol is iden-

tical to the �SQKD case, namely two unitary attack operators

(UF ,UR).

Next, we introduce our one-way protocol, shown in Pro-

tocol 3 and denoted �OW. At �rst glance, the two protocols,

�ent (which is semiquantum and uses a two-way quantum

channel) and �OW (which is one-way and fully quantum)

do not appear similar. However, we will prove that security

of �OW implies security of �ent (which, in turn, implies

security of our actual protocol �SQKD). We do this by show-

ing that, for any attack against �ent, there exists an attack

against �OW which causes E to gain as much information on

the raw key as in �ent and, furthermore, the view according

to A, B, and E are identical in both cases (i.e., the two cases

are indistinguishable). Thus, if we analyze �OW (which is

easier to do since it is one-way), we automatically cover any

attack against �ent. Ultimately, this technique is an exten-

sion of a result in our conference paper [52] to the arbitrary,

N-dimensional case (only the qubit, N = 2 case was consid-

ered before). However, beyond beingmore general, our proof

Protocol 2: Entanglement-Based n-Dimensional SQKD:

�ent.

Public Parameters: n: the number of qubits to send per

signal; pM , the probability of choosing Measure and

Resend; pZ , the probability of A measuring in the Z

basis.

Quantum Communication Stage: The quantum

communication stage of the protocol will repeat the

following until a suf�ciently large raw key has been

distilled.

1) A prepares the 2n-qubit state: |ψ0〉 = 1√
2n

∑2n−1
a=0

|a, a〉A1T and sends the “T” portion to B.

2) B chooses, with probability pM to Measure and

Resend in which case he applies the operator

CNOT⊗n, acting on the T space and his own private

B register (also of n qubits). Otherwise, with

probability 1 − pM , he chooses Reflect and

applies I⊗n to the T portion (thus, his B register will

remain independent of the system in this case). Either

way, the T register is then returned to A. Once

returned, we rename the T register as the A2 register.

3) A chooses to measure in the Z basis (with probability

pZ) or the F basis (with probability 1 − pZ). She

measures both the A1 register and the returned T

register (now called the A2 register) in the same basis

(either both Z or both F). At this point, B will

measure his register in the Z basis if he chose

Measure and Resend.

4) A and B divulge their choices (B his choice of

“Measure and Resend” or “Reflect” and A her

choice of basis). If A choose the Z basis and B chose

Measure and Resend, they will save their

measurement results and append the resulting value

(as a bit-string) to their respective raw keys (A will

use her result from the A1 register, discarding the A2
register in this case).

here is also more re�ned as it does not require an additional

“simpli�cation” step that was necessary in [52].

Let N = 2n. An attack against �OW consists of a proba-

bility distribution {p(b)} for all b = 0, 1, . . . ,N − 1 along

with a single attack operator U acting on 2n qubits and E’s

quantum ancilla. Note that E gets to choose the values p(b)

whichB uses to prepare his states—thus,E has partial control

over B’s source device in �OW; the reason for this necessity

will be apparent later in our proof. We now prove it is suf-

�cient to consider security of �OW (in which case we have

�OW ⇒ �ent ⇒ �SQKD).

Theorem 1: Let (UF ,UR) be a collective attack against

�ent and let ρABE be the resulting density operator describ-

ing a single iteration of �ent in the event this attack is

used. Then, there exists an attack of the form ({p(b)}2n−1
b=0

,U )

against �OW such that, if σABE is the resulting density oper-

ator of a single iteration of �OW in this case, it holds that
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Protocol 3: One-Way n-Dimensional QKD: �OW.

Public Parameters: n: the number of qubits to send per

signal; pM , the probability of choosing Measure and

Resend; pZ , the probability of A measuring in the Z

basis; {p(b)}2n−1
b=0

, probability values set by the adversary

but known to all parties.

Quantum Communication Stage: The quantum

communication stage of the protocol will repeat the

following until a suf�ciently large raw key has been

distilled.

1) B chooses, with probability pM operation

“Measure and Resend” otherwise he chooses

“Reflect.” Note that the terminology Measure

and Resend and Reflect do not have any

operational meaning in this protocol—we simply use

them so that the reduction later from our SQKD

protocol �SQKD makes sense. If he chooses

Reflect, he prepares a 3n qubit state of the form

|φR〉 =
2n−1
∑

b=0

√

p(b) |b, b〉A1A2 ⊗ |0〉B (5)

where the right-most B register contains n qubits in

the state |0〉. Otherwise, if he chooses Measure and
Resend, he prepares a 3n qubit state of the form

|φMR〉 =
2n−1
∑

b=0

√

p(b) |b, b, b〉A1A2B . (6)

Regardless of his choice, he sends the A1A2 register

(consisting of 2n qubits) to A.

2) Same as step (3) of �ent.

3) Same as step (4) of �ent.

σABE = ρABE . In particular, there is no advantage to E in ei-

ther case and, furthermore, no partyA,B, orE can distinguish

between the two scenarios.

Proof: Fix an attack (UF ,UR). Without loss of generality,

we may writeUF ’s action on basis states as

UF |a〉 ⊗ |χ〉E =
N−1
∑

b=0

|b, ea,b〉

where N = 2n and |ea,b〉 are arbitrary states in E’s ancilla

(we assume, without loss of generality in the collective attack

case, that E’s ancilla starts in some pure state |χ〉E ). Unitar-
ity, of course, imposes some restrictions on these states. In

particular, for every a it holds that

N−1
∑

b=0

〈ea,b|ea,b〉 = 1. (7)

Given this attack, we construct ({p(b)},U ), an attack against

�OW, that satis�es the theorem statement. To do so, we follow

a technique �rst introduced in our conference paper [52]

but generalized here for higher dimensions. First, we set the

values p(b) to

p(b) =
1

N

N−1
∑

a=0

〈ea,b|ea,b〉 . (8)

Clearly p(b) ≥ 0 for all b. Furthermore, from (7), it follows

that

∑

b

p(b) =
1

N

∑

b

∑

a

〈ea,b|ea,b〉

=
1

N

∑

a

∑

b

〈ea,b|ea,b〉 = 1.

Thus this is a valid probability distribution, and so a valid

attack setting.

Now, consider the following operator Rw which we call

the “rewind” operator as, in away, it “rewinds” the channel so

that a state prepared by B in the one-way case (i.e., protocol

�OW) appears to all three parties as if it had been prepared

by A in the two-way case (i.e., �ent). In particular, it will

“setup” the A1 register and E’s quantum memory as if this

had been performed in the two-way �ent case. The only

thing that cannot be “rewound” is B’s measurement distri-

bution, thus the need for E to set this separately through the

p(b) values. This operator acts on basis states |b, b〉 (sent by
B in the one-way protocol �OW) as follows:

Rw |b, b〉A1A2 =
∑N−1

a=0 |a, b, ea,b〉√
N · p(b)

. (9)

It is not dif�cult to see that Rw is an isometry. Indeed, given

|b, b〉 and |b′, b′〉 for b �= b′, we have

0 = 〈b, b|b′, b′〉

=
1

N
√
p(b)p(b′)

∑

a,a′

〈a, b, ea,b|a′, b′, ea′,b′〉 = 0.

Furthermore, it is noticeable that

1 = 〈b, b|b, b〉 =
1

N · p(b)
∑

a,a′

〈a, b, ea,b|a′, b, ea′,b〉

=
1

N · p(b)
∑

a

〈ea,b|ea,b〉 = 1.

Thus,Rw is an isometry andmay be extended, using standard

techniques, to a unitary operator implying it is an operation

that E may do within the laws of quantum physics. We claim

that U = (IA1 ⊗UR)Rw is the desired attack operator satis-

fying the theorem statement.

Refer to Fig. 1. Consider the case when B chooses

Measure and Resend. At time t∗ (afterE attacks withUF
and B’s operation, but before E attacks a second time with

UR), the joint state held by A, B, and E using protocol �ent

is found to be

|ψent
MR〉 =

1
√
N

∑

a

|a〉A
∑

b

|b, ea,b, b〉TEB . (10)
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FIGURE 1. Showing the reduction from the semiquantum protocol (�SQKD

and �ent, top) to the fully quantum one-way protocol (�OW bottom). For
the SQKD protocol, A prepares qubits at time t1, Eve attacks, and then B

performs an operation Measure and Resend or Reflect. Time t∗ is after B’s
operation. On the other hand, for the fully quantum protocol, B prepares
two qubits and sends both to A. E attacks with a specially designed Rw

operator resulting in a state at time t∗. We claim a suitable Rw operator
can be constructed so that the density operators in both cases at time t∗

are identical. Later, when proving general security of the one-way
protocol, we do not require any special attack; clearly security of the
SQKD protocol, then, would follow. QM stands for E ’s quantum memory.

Now, referring to Fig. 1, consider the same case

(namely, B choosing Measure and Resend) but with

the �OW protocol. In this event, B prepares the state
∑

b

√
p(b) |b, b, b〉A1A2B and E attacks with Rw. The joint

system then, at time t∗ is

|φMR〉 =
∑

b

√

p(b)

(∑

a |a, b, ea,b〉√
N · p(b)

)

⊗ |b〉B

=
1

√
N

∑

a

|a〉A1
∑

b

|b, ea,b, b〉A2EB

= |ψent
MR〉 .

Thus, after applying Rw, the state of the joint system for

the case of �OW is identical to that of �ent. Of course,

after applying UR (which happens in both scenarios since

we constructedU = (IA1 ⊗UR)Rw), the systemswill remain

the same. Thus, any measurement outcomes or entropy com-

putations will be identical in both scenarios. It is trivial to

show the same holds true in the Reflect case for both

protocols (in that case, the additional |b〉 term is no longer

there but the algebra remains the same otherwise). Thus, if

one were to write out a density operator description of both

protocols, tracing their evolution, they would be identical as

the underlying systems are identical in all cases. Note that the

only thing E could not “rewind” with Rw is the probability

distribution of B’s measurements (since he is now preparing).

Thus, it is required that E gets to choose the distribution

p(b) so that the probability distribution in �OW matches that

observed in �ent. �

Theorem 1 implies that it is suf�cient to prove security of

the one-way protocol �OW. Since any attack against �ent

can also be transformed into an attack against �OW, if we

analyze a general attack against the latter, this automatically

gives security against the former. Indeed, there may be more

attack strategies for E against �OW as E has access to both

n qubit registers simultaneously; despite this, it is easier to

analyze as it is a one-way protocol. Furthermore, note that

no party can distinguish between the two scenarios and, as

a consequence, observed channel noise in the “real” SQKD

protocol �ent translate directly to observed statistics in the

one-way protocol�OW. Our goal is to prove security of�ent

(which proves security of �SQKD) and, given observed noise

statistics there, if we prove security of �OW given those same

statistics, the key-rate can only be better in �ent (since �OW

has potentially more attack strategies as mentioned).

B. PROOF OF SECURITY FOR �OW

We now prove security of �OW. In the following, we de�ne

N = 2n where n is the user-de�ned number of qubits sent

per iteration of our protocol. Our proof of security is in three

steps. First, we compute the conditional entropy H(A|E ) in
the case where B chooses Reflect. This, of course, is

useless for key distillation as B is completely independent of

the state in this case, but it will be used later to argue about

the entropy in the actual key-distillation state (i.e., when B

chooses Measure and Resend). Second, we argue that

E’s optimal attack must take on a particular form if A and

B use the Z or F basis. Third, and �nally, we use these

results, along with Winter’s continuity bound on conditional

entropy [61], to compute the entropy of A’s register condi-

tioned on E’s quantum memory in the actual key-distillation

state when B chooses Measure and Resend giving us the

desired key-rate.

First, we need a channel scenario for the real �ent proto-

col (which translates, as discussed, to observations for �OW).

Keeping in line with other high-dimensional QKD analy-

ses [32], [34], we consider a symmetric attack modeled as

a depolarization channel (which may even be enforced by

users)

EQ(σ ) =
(

1 −
N

N − 1
Q

)

σ +
Q

N − 1
I (11)

where σ is any N-dimensional quantum state.

We will assume the noise in the forward channel and re-

verse channel are the same and parameterized by Q (though

our analysis follows even if they are different, though

the algebra complexity increases). In the “re�ect” case,

we will use a depolarization parameter QF—this captures

the practical case that, for certain �ber channels, re�ect-

ing a quantum state back can “undue” some noise (but

in the Measure and Resend case this cannot happen as

the “measurement” breaks any entanglement in the chan-

nel) [48], [62].

Let p(x|y) be the probability that a party observes x given

the sender sent y (in the Z or F basis) in either the forward
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or reverse channel. From this model, we have

p(x|y) =

{

1 − Q if x = y
Q

N−1
otherwise.

(12)

In �ent, the probability that AZ1 (i.e., after measuring) is

a, for any particular a, is simply p(a) = 1/N. Furthermore,

the probability that Bmeasures b is
∑

a p(b|a)p(a) = 1
N
(1 −

Q+ (N − 1) Q
N−1

) = 1/N. Thus, we set p(b) = 1/N when

analyzing �OW (E’s choice here must conform to the ob-

served statistics in the “real” protocol �ent).

Let p(a, b, c) be the probability that, in the case of

Measure and Resend, if all parties measure in the Z ba-

sis, A1 measures a, B measures b, and A2 measures c (recall

A1 is A’s �rst n-qubit register and A2 is her second register).

Then, since this is a classical probability distribution, by the

chain rule it holds that

p(a, b, c) = p(c|b, a) · p(b|a) · p(a). (13)

We will assume that in the Measure and Resend case

of �ent, the two channels act independently and, so,

p(c|b, a) = p(c|b). That is, A’s measurement in the return

channel, depends only on what B actually sends. This is a

very realistic noise scenario and can even be enforced by

the users—A and B will simply abort if they do not observe

this (natural) behavior. Of course, as discussed, we do not

assume the two channels act independently if B chooses to

Reflect (such an assumption would not be natural nor

could it be enforced and so we do not make it here). Under

these assumptions, it is not dif�cult to see that

p(a, b, c) =
1

N
×

⎧

⎪
⎪
⎨

⎪
⎪
⎩

β2 if c = b and b = a

αβ if c �= b and b = a

αβ if c = b and b �= a

α2 if c �= b and b �= a

(14)

where

α =
Q

N − 1
β = 1 − Q. (15)

Given these observed channel statistics in �ent, we now

turn to �OW using this same distribution on measurement

events. Ultimately, our goal is to compute a lower bound on

the key-rate: H(AZ1 |E )µ − H(AZ1 |B
Z
1 )µ, where µA1B1E is the

density operator describing an iteration of the protocol in the

Measure and Resend case.

First Step—Entropy in the Re�ect Case: Let ρA1A2BE be

the density operator describing the state of the system (be-

fore measurements are made by any party) if B chooses

Reflect. Similarly, let µA1A2BE be the density operator in

the case B chooses Measure and Resend. Since key-bits

are only distilled in this Measure and Resend case, to

compute the key-rate of the protocol, we will require a bound

on the von Neumann entropy H(AZ1 |E )µ. However, we will
actually, �rst, bound H(AZ1 |E )ρ and later argue that, due to

continuity of entropy [61], the difference in entropy between

the two systems, ρ and µ, cannot be “too large.”

Consider the state ρA1A2BE . In this Reflect case, B’s

system is completely independent of all other systems; thus

ρA1A2BE ≡ ρA1A2E ⊗ [0]B and so theB portion does not factor

into any entropy equations and may be ignored. Using the

entropic uncertainty relation proven in [57] [see (1)], we

know

H(AZ1 |E )ρ ≥ n− H(AF1 |A2)ρ ≥ n− H(AF1 |AF2 )ρ
where the second inequality follows from the fact that mea-

surements cannot decrease uncertainty. If we could distill a

key from ρ, we would be �nished—in fact, the above would

be the case when A1 is attempting to distill a key with her-

self, “A2” which, of course, is meaningless from a practical

standpoint. However, as we now show, knowing the entropy

in ρ allows us to bound the entropy in µ (which is what

we actually want in order to compute the key-rate of our

protocol).

Consider E’s attack operatorU against �OW. Without loss

of generality, we may writeU’s action on basis states of the

form |b, b〉 as follows:

U |b, b〉 ⊗ |χ〉E =
N−1
∑

a=0

N−1
∑

c=0

|a, c, ea,b,c〉 (16)

where the |ea,b,c〉 are arbitrary states in E’s ancilla (again, we
assumewithout loss of generality thatE’s ancilla is cleared to

some initial pure state |χ〉E ). Note that we are not assuming

a particular structure to this attack (e.g., we do not assume

it consists of the Rw operator used in the proof of Theorem

1—instead, it may be arbitrary and if we prove security here,

we will gain security of �ent since it will cover any attack

against that protocol).

Consider ρAZ
1
E , i.e., the state of the system after A mea-

sures the A1 register in the Z basis and tracing out A2. Trac-

ing the evolution of the state in this case, and recalling that

p(b) = 1/N due to our (enforceable) symmetry assumption,

we �nd

ρAZ
1
E =

1

N

N−1
∑

a=0

[a] ⊗

(
N−1
∑

c=0

P

[
N−1
∑

b=0

|ea,b,c〉

])

(17)

where P(z) = zz∗.
On the other hand, tracing the evolution of the protocol in

the case when B chooses Measure and Resend, gives us

the following operator:

µAZ
1
E =

1

N

N−1
∑

a=0

[a] ⊗

(
N−1
∑

c=0

N−1
∑

b=0

[ea,b,c]

)

. (18)

Our goal in the remainder of the security proof is to bound

the difference between H(AZ1 |E )ρ and H(AZ1 |E )µ. To do so,

we will use Winter’s continuity bound [61] and in particular,

the case derived for classical-quantum states. This bound

states that (rewriting in terms of our notation of course)

|H(AZ1 |E )ρ − H(AZ1 |E )µ|≤ � logAZ1 + (1 + �)H

(
�

1 + �

)

(19)
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where

� =
1

2

∣
∣
∣

∣
∣
∣ρAZ

1
E − µAZ

1
E

∣
∣
∣

∣
∣
∣ .

Of course logAZ1 = n. Thus, our goal is to determine an upper

bound on the trace distance�. Note that an upper bound will

only increase the distance between the two entropies causing

the key-rate to drop. Thus, by �nding an upper bound, we

determine a worst-case key-rate and the actual key-rate can

only be higher.

By elementary properties of trace distance, along with the

triangle inequality, we have

� ≤
1

2N

N−1
∑

a,c=0

∣
∣
∣
∣

∣
∣
∣
∣
P

(
∑N−1

b=0
|ea,b,c〉

)

−
∑N−1

b=0
[ea,b,c]

∣
∣
∣
∣

∣
∣
∣
∣

︸ ︷︷ ︸

�a,c

=
1

2N

∑

a,c

�a,c. (20)

Second Step—Structure of E’s Attack Operator: Before

computing �, we argue now that E’s optimal attack op-

erator has a particular structure to it. As discussed earlier,

let p(a, b, c) denote the probability that measuring A1 re-

sults in a; measuring B results in b; and measuring A2 re-

sults in c (where these measurements are performed in the

Z basis in the Measure and Resend case; thus a, b, c ∈
{0, 1, . . . ,N − 1}). It is not dif�cult to see that p(a, b, c) =
〈ea,b,c|ea,b,c〉 /N. Indeed, note that the state µAZ

1
AZ
2
BE (i.e.,

the case where B chooses Measure and Resend, but be-

fore tracing out AZ2 and B which we did for (18)) is found

to be

µAZ
1
AZ
2
BE =

1

N

∑

a,b,c

[a]A1 ⊗ [c]A2 ⊗ [b]B ⊗ [ea,b,c]

from which it is clear that p(a, b, c) = 〈ea,b,c|ea,b,c〉 /N.

Since N is known and since p(a, b, c) is a value that can

be observed by the parties running the protocol, this implies

〈ea,b,c|ea,b,c〉 is also an observable quantity.

We now claim that it is to E’s advantage to choose her

attack such that for any �xed a, c, it holds that

〈ea,b,c|ea,b′,c〉 =

{

N · p(a, b, c) if b = b′

0 if b �= b′.
(21)

Indeed, orthogonal ancilla states cannot increase her uncer-

tainty, thus the only reason to make these states nonorthogo-

nal would be if, by doing so, she could make some other, po-

tentially “more important” vectors closer to orthogonal (e.g.,

the nonerror cases such as 〈e0,0,0|e1,1,1〉) while still falling

within the observed noise statistics. But the inner product

〈ea,b,c|ea,b′,c〉 does not contribute to the observed noise in any
way, assuming basis F is used, and thus she might as well

set them to be orthogonal potentially decreasing her overall

uncertainty (but certainly not increasing it).

Clearly the inner product 〈ea,b,c|ea,b′,c〉 does not contribute
to the Z basis noise when b �= b′. We thus consider the F

basis noise. Consider the case when B chooses Reflect in

which case the state arriving to A, before measuring, is

1

2n/2

∑

a,c

|a, c〉 |ga,c〉 (22)

where |ga,c〉 =
∑

b |ea,b,c〉. Since the above is normalized, it

holds that

1

2n

∑

a,c

〈ga,c|ga,c〉 = 1. (23)

Now, changing basis, we may write | j〉 =
∑

x βx, j |Fx〉,
where βx, j = 〈Fx| j〉. Clearly, due to our choice of basis F ,

it holds that |βx, j|2 = 1/2n. Taking (22) and changing basis

in both the A1 and A2 registers yields

1

2n/2

∑

x,y

|Fx,Fy〉

(

∑

a,c

βx,aβy,c |ga,c〉

)

.

Thus, the probability that A1 measures Fx and A2 measures

Fy, for any x, y is

1

2n

∣
∣
∣
∣
∣

∑

a,c

βx,aβy,c |ga,c〉

∣
∣
∣
∣
∣

2

=
1

2n

∑

a,c

1

22n
〈ga,c|ga,c〉

+
∑

(a,c)�=(a′,c′ )

βx,aβ
∗
x,a′βy,cβ

∗
y,c′ 〈ga,c|ga′,c′〉

=
1

22n
+

∑

(a,c)�=(a′,c′ )

βx,aβ
∗
x,a′βy,cβ

∗
y,c′ 〈ga,c|ga′,c′〉

where for the third equality, we use (23). Note that

〈ga,c|ga′,c′〉, for (a, c) �= (a′, c′) has no terms of the form

〈ea,b,c|ea,b′,c〉 (since either a′ or c′ will not equal a or c).

Thus, the 〈ea,b,c|ea,b′,c〉 inner product cannot affect any ob-

served noise statistic. Therefore, there is no advantage to E in

making it nonorthogonal as it cannot bene�t her by “hiding”

other states in the noise of the channel (e.g., she cannot use

〈ea,b,c|ea,b′,c〉 to increase the orthogonality of other vectors to
her advantage while still keeping within the observed noise

statistics). We may therefore assume the attack operatorU is

such that (21) applies. Note that this proof would not hold if

|βi, j|2 �= 1/2n for all i, j.

Thus, for any �xed a and c, we may de�ne an orthonormal

basis {|ν (a,c)
b

〉}N−1
b=0

and write

|ea,b,c〉 =
√

N · p(a, b, c) |ν (a,c)
b

〉 .

Note that we do not assume any relation between these vec-

tors for differing a and c. I.e., we do not make any assump-

tions on the value 〈ν (a,c)
b

|ν (a
′,c′ )

b′ 〉 when a �= a′ or c �= c′.
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Third Step—Continuity Bound Analysis: From the above

analysis on the structure of E’s optimal attack operator, we

may write �a,c, de�ned in (20), as

�a,c =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
P

(
N−1
∑

b=0

√

N · p(a, b, c) |ν (a,c)
b

〉

)

−
N−1
∑

b=0

N · p(a, b, c)[ν (a,c)
b

]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= N

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
P

(
N−1
∑

b=0

√

p(a, b, c) |b〉

)

−
N−1
∑

b=0

p(a, b, c)[b]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(24)

where the last equality follows from the fact that trace dis-

tance is invariant to changes in basis and, again, we use

P(z) = zz∗.
Recall our description of the channel, and in particular the

value of p(a, b, c) given in (14). Note that, if Q = 0, then it

is easy to see that �a,c = 0 for all a, c and so we are done.

Thus, in the following, we will consider 0 < Q < 1/2. Due

to the symmetry in a depolarization channel as clearly seen

in the expression for p(a, b, c) in (14) (again, this may even

be enforced by users), there are two cases to consider, �rst

when c = a and second when c �= a. For the �rst, we have

�a,a = N

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
P

(
N−1
∑

b=0

√

p(a, b, a) |b〉

)

−
N−1
∑

b=0

p(a, b, a)[b]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= N

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑

b�=b′

√

p(a, b, a)p(a, b′, a) |b〉 〈b′|

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

. (25)

Let X be the operator

X = N
∑

b�=b′

√

p(a, b, a) · p(a, b′a) |b〉 〈b′| .

Thus, �a,a = ||X ||. Since it is Hermitian, we may decom-

pose X as

X =
N−1
∑

j=0

λ j[vj] (26)

where {|v j〉} are orthogonal eigenvectors and λ j are (real)

eigenvalues; thus X |v j〉 = λ j |v j〉 for all j = 0, . . . ,N − 1

and, of course, ||X || =
∑

j |λ j|. Consider a particular eigen-
vector |v〉 = |v j〉 =

∑

i xi |i〉. Then

X |v〉 = N

N−1
∑

b=0

(
∑N−1

i=0
i �=b

xi
√

p(a, b, a) · p(a, i, a)
)

︸ ︷︷ ︸

yb

|b〉

= N
∑

b

yb |b〉 .

Thus, for λ = λ j to be the corresponding eigenvalue, it must

hold that Nyb = λxb for all b = 0, . . . ,N − 1. Note that,

when b = a, it holds that

Nya = λxa

⇐⇒ N

N−1
∑

i=0
i �=a

xi
√

p(a, a, a) · p(a, i, a) = λxa

⇐⇒ αβ
∑

i �=a
xi = λxa. (27)

When b �= a, then Nyb simpli�es to

N
∑

i �=b
xi
√

p(a, b, a) · p(a, i, a)

= N · xa
√

p(a, b, a) · p(a, a, a)

+ N
∑

i �=b
i �=a

xi
√

p(a, b, a) · p(a, i, a) (28)

and thus it must hold that

αβxa + α2
∑

i �=b
i �=a

xi = λxb. (29)

Now, assume that there exists a k �= k′ such that xk �= xk′

and both k and k′ are not equal to a (we will handle the case
when this is not true afterwards). From (29), we have, using

the case when b = k and b = k′, respectively

αβxa + α2
∑

i �=k
i �=a

xi = λxk

αβxa + α2
∑

i �=k′
i �=a

xi = λxk′ .

Subtracting these two expressions yields

α2(xk′ − xk ) = λ(xk − xk′ )

⇒ λ = −α2. (30)

We next claim, the geometric multiplicity of this eigenvalue

is N − 2 and, thus, this eigenvalue appears N − 2 times in

(26). Consider the operator X − λI. By choosing a suitable

basis, we may write this in matrix form as

X − λI =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ αβ αβ · · · αβ

αβ −λ α2 · · · α2

αβ α2 −λ · · · α2

...
...

...
. . .

...

αβ α2 α2 · · · −λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (31)

Substituting λ = −α2 it is clear that the rank of X − (−α2)I

is at most two. Thus, the geometric multiplicity is at least

N − 2 (and indeed is exactly N − 2 except when Q = 0 or

Q = 1 − 1/N; but the �rst case is considered separately as

mentioned, and the second case implies Q > 1/2 which is

much larger than our evaluations later and so not considered).
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Therefore, exactly N − 2 of the eigenvalues of X are −α2 =
− Q2

(N−1)2
.

The remaining two eigenvalues are found when there does

not exist k �= k′ (where k �= a and k′ �= a) such that xk �= xk′ .

In this case, we have xk = xk′ = x for all k, k′ not equal to a.
Using (27), we �nd

αβ(N − 1)x = λxa =⇒ xa =
αβ(N − 1)x

λ
.

Note that the above equation forces x �= 0 as, otherwise, xa
is also 0 and so |v〉 would be the zero vector and not an

eigenvector of Hermitian operator X . Substituting this into

(29) (for any b �= a) we �nd

αβ

(
αβ(N − 1)x

λ

)

+ α2(N − 2)x = λx

⇐⇒ λ2 − α2(N − 2)λ − α2β2(N − 1) = 0

thus leading us to the two remaining eigenvalues, which we

denote λX±

λX± =
1

2

(

α2(N − 2) ± α
√

α2(N − 2)2 + 4β2(N − 1)
)

.

Since there was no dependence on a in the above analysis,

this leads us to conclude that

�a,a = (N − 2)
Q2

(N − 1)2
+ |λX+| + |λX−|. (32)

We next consider the case when c �= a and com-

pute �a,c. Following the same logic as before,

�x a particular c �= a and consider the operator

Y = N
∑

b�=b′
√
p(a, b, c) · p(a, b′, c) |b〉 〈b′| (and so

�a,c = ||Y ||). Let |v〉 =
∑

i xi |i〉 be an eigenvector of Y

such that Y |v〉 = λ |v〉. Then

Y |v〉 = N

N−1
∑

b=0

(
∑N−1

i=0
i �=b

xi
√

p(a, b, c) · p(a, i, c)
)

︸ ︷︷ ︸

zb

|b〉

= N
∑

b

zb |b〉 .

To satisfy the equation Y |v〉 = λ |v〉, we require Nzb = λxb
for all b = 0, . . . ,N − 1. There are three cases of b to con-

sider here: b = a, b = c, and b �= a, c. For each of these cases

we �nd, �rst for b = a

Nza = λxa

⇐⇒ αβxc +
∑

i �=c
i �=a

xi
√

α3β = λxa. (33)

For b = c

Nzc = λxc

⇐⇒ αβxa +
∑

i �=c
i �=a

xi
√

α3β = λxc. (34)

And, �nally, for b �= a, c

Nzb = λxb

⇐⇒
√

α3βxa +
√

α3βxc +
∑

i �=a
i �=b
i �=c

α2xi = λxb. (35)

As with the previous operator X , we break this up into

several cases depending on the eigenvector |v〉. For the �rst
case, assume there exists k �= k′ with k �= a, c and k′ �= a, c

such that xk �= xk′ . Then, using (35), for b = k and b = k′ and
subtracting the resulting expressions yields

α2(xk′ − xk ) = λ(xk − xk′ ) =⇒ λ = −α2. (36)

We claim this eigenvalue has geometric multiplicity N −
3. Consider the operator Y − λI and, as before, by con-

sidering a suitable basis, we may write this in matrix

form as

Y − λI =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ αβ
√

α3β · · ·
√

α3β

αβ −λ
√

α3β · · ·
√

α3β
√

α3β
√

α3β −λ · · · α2

√

α3β
√

α3β α2 · · · α2

...
...

...
. . .

...
√

α3β
√

α3β α2 · · · −λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

From this, it is evident that the rank of Y − (−α2)I is three

and so the geometric multiplicity of the eigenvalue −α2

is N − 3 (again, assuming Q �= 0 and Q �= 1 − 1/N which

holds since 0 < Q < 1/2. Thus, there are three more eigen-

values. Next, consider the case if xa �= xc. In this case, sub-

tracting (33) and (34) yields

αβ(xc − xa) = λ(xa − xc) =⇒ λ = −αβ. (37)

Finally, consider the case where xa = xc = x1 and xk =
xk′ = x2 for every k �= k′ and k, k′ �= a, c. In this case, (35)

simpli�es to

2
√

α3βx1 + α2(N − 3)x2 = λx2. (38)

Note that this implies x2 �= 0 as, otherwise, x1 = 0 and so

|v〉 is the zero vector and not an eigenvector. Equation (33)

yields

αβx1 + (N − 2)
√

α3βx2 = λx1.

Note that the above equation also implies that λ �= αβ since

if it were, we would have x2 = 0 which, as already discussed,

is not true. Thus, we may solve

x1 =
(N − 2)x2

√

α3β

λ − αβ
.

Substituting this into (38) yields

2x2α
3β(N − 2)

λ − αβ
+ α2(N − 3)x2 = λx2 ⇐⇒

2α3β(N − 2) + α2(N − 3)(λ − αβ ) = λ(λ − αβ ). (39)
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Solving the above quadratic for λ gives us the two remaining

eigenvalues which we denote λY±. After some algebra, these

eigenvalues are found to be

λY± =
1

2
[αβ + α2(N − 3)]

±
1

2
α

√

(β + α[N − 3])2 + 4αβ(N − 1).

Since the above arguments were for arbitrary a �= c, this

gives us the following:

�a,c = (N − 3)α2 + αβ + |λY+| + |λY−|

= (N − 3)
Q2

(N − 1)2
+
Q(1 − Q)

N − 1
+ |λY+| + |λY−|.

(40)

Thus, we conclude

� =
1

2N

N−1
∑

a,c=0

�a,c

=
1

2N

∑

a

�a,a +
1

2N

∑

a�=c
�a,c

=
1

2

(

(N − 2)
Q2

(N − 1)2
+ |λX+| + |λX−| + (N − 1)

×
[

(N − 3)
Q2

(N − 1)2
+
Q(1 − Q)

N − 1
+ |λY+| + |λY−|

])

.

At �rst glance, this expression may seem to scale exponen-

tially with n (since N = 2n). However, note that λ± (for both

the X and Y operators) are multiples of α, which, itself, is

a multiple of 1/(N − 1). Returning to �OW, we apply the

Winter continuity bound (19) to attain

H(AZ1 |E )µ

≥ H(AZ1 |E )ρ − � logN − (1 + �) f (�)

≥ n− H(AF1 |AF2 )ρ − � logN − (1 + �) f (�)

≥ n(1 − �) − (1 + �) f (�) − H(AF1 |AF2 )ρ (41)

where f (�) = H(�/[1 + �]). To �nish the key-rate com-

putation, we need H(AF1 |AF2 )ρ and H(AZ1 |B
Z )µ. The �rst is

determined through the observed values pFi, j, which we use

to denote the probability that A observes |Fi〉 (in A1) and

|Fj〉 (in A2) conditioned on the event B choose Reflect;

the second is determined through the observed values pZi, j
which we use to denote the probability that B observes

| j〉 and A observes |i〉 in A1 (we use A1 as this is the

register used for key-distillation) conditioned on the event

B choose Measure and Resend. In both cases, i, j ∈
{0, 1, . . . ,N − 1}. Clearly these are observable values al-

lowing A and B to compute these �nal (classical) en-

tropy expressions. Since we are considering a symmetric

attack modeled by the depolarization channel described in

(12), we have pZi, j = 1
N
p( j|i) and so we compute the joint

entropy as

H(AZ1B
Z )µ = −

∑

i, j

pZi, j log p
Z
i, j

= −
∑

i

p(i|i)
N

log2 p(i|i) −
∑

i �= j

p( j|i)
N

log2 p( j|i)

= (1 − Q) log2
1 − Q

N
− Q log

Q

N(N − 1)

= n+ Q log2(N − 1) + H(Q).

It is not dif�cult to show that H(BZ )µ = n (since the at-

tack is symmetric, B’s probability of observing any partic-

ular value | j〉 is uniform). Thus, the conditional entropy is

simply

H(AZ1 |B
Z ) = Q log2(N − 1) + H(Q).

The case for theF basis is identical, thoughwe use a different

noise parameter QF to parameterize the channel in this case

(since the noise may be different in the re�ection case as

discussed earlier). In this case, we have

H(AF1 |AF2 ) = QF log2(N − 1) + H(QF ).

Our �nal key-rate expression, therefore is

r = H(AZ1 |E ) − H(AZ1 |B
Z )

≥ n(1 − �) − (1 + �)H

(
�

1 + �

)

− (Q+ QF ) log2
(

2n − 1
)

− H(Q) − H(QF ). (42)

Note that the above assumed collective attacks. Ordinarily,

one may extend such computations done for the collective

attack case to prove security against arbitrary, general, at-

tacks by using de Finetti style arguments or postselection

techniques [63], [64]. We suspect that this result holds for

our protocol, however, we leave a complete proof of that for

future work.

C. EVALUATION

We evaluate our key-rate bound, (42), in two scenarios. First,

we assume in the re�ection case, that the reverse channel is

independent of the forward and, so,QF = 2Q(1 − Q) shown

in Fig. 2. In the second dependent case, we assume QF = Q

shown in Fig. 3. We note that, similar to the fully quantum

case [32], [33], as the dimension increases, the noise toler-

ance also surpasses the single qubit case. Thus, we prove that

this high-dimensional advantage, known for fully quantum

protocols, also applies to the semiquantum model. We also

observe numerically that, as n increases, the maximal noise

tolerance tends to approach 26% in the independent case

and 30% in the dependent case. As mentioned, some fully

quantum high-dimensional QKD protocols can tolerate up

to 50% error as the dimension increases [33]; thus, while
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FIGURE 2. Key-rate of our high-dimensional SQKD protocol for the
independent channel case, namely when QF = 2Q(1 − Q). We consider
various number of qubits used by A and B, namely n = 1, 2, 5, and
50 (for a total dimension of 2, 22, 25, and 250. The x-axis represents the
depolarization noise in the channel, namely Q in (12). As shown and
discussed in the text, as the dimension of the quantum system increases,
the efficiency increases (as more bits may be carried per signal) but also
the noise tolerance increases, allowing for potential secure
communication over noisier channels. As discussed in the text, this
behavior is also known for fully-quantum protocols. Our work here
shows, for the first time, this behavior applies also to semiquantum
communication.

FIGURE 3. Similar to Fig. 2, showing the key-rate of our
high-dimensional SQKD protocol however now for the dependent
channel case, when QF = Q. Here we plot the case for n = 1, 2, 5, and
50. As with the independent case, where the F basis noise is higher, we
see the same benefit to using higher dimensional systems both in noise
tolerance and efficiency for the depolarization channel.

not as high as the fully quantum case (which, perhaps, is

to be expected), it is higher than any other semiquantum

protocol to-date. Indeed, the highest known semiquantum

protocol [27] can tolerate up to 17.8% in the independent

case (as opposed to 26% here) and 26% in the dependent

case (as opposed to 30% here). Of course, (42) is only a

lower bound—future work may improve this. In particular,

the use of mismatched measurements (needed to attain a

high noise tolerance in [27]) may greatly bene�t our anal-

ysis here. This we leave as an interesting future research

direction.

Note that our protocol is a semiquantum version of

a higher dimensional BB84 (HD-BB84), �rst introduced

in [35]. So we compare our key-rate with it. Description of

this protocol is given in Protocol 4.

FIGURE 4. Here, we compare the key-rate of our protocol (solid lines)
with HD-BB84 (dashed lines) as a function of the depolarization noise
[Q, see (12)]. Comparing for various dimensions n = 1, 2, 5, 50 with n, in
this graph, increasing from left to right. Note the total dimension is, of
course, 2n. We note that, though HD-BB84 (dashed) outperforms our
protocol both in efficiency and noise tolerance for all dimension
settings, this is not too surprising since HD-BB84 is a fully quantum
protocol. We note, however, that our security proof is only a lower bound
so the actual performance of our protocol may be higher.

Protocol 4: n-Dimensional BB84.

Public Parameters: n: the number of qubits to send per

signal;

Quantum Communication Stage: The quantum

communication stage of the protocol will repeat the

following until a suf�ciently large raw key has been

distilled.

1) A prepares a randomly chosen Z basis state;

otherwise she prepares a randomly chosen F basis

state. She records her choice of basis and the choice

of state, then sends the resulting n-qubit state to B.

2) Similarly, B chooses Z or F basis states randomly,

measures the incoming qudit in this basis.

Classical Communication Stage: A and B, using the

authenticated classical channel, divulge their choices. If

both A and B chose the Z basis, they use this iteration to

contribute toward their raw key. Otherwise, if both of

them chose the X basis, then this iteration can be used to

gather statistics on the channel.

To calculate the key-rate rBB84 in this protocol, we use key-

rate equation from [60] suited to our notation and see that

rBB84 = H(AZ |E ) − H(AZ |B)

≥ n− H(AF |BF ) − H(AZ |BZ )

= n− 2(H(AZBZ ) + H(BZ ))) (43)

where the inequality follows from the entropic uncertainty

relation from [57] and n = max j,k | 〈ψ j|φk〉 |2, where ψ j and

φk are eigenvectors of Z and F , respectively. We are also

using the fact that measurement cannot decrease entropy.

H(AZBZ ) is the entropy of the joint distribution of Alice

and Bob’s choices and H(BZ ) is Bob’s entropy. Because
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Alice and Bob choose Z or F basis with equal probability,

the conditional entropy is the same in either case. For the

depolarization channel that we are considering, (43) can be

simpli�ed to

rBB84 ≥ n− 2(h(Q) + Qlog(2n − 1)).

Because we have two-way communication channel in our

protocol, it is only fair to run HD-BB84 independently twice

and sum their results before comparing. Fig. 4 depicts the

key-rate comparison of the two protocols as a function of

channel noise. In addition to noise-tolerance comparison, we

also look at the key-rate as a function of bit-error rate (BER)

for these protocols. BER is the expected number of wrong

bits in Bob’s outcome in a single iteration of a protocol. It is

de�ned as

BER(n) =
1

n

∑

a∈Z

∑

b∈Z
Pr(b∧ a)w(a⊕ b) (44)

where w(x) is the Hamming weight of bit string x. Pr(b∧ a)

represents the probability that Bob receives |b〉, if |a〉 was

sent by Alice. We can make two observations that would

simplify the BER calculation. Because the depolarization

channel treats each basis state in the same way and Alice

would choose any of those states with equal probability, it is

noticeable that for a1 �= a2 ∈ Z

∑

b∈Z
w(a1 ⊕ b) =

∑

b∈Z
w(a2 ⊕ b) =

∑

b∈Z
w(b).

Moreover, Pr(x ∧ y) = Q
2n−1

for all x �= y ∈ Z . Using these

two observations and a standard result from combinatorics,

(44) can be simpli�ed in the following way:

BER(n) =
1

n

∑

a∈Z

∑

b∈Z
Pr(b∧ a)w(a⊕ b)

=
Q

n(2n − 1)2n

∑

a∈Z

∑

b∈Z
w(a⊕ b)

=
Q

n(2n − 1)2n

∑

a∈Z

n
∑

k=0

k

(
n

k

)

=
Q

n(2n − 1)2n

∑

a∈Z
n2n−1

=
2n−1

2n − 1
Q.

Fig. 5 shows the comparison of our key rate r with 2rBB84 as

a function of BER. It is noticeable from Figs. 4 and 5 that,

HD-BB84 has a higher key-rate than our protocol. This is

expected as our protocol imposes restriction on Bob’s mea-

surement capability.

FIGURE 5. Comparing the key-rate of our protocol (solid lines) with
HD-BB84 (dashed lines) as a function of the BER which is, itself of
course, a function of the depolarization noise Q [see (44)]. We graph
various dimensions n = 1, 2, 5, 50 where n is the number of qubits
(hence the total dimension is 2n). In the graph, n increases from left to
right. We make the same observations as in Fig. 4 that HD-BB84
outperforms our protocol. However, we do note that our SQKD protocol,
for high enough n, can establish a key when the BER is higher than 11%,
similar to HD-BB84, at least for the depolarization channel.

V. DISCUSSION OF PRACTICAL SYSTEMS

As discussed, our work here is primarily interested in the the-

oretical aspects of high-dimensional systems applied to semi-

quantum cryptography. However, in light of recent practical

and experimental SQKD implementations for qubit-based

protocols [7], [65], it is worthwhile to consider whether, and

how, high-dimensional systems may be used practically for

semiquantum communication. One problem with semiquan-

tum cryptography from a practical standpoint is the need for

the Measure and Resend operation. As the most practi-

cal (S)QKD implementation utilizes photons as information

carriers, this Measure and Resend operation leads to the

destruction of the original photon and the creation of a new,

fresh, photon to resend. Such a process leads to several prac-

tical attacks as discussed in [58].

To counter this, a practical SQKD protocol must not re-

quire the classical user to prepare fresh photons. The so-

called “mirror” protocol, introduced in [7], was the �rst

such SQKD protocol. Here, time-bin encoding is typically

performed, where |i〉 represents a photon in time bin i (for

i = 0, 1). Of course |+〉 = 1√
2
(|0〉 + |1〉) represents a single

photon in a superposition of both time bins. In the mirror

protocol, Reflect acts as expected, re�ecting the entire

signal back to A. However, the Measure and Resend op-

eration is subdivided into multiple operations allowing B

to only “look” at a particular time-bin while re�ecting the

other. That is,B has a controllable “mirror” (hence the name),

permitting him to place a photon counter at time bin |i〉
while re�ecting |1 − i〉. If his detector clicks, the photon is

destroyed and a vacuum is sent to A; if his detector does not

click, then the state collapses to |1 − i〉 and the same photon

is returned to A. The critical point is that, �rst, he is able to

determine the state of the photon by this measurement and,

second, he never prepares a fresh photon. This counters the

practical attacks from [58].
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Protocol 5: Mirror-Based N-Dimensional SQKD.

Public Parameters: N: the number of time bins; pM , the

probability of choosing Measure and Resend; pZ , the

probability of A choosing the Z basis.

Quantum Communication Stage: The quantum

communication stage of the protocol will repeat the

following until a suf�ciently large raw key has been

distilled.

1) With probability pZ , A prepares a randomly chosen Z

basis state, preparing a single photon in the chosen

time bin. Otherwise she prepares a randomly chosen

F basis state, preparing a single photon in an

appropriate superposition of time-bins. She records

her choice of basis and the choice of state.

2) B chooses, with probability 1 − pM , operation

Reflect in which case he re�ects all N time bins

back to A. Otherwise, he chooses Measure and

Resend in which case, he chooses a random

time-bin i (out of the N available bins) and performs

operation Measure and Resend− i as discussed

in the text and Fig. 6. He records the outcome of this

measurement (either j if he observed the photon at

time-bin | j〉 or i if he does not observe anything).
Note that, if he observes j, the photon is destroyed

and A should observe a vacuum later; if he observes i,

then the photon collapses to the |i〉 time bin and is

returned to A (importantly, this is not a new photon,

however).

3) A measures the returning system in the same basis she

used to prepare.

4) A and B, using the authenticated classical channel,

divulge their choices. Namely, B his choice of

“Measure and Resend” (but not his choice of i in

this case) or “Reflect” and A her choice of basis. B

also discloses whether he detected a photon or not. If

A chose the Z basis and B chose

Measure and Resend and did not observe a

photon, they will use this iteration to contribute

towards their raw key; namely, B will append the

bit-string representation of i to his raw key while A

will append her initial state she prepared (in this case,

A’s subsequent measurement result is not used).

To consider a practical implementation of our high-

dimensional protocol, we propose that this mirror terminol-

ogy may be extended. Now, a single photon may be prepared

in different time bins |i〉 for i = 1, · · ·N or a superposition

of those time bins. The classical user may re�ect the entire

signal or may choose to re�ect only a single time bin |i〉while
measuring the other time bins | j〉 for j �= i. If his detector

clicks at time j, a vacuum is sent back to A and he knows

the result of his Z basis measurement was | j〉. If his detector
does not click, the state collapses to |i〉 while he also knows

that the measurement resulted in outcome |i〉. We denote this

operation MeasureandResend− i. See Fig. 6. Critically,

FIGURE 6. High-level overview of the measurement apparatus for the
potential experimental high-dimensional SQKD protocol discussed in
Protocol 5. Here, Alice prepares time-bin encoded states where a single
photon may be in a superposition of multiple time bins (here the
number of time bins is four). Bob has a controllable “mirror” based on
an idea originally introduced in [7] but extended here for multiple
dimensions. This measurement allows him to choose a specific time bin
to “ignore” (i) while being able to measure any other time bin. If he
observes a photon (“click”), a vacuum state is sent back to Alice whereas
if he does not detect a photon (“no click”), he knows the measurement
outcome is |i〉 and the original photon collapses to time-bin i and
returns to A. Such an operation allows him to perform the
Measure and Resend operation without requiring him to prepare a fresh
photon. We leave the security analysis of this protocol, including when
devices are imperfect, as future work.

he never prepares a fresh photon meaning that the practical

photon tagging attacks [58] are not applicable here. The exact

protocol we describe in Protocol 5.

Note that, any iteration where B did observe a photon

must be discarded, as in the original qubit-based mirror pro-

tocol of [7]. This causes a drop in ef�ciency, however the

advantage is the system is potentially practical in that fresh

photons are not needed. An exact security analysis of this

protocol, both in the ideal and in practical device settings,

we leave as future work. We only propose this protocol to

show that there is a potential for practical implementations of

high-dimensional SQKD protocols. We do not claim security

of this candidate practical Protocol 5 and leave a security

analysis as future work.

VI. CLOSING REMARKS

In this article, we designed a new high-dimensional semi-

quantum key distribution protocol and performed an in-

formation theoretic security analysis. To conduct this

security analysis, we developed several new techniques for

high-dimensional protocols over two-way quantum channels

which may be applicable to other (S)QKD protocols. In par-

ticular, we showed how one may reduce a two-way, high-

dimensional, semiquantum protocol to a one-way protocol

which is easier to analyze. Thus, we produced new secu-

rity results of broad application. We also proved that high-

dimensional quantum systems can bene�t communication in

the semiquantum model just as they do in fully QKD.

Many interesting future problems remain open. For one

thing, it would be interesting to see if our proof technique

can be applied to the high-dimensional quantum-walk based

SQKD protocol introduced in [34]. If so, we would then be
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able to compare noise tolerance properties of the two proto-

cols. It would also be interesting to see if we can improve our

bound and technique here. One factor contributing to a poten-

tially lower key-rate bound is our use of a continuity bound.

Other methods may produce more optimistic results. Finally,

a security analysis of Protocol 5 would be very exciting.
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