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Abstract

In studies of molecular profiling and biological pathway analysis using DNA microarray gene

expression data we are utilising a broad class of sparse latent factor and regression models for

large-scale multivariate analysis and regression prediction. We present examples of these applica-

tions with discussion of key aspects of the modelling and computational methodology. Our case

studies are drawn from breast cancer genomics, where we are concerned with the investigation

and characterisation of heterogeneity of structure related to specific oncogenic pathways, as well

as predictive/prognostic uses of aggregate patterns in gene expression profiles in clinical contexts.

Based on the metaphor of statistically derived “factors” as representing biological “subpathway”

structure, we explore the decomposition of fitted sparse factor models into pathway subcompo-

nents, and how these components overlay multiple aspects of known biological structure in this

network. We discuss the discovery and predictive uses of this approach, and the ability to use

such models to generate enrichment of existing biological descriptions through identification of

interactions between factors and subsequent experimental validation. We further illustrate the cou-

pled use of predictive factor regression models with the high-dimensional sparse factor analysis of

expression profiles.

Our methodology is based on sparsity modelling of multivariate regression, anova and latent

factor models, and a general class of models that combines all components. Novel and effec-

tive sparsity priors address the inherent questions of dimension reduction and multiple compar-

isons, as well as scalability of the methodology. The models include practically relevant non-

Gaussian/non-parametric components for modelling latent structure underlying often quite com-

plex non-Gaussianity in multivariate expression patterns related to underlying biology. Model

search and fitting are addressed through stochastic simulation and evolutionary stochastic search

methods that are exemplified in oncogenic pathway studies. Supplementary supporting material

provides more details of the applications as well as examples of the use of freely available soft-

ware tools implementing the methodology.

Keywords: Biological pathways, Breast cancer genomics, Evolutionary stochastic search, De-

composing gene expression patterns, Dirichlet process factor model, Factor regression, Gene ex-

pression analysis, Gene expression profiling, Gene networks, Non-Gaussian multivariate analysis,

Sparse factor models, Sparsity priors
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1 Introduction

Gene expression assays of human cancer tissues provide data that reflect the heterogeneity char-

acteristic of the cancer process. Figure 1 represents a few nodes in a central biological network

of gene pathways, including the Rb/E2F pathway that is a major controlling component of mam-

malian cell growth, development and fate. As part of a much more complex network of inter-

connected signaling pathways (including the Ras, Myc and p53 response pathways) Rb/E2F is

fundamental to the control of cell cycle, links the activity of cellular proliferation processes with

the determination of cell fate, and is subject to many aspects of deregulation that relate to the de-

velopment of human cancers. Many small changes due to spontaneous somatic mutations and the

host of environmental influences overlaid on inherited characteristics induce subtle variation and

deregulation in nodes in this network; natural variability in gene/protein functioning and commu-

nication results. This induces variations in cell proliferation control and many other “downstream”

processes, some aspects of which can be reflected in large-scale gene expression assays from cell

lines or tissue assays. The studies illustrated here use gene expression analysis on human breast

cancer tissue samples in studies aiming to improving our understanding of aspects of this and re-

lated pathways; the overall goals are to better characterise the state and nature of a tumour based

on expression profiles and to link to prognostic uses of expression profiles.

Our statistical framework utilises sparse latent factor models of the multivariate gene expres-

sion data, and allows extensions for regression and anova components based on explanatory vari-

ables as well as predictive regression components for measured responses. The approach builds on

the initial class of sparse factor models and the analysis framework introduced in West (2003). In

modelling dependencies among many variables – here the gene expression measurements across

genes – we use linear latent factor models in which the factor loadings matrix is sparse, i.e., each

factor is related to only a relatively small number of genes, representing a sparse, parsimonious

structure underlying the associations among genes. With genes related to a set of interacting path-

ways, one key idea is that recovered factors overlay the known biological structure and that genes

appearing linked to any specific “pathway characterising” factor may be known or otherwise pu-

tatively linked to function in that pathway. The modelling approach provides for biological infor-

mation to be infused in the model in a number of ways, but also critically serves as an exploratory

analysis approach to enrich the existing biological pathway representations. This analysis is en-
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Figure 1: Schematic of key cell signalling pathways involved in cancer. The diagram

illustrates some of the known activating and repressive actions of genes and proteins in

the Rb/E2F pathway as well as connections to other key pathways. For example, the

transcription factors Myc plays a role in activating CycD (Cyclin D) and the family of

E2F transcription factors, while the retinoblastoma protein Rb represses (indicated by ⊥)

the transcription of the E2F family (Nevins, 1998).

abled through the use of a flexible class of sparsity-inducing priors that allow the introduction of

arbitrary patterns of zeros in sets of factor loadings and regression parameters, so that data can

inform on the sparsity structure and.

One other key methodological development is the use of non-parametric model components

for the distributions of latent factors; this allows for flexible adaption to the often radically non-

Gaussian structure in multiple aspects of the high-dimensional distributions of gene expression

outcomes, reflecting aspects of experimental/technological noise as well as the more important

non-Gaussianity that relates to biological heterogeneity.

The statistical methodology involves computation using evolutionary stochastic search and

MCMC methods, and is described and illustrated in the examples. The evolutionary component

uses the theory underlying MCMC methods for our sparse latent factor models to generate a vari-

able selection method that is useful in enriching an existing model with new variables (here genes)
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that appear to relate to the factor structure identified by an existing set of genes already mod-

elled. In the pathway study context, model-based analysis of genes linked to a known biological

pathway naturally recommends beginning with genes (variables) of known relevance and then

gradually exploring beyond these initial variables to include others showing apparent association

so as to“evolve” the model specification to higher-dimensions. This method meshes with MCMC

analysis in the sparse factor models on a given set of genes. Our examples focused on the Rb/E2F

signalling pathway and also hormonal pathways illustrate the methodology as an approach to ex-

ploring, evaluating and defining molecular phenotypes of sub-pathway characteristics – for both

characterisation and prediction – in this important disease context. We conclude with comments

about software for these analyses, as well as open issues and current research directions.

2 General Factor Regression Model Framework

The overall model framework combines latent factor modelling of a high-dimensional vector quan-

tity x with regression for a set of response variables in a vector z, while allowing for additional re-

gression and/or anova effects of other known covariates h on both x and z. In our gene expression

case studies, x represents a column vector of gene expression measures on a set of genes in one

sample, z a set of outcomes or characteristics, such as survival time following surgery or a hor-

monal protein assay measure, and h may represent clinical or treatment variables, or normalisation

covariates relevant as assay correction factors for the gene expression data, for example.

2.1 Basic Factor Regression Model Structure

Observations are made on a p−dimensional random quantity x with the ith sample modelled as a

regression on independent variables combined with a latent factor structure for patterns of covari-

ation among the elements of xi not explained by the regression. That is,

xi = µ + Bhi + Aλi + νi, i = 1 : n, (1)

or, elementwise,

xg,i = µg + β′
ghi + α′

gλi + νg,i = µg +

r
∑

j=1

βg,jhj,i +

k
∑

j=1

αg,jλj,i + νg,i (2)
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for g = 1 : p and i = 1 : n. These equations have the following components:

• µ = (µ1, . . . , µp)
′ is the p−vector of intercept terms.

• B is the p× r matrix of regression parameters βg,j , (g = 1 : p, j = 1 : r), having rows β′
g.

• A is the p× k matrix of factor loadings αg,j , (g = 1 : p, j = 1 : k), having rows α′
g.

• hi = (h1,i, . . . , hr,i)
′ is the r−vector of known covariates or design factors for sample i.

• λi = (λ1,i, . . . , λk,i)
′ is the latent factor k−vector for sample i.

• νi = (ν1,i, . . . , νp,i)
′ is the idiosyncratic noise or error p−vector.

Variation in xg,i not predicted by the regression is defined by the underlying common factors

through the factor term α′
gλi, while ψg is the unexplained component of variance of xg,i, repre-

senting natural variation, technical and measurement error that is idiosyncratic to that variable.

We use the traditional zero upper-triangular parametrization of A to define identifiable models, the

parametrization in which the first k variable have distinguished status (Aguilar and West, 2000;

Lopes and West, 2003; West, 2003). Here αg,g > 0 for g = 1, . . . , k, and αg,j = 0 for factors

j = g+1, . . . , k and g = 1, . . . , k−1. The choice of these k lead variables is then a key modelling

decision, and one of the questions addressed in our development of evolutionary model search in

Section 6 below. We refer to the lead, ordered k variables as the founders of the factors.

The factors λi are assumed independently drawn from a latent factor distribution F (·). Tradi-

tionally, F (λi) = N(λi|0, I) where 0 and I are the zero vector and identity matrix respectively

(used generically); the zero mean and unit variance matrix are identifying assumptions. One of

our key methodological developments, discussed below, introduces non-parametric factor models

based on a Dirichlet process extension of this traditional latent factor distribution.

The residual error terms are assumed normal, νi ∼ N(νi|0,Ψ) where Ψ = diag(ψ1, . . . , ψp).

Practically useful extensions to heavier-tailed errors using T distributions in place of the normal

here are easily encompassed within the simulation based Bayesian analysis we develop and use,

though details are omitted here.

2.2 General Predictive Factor Regression Models

The above multivariate model for x combines with predictive model components relating x to

a vector of response variables z in general predictive factor regression models that provide our

framework for this paper. This simply views the multivariate modelling (of x) and regression
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prediction (for z given x) as derivative of an overall multivariate model for (z, x) jointly. This

extends the initial factor regression model of West (2003) to incorporate the view that predictions

of z from x may be partly influenced by the latent factors λ underlying x as well via additional

aspects of x. These potential “additional aspects” of x are represented in terms of additional latent

factors referred to as response factors. That is, we simply extend the model to include additional

latent factors arising in predicting each of the individual response variables, adding to the existing

model.

To be specific, suppose z is q−vector with ith observation zi = (z1,i, . . . , zq,i)
′ and that, ini-

tially, each element is continuous and the variables are modelled jointly with x. In a normal model

context, this is natural by the immediate extension of the factor model (1) in which xi is simply

extended to a (p + q) × 1 vector (x′i, z
′
i)
′. For simplicity in notation, we simply redefine xi as the

extended vector of (p + q) elements with xp+g = zg for g = 1 : q. The general model is then of

the precise form specified in equation (1) with this extended dimension; that is, elementwise,

xg,i = µg + β′
ghi + α′

gλi + νg,i = µg +
r

∑

j=1

βg,jhj,i +

k+q
∑

j=1

αg,jλj,i + νg,i (3)

for g = 1 : (p+ q) and i = 1 : n, and with the additional following changes:

• µ = (µ1, . . . , µp+q)
′ is the extended vector of intercepts for both xi and zi vectors.

• B is the extended (p+ q)× r matrix of regression parameters of all elements of xi and zi on

the regressor variables in hi. Now B has elements βg,j , (g = 1 : (p + q), j = 1 : r), with

rows β′
g.

• A is the extended (in both rows and columns) (p + q) × (k + q) matrix of factor loadings

αg,j , (g = 1 : (p+ q), j = 1 : (k + q)), having rows α′
g.

• λi = (λ1,i, . . . , λk+q,i)
′ is the extended (k+q)−vector of latent factors, where the additional

q are introduced as response factors.

• νi = (ν1,i, . . . , νp+q,i)
′ is the extended idiosyncratic noise or error vector with the addi-

tional q elements now related to zi; the variance matrix is extended accordingly as Ψ =

diag(ψ1, . . . , ψp+q).

Beyond notation, the key extension is the introduction of additional potential latent factors, the

final q in the revised λi vectors, each linked to a specific response variable in zi. The structure of

the extended factor loadings matrix A reflects this: each of the q response variables serves define
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an additional latent factor, i.e., serves as a a founder of a factor, while the first k of the x variables

in the order specified serve, as originally, to define the k factors in the latent model component

reflecting inherent structure in x. Thus the structure of A is

A =





Ax Ax,z

Az,x Az





where both Ax and Az have the structure as described in the initial model of x alone, i.e., the

traditional zero upper-triangular parametrization. That is, the structural constraints on A = {αg,j}

have two components. First, as in the initial model for x alone, the p×k matrix Ax has αg,g > 0 for

g = 1, . . . , k, and αg,j = 0 for j = g+1, . . . , k and g = 1, . . . , k−1. Second, the square response

factor loadings matrix Az is lower triangular with positive diagonal elements, i.e., αp+g,p+g > 0

for g = 1, . . . , q, and αp+g,p+j = 0 for j = g + 1, . . . , q and g = 1, . . . , q − 1.

Different scales of response variables can be corrected so that all variables lie on the same

scale; this simplifies specification of prior distributions over the elements of the A and B matrices,

in particular. Additional considerations relates to specification of values or priors for the variance

terms in Ψ, some of which arise in connection with non-Gaussian responses, now mentioned.

2.3 Non-Gaussian Response Variables

The extensions to allow for binary, categorical and censored data (such as survival time data) can be

incorporated through the use of additional response-defining latent variables. Some key examples

include:

• Binary responses modelled by probit regressions. For example, interpret zi,1 as the unob-

served, underlying latent variable such that an observable response y1,i = 1 if, and only if,

z1,i > 0, and fix the variance φ1 = 1 accordingly. Modifications to logistic and other link

functions can be incorporated using standard methods (Albert and Johnson, 1999).

• Categorical responses modelled via cascades of probit (or other) binary variables. For ex-

ample, an observable response variable y1,i taking values 0,1 or 2 is easily (and usually

adequately) modelled as defined by two underlying latent variables z1,i, z2,i – now two ele-

ments of zi in the factor regression – such that (i) zi,1 ≤ 0 implies y1,i = 0, (ii) zi,1 > 0 and

zi,2 ≤ 0 implies y1,i = 1, while (iii) zi,1 > 0 and zi,2 > 0 implies y1,i = 1. In fact, the hier-
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archical/triangular structure of the factor model for zi makes this construction for categorical

data most natural.

• Right-censored survival data modelled as censored, transformed normal data. One useful

model has outcome data that are logged values of survival times, in which case z1,i represents

the mean of the normal on the log scale for case i. For observed times, z1,i is observed; for a

case right-censored at time ci, we learn only that zi,1 ≥ ci.

In each case, the uncertain elements of zi – whether due to the inherent latent structure of binary

and categorical variables or the censored data in survival analysis – are included in MCMC analyses

with all model parameters and latent factors. This standard strategy also applies to cases of missing

data when some elements of zi are simply missing at random, and in predictive assessment and

validation analysis when we hold-out the response values of some (randomly) selected samples to

be predicted based on the model fitted to the remaining data.

2.4 Non-Gaussian, Non-Parametric Factor Modelling

A relaxation of the Gaussian assumption for the population distribution of the latent factors is of

interest in expression studies, as in other application areas, in view of quite commonly encoun-

tered non-Gaussian features in data. An example that highlights this is discussed further in the

first application below (in Section 5). Figure 5 displays scatter plots of estimated factor values

from the analysis of a sample of expression profiles from breast tumours, and the two factors are

labelled as representing key biological growth factor pathways – that related to the growth factor

hormone estrogen measured by the estrogen receptor factor, and that related to the tyrosine kinase

growth factor HER2/ERB-B2. Each of the ER and HER2 pathways play notable roles in the patho-

genesis of breast cancer. For the illustration of non-Gaussianity here, simply note that the scatter

plot reflects something like three overlapping groups of tumours that can be identified as distinct

biological subtypes of breast cancer. In particular, higher levels of the HER2 factor in this plot are

consistent with the known prevalence of an amplification of the HER2-ν gene, or over-expression

of its protein product, in about 25-35% of breast cancers. Over-expression of this receptor in breast

cancer is associated with increased disease recurrence and worse prognosis.

A first step towards non-parametric modelling of the latent factor distribution F (λi) is to utilise

the widely used Dirichlet process framework (Escobar and West, 1995, 1998; West et al., 1994;
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MacEachern and Müller, 1998). The direct relaxation of the standard normal model simply embeds

the normal distribution as a prior expectation of a Dirichlet process (DP) over what is now regarded

as an uncertain k−variate distribution function F (λi). In standard notation, F ∼ Dir(αF0), a

DP prior with base measure αF0 for some total mass, or precision parameter, α > 0 and prior

expectation F0(λ) = N(λ|0, I). Write λ1:n = {λ1, . . . ,λn} and, for each i = 1 : n, denote by

λ−i the set of n− 1 factor vectors λi removed. A key feature of the DP model is the set of implied

complete conditionals for λi (marginalising over the uncertain F ). These are given by

(λi|λ−i) ∼ an−1N(λi|0, I) + (1 − an−1)

n
∑

r=1,r 6=i

δλr
(λi) (4)

where δλ(·) is the Dirac delta function, representing a distribution degenerate at λ, and an−1 =

α/(α + n − 1). This means that, conditional on λ−i, the factor vector λi comes from the prior

normal distribution with probability an−1, otherwise it takes the same value as one of the existing

λr, those n− 1 values having equal probability. Hence in any sample of n factor vectors there will

be some number of distinct values less than or equal to n, and the samples will be configured across

that number of “clusters” in factor space; of course the latency means that we will never know

the configuration or number, and all inferences average over the implied posterior distributions.

Full details and supporting theory can be found in the above references. For our purposes here,

the key is the utility of the DP model as a flexible and robust non-parametric approach that will

adapt to non-Gaussian structure evident in data. The concentration of factor values on common

values does also add value from the point of view of expression data modelling; for example,

it allows for the representation of both “inactive” and ”upregulated” biological pathways across

a number of samples, while also permitting variation in levels of activity of a pathway across

other samples. Generally, the expectation will be of a larger number of distinct values in any

hypothetical realisation of λ1:n, and this is consistent with larger values of the precision parameter

α, a parameter to be included in posterior analysis using the approach of Escobar and West (1995).

3 Sparsity Modelling

In the gene expression contexts as in other areas of application of factor models, a basic perspective

is that of sparsity in the factor loadings matrix. That is, any given gene may associate with one
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or a few factors, but is unlikely to be related to (or implicated in) latent structure involving many

factors. In complement, any one factor will link to a number of genes, but generally a relatively

(to p) small number. The same reasoning applies to the new response factors introduced in the

combined predictive factor regression models for a vector of responses z together with x. That is,

in problems with large p, the factor loadings matrix A of the general model of equation (3) will be

expected to have many zero elements, though the pattern of non-zero values is unknown and to be

estimated. A priori, each (of the unconstrained) αg,j may be zero or take some non-zero value, so

that relevant priors should mix point masses at zero with distributions over non-zero values as in

standard Bayesian “variable selection” analyses in regression and other areas (Clyde and George,

2004; George and McCulloch, 1993; Raftery et al., 1997). This was initiated in factor models

in West (2003), and parallels the development of the concept in other models including large p

regression applications (Rich et al., 2005; Dressman et al., 2006; Hans et al., 2007) and in related

graphical models (Dobra et al., 2004; Jones et al., 2005). The standard mixture priors (sometimes

referred to as “slab and spike” priors) have been used effectively in anova and related models for

gene expression by several groups (Broet et al., 2002; Lee et al., 2003; Ishwaran and Rao, 2003,

2005; Do et al., 2005). Our extensions of sparsity prior modelling below represent generalisations

of the standard methods for multivariate regression and anova as well as extensions of the original

sparse factor regression model versions in West (2003).

Precisely the same ideas apply to the regression on independent variables component, i.e.,

the regression parameter matrix B of equation (3). That is, among the many variables there may

be some significantly related to proposed explanatory variables in hi, whether these be dummy

variables for design factors or other measured covariates. In designed intevention experiments dif-

ferential expression resulting from a treatment effect will be evident for some genes but not all,

so that some or many of the corresponding elements of B will be zero. Another specific example

in gene expression studies involves the use of so-called control or housekeeping genes to generate

multiple reference expression measures that are supposed to be consistent and unvarying across

experimental conditions or observational samples. Observed variation in such controls can then be

attributed to systematic or random variations experimental protocols and expression array assays –

referred to as assay artifacts – and used as covariate information to provide potential regression-

based corrections for the p genes of interest. Though expression measures of some genes may be
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subject to distortion by assay artifacts and hence the regression on such control variates significant

for such genes, many others will be robust and unaffected by artifacts, so that corresponding re-

gression parameters will be zero. This is a nice example that highlights the relevance of sparsity

prior modelling on regression coefficients as well in parallel to its natural relevance in latent factor

modelling. For the balance of this section we focus discussion of concepts on the factor loadings

matrix A but the methodology implemented applies the same ideas, and resulting sparsity prior

distributional models, to B also.

At a general level, the strategy of sparsity prior modelling builds on a class of prior distributions

under which each element αg,j of A has a probability πg,j of taking a non-zero value. A variety of

model structures may then be overlaid through hierarchical priors for these sparsity probabilities

as well as the priors for values of the non-zero elements in A. Our main class of these “point-mass

mixture priors” involves novel extension of the more standard variable selection priors (as used in

the above references, for example) that address and overcome a number of key shortcomings of the

standard approach in higher dimensional problems (Lucas et al., 2006a). In particular, we model

the factor loadings as conditionally independent with

αg,j ∼ (1 − πg,j)δ0(αg,j) + πg,jN(αg,j |0, τj) (5)

independently over g, where δ0(·) is the Dirac delta function at zero. This states that variables have

individual probabilities of association with any factor, πg,j for variable g and factor j, and that non-

zero loadings on factor j are drawn from a normal prior with variance τj . A slight modification

is required for the cases of diagonal elements since they are constrained to be positive to ensure

identifiability; thus the normal component of equation (5) is adapted to N(αg,g|0, τj)I(αg,j > 0)

for g = 1, . . . , k and g = p+ 1, . . . , p+ q, where I(·) is the indicator function.

The usual variable selection prior model adopts πg,j = πj , a common chance (”base rate”) of

non-zero loading on factor j for all variables, and estimates this base rate πj under a prior that

heavily favours very small values. The problem is that, with larger p, a very informative prior on

πj favouring very small values is required, and resulting posterior probabilities for αg,j 6= 0 that

are quite spread out over the unit interval; while generally consistent with smaller values of πj ,

this leads to a counter-intuitively high level of uncertainty concerning whether or not αg,j = 0

for a non-trivial fraction of the variables. This was clearly illustrated in West (2003) and has been

demonstrated in other models with use of these standard priors (Lucas et al., 2006a).
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An effective resolution of this problem is available within the more general model (5) by adding

an appropriate hierarchical component for the loading probabilities πg,j . Sparsity indicates that

many of these probabilities will be small or zero, and a small number will be high. About the

simplest reflection of this key view is to model these probabilities as drawn from a prior of the

form

πg,j ∼ (1 − ρj)δ0(πg,j) + ρjBe(πg,j |ajmj , aj(1 −mj)) (6)

where Be(·|am, a(1 − m)) is a beta distribution with mean m and precision parameter a > 0.

Each ρj has a prior that quite heavily favours very small values, such as Be(ρj |sr, s(1− r)) where

s > 0 is large (e.g., s = p+q) and r a very small prior probability of non-zero values, usually taken

as r0/(p + q) for some small integer r0 (e.g., r0 − 5 − 10). The beta prior on non-zero values of

πg,j is fairly diffuse while favouring relatively larger probabilities, such as defined by aj = 10 and

mj = 0.75, for example. Note that, on integrating out the variable-specific probabilities πg,j from

the prior for αg,j in equation (5), we obtain a similar distribution but now with πg,j simply replaced

by E(πg,j |ρj) = ρjmj ; this is precisely the traditional variable selection prior discussed above,

with the common base-rate of non-zero factor loadings set at ρjmj . The insertion of the additional

layer of uncertainty between the base-rate and the new πg,j now reflects, however, the view that

many (as represented by a high value of ρj) of the loadings will be zero for sure, and permits

the separation of significant factor loadings from the rest. The practical evidence of this is that,

in many examples we have studied, the posterior expectations of the πg,j generally have a large

fraction heavily concentrated at or near zero, a smaller number at very high values, and with only

a few in regions of higher uncertainty within the unit interval. In contrast, the standard variable

selection prior leads to posterior probabilities on αg,j = 0 that are overly diffused over the unit

interval – more discussion and examples in regression variable selection in anova models appears

in Lucas et al. (2006a). That is, the model now has the ability to ability to much more effectively

detect non-zero loadings, and to induce very substantial shrinkage towards zero for many, many

loadings – effectively resolving signal and the implicit multiple comparison problem through an

appropriately structured hierarchical model.
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4 Prior to Posterior Analysis via MCMC Computation

Assume sparsity priors specified independently for each of the columns of A and B. Model com-

pletion then requires specification of priors for the variance components in Ψ and the τj of the

sparsity priors. This will involve consideration of context and ranges of variation of noise/error

components. The priors for ψp+1, . . . , ψp+q will be response variable specific, though some val-

ues may be fixed as exemplified in the binary and categorical variable discussion above. Inverse

gamma priors are the conditionally conjugate and will be used in general for the ψg and τj pa-

rameters. For the former, substantial prior information exists from prior experience with DNA

microarrays across multiple experiments and observational contexts, and should be utilised to at

least define location of proper priors. Finally, the hyper-parameters of the sparsity priors on factor

loadings are to be specified, and we have already discussed general considerations earlier.

MCMC analysis for posterior simulation is effectively standard and can be implemented in a

Gibbs sampling format. The components of sets of conditional distributions to iteratively simulate

are noted here, though full details are omitted since most component conditional distributions are

standard and the manipulations and simulations involved very much routine in applied Bayesian

work. This comment applies also to the conditional posteriors for the latent factor vectors arising

as a result of the non-parametric Dirichlet process structure; in other model contexts, this is nowa-

days a routinely utilised model component and MCMC is well developed and understood. Some

specifics of the MCMC components related to the sparsity priors are developed. Importantly, much

of the computation at each iteration can be done as a parallel calculation by exploiting conditional

independencies in certain complete conditionals of the posterior distribution.

Write x1:n for the set of n observations on the (p + q)−dimensional outcomes, and λ1:n for

the corresponding set of n (p + k)−dimensional latent factor vectors. For any quantity ∆ – any

subset of the full set of parameters, latent factors and variables – denote by p(∆|−) the complete

conditional posterior of ∆ given the data x∗1:n and all other parameters and variables. Then, the

sequence of conditional posteriors to sample is a follows:

• Sample the conditional posterior over latent factors, p(λ1:n|−). Under the Dirichlet process

structure, this generates a set of some dn ≤ n distinct vectors and assigns each of the λi

to one of these vectors (Escobar and West, 1995, 1998). The inherent stochastic clustering

underlying this assignment is algorithmically defined using the standard configuration sam-
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pling of Dirichlet process mixture models. We simply note that, conditional on the data and

all other model parameters, the model (3) can be re-expressed as a linear regression of each

“residual” vector xi − µ − Bhi on Aλi, with the matrix A and the variance matrix Ψ of the

regression errors known at the current values at each MCMC iterate. This then falls under the

general regression and hierarchical model framework of Dirichlet mixtures as in West et al.

(1994) and MacEachern and Müller (1998); we then have access to the standard and efficient

configuration sampling analysis for resampling the λ1:n at each MCMC step, as described in

these references. For convenience, additional brief details are given in the Appendix A here.

• For all j = 1, . . . , q, the use of inverse gamma priors for the τj leads to conditionally inde-

pendent inverse gamma complete conditionals p(τj |−). These are trivially simulated.

• For all g for which ψg is not specified, the use of inverse gamma priors implies that the

complete conditionals p(ψ∗
g |−) are similarly inverse gamma, and so easily simulated.

• The main novel MCMC component arises in simulation of conditional posteriors for the ele-

ments αg,j of A and βg,j of B, together with their sparsity-governing probabilities πg,j . The

structure for resampling entries in B is completely analogous to that for A so we discuss here

only the latter. For given factor index j, this focuses on the complete conditional posterior

for the full (p+ q)− jth column of A, namely aj = (α1,j , . . . , αp+q,j)
′.

An efficient strategy is to sample the bivariate conditional posterior distribution for each pair

{αg,j , πg,j} via composition – sampling p(αg,j |−) followed by p(πg,j |αg,j ,−). The model is

such that, for a fixed factor index j, these pairs of parameters (as g varies from g = j, . . . , p∗)

are conditionally independent so that this sampling may be performed in parallel with respect

to variable index g.

– The first step is to draw αg,j from its conditional posterior marginalised over πg,j . This

is proportional to the conditional prior of equation (5) but, as earlier discussed, with

πg,j substituted by its prior mean ρjmj , and then multiplied by the relevant conditional

likelihood function; here it easily follows that this likelihood component contributes a

term proportional to a normal density for αg,j . This defines a posterior that is a point-

mass at zero mixed with a normal for αg,j in the case of unrestricted parameters. The

computation is more complicated for the diagonal elements due to the constraint to pos-

itivity; simulation of this is still standard and accessible using either direct calculation
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or accept/reject methods.

– The second step is to sample the conditional posterior p(πg,j |αg,j ,−), as follows: (i) if

αg,j 6= 0, then πg,j ∼ Be(ajmj + 1, aj(1 −mj))); (ii) if αg,j = 0, then set πg,j = 0

with probability 1 − ρ̃j where ρ̃j = ρj(1 −mj)/(1 − ρjmj), and otherwise draw πg,j

from Be(ajmj , aj(1 −mj) + 1).

• Finally, draw each ρj independently from p(ρj |−) = Be(sr+σj , s(1− r)+p+ q− j−σj)

where σj = #{πg,j 6= 0 : g = j + 1, . . . , p+ q}.

5 Breast Cancer Genomics #1: Hormonal Pathways

5.1 Goals, Context and Data

A first application in breast cancer genomics draws on a large and very heterogenous dataset to

provide some initial illustrations of several aspects of the factor regression modelling framework

as well as applied aspects and practicalities of expression analysis. The dataset combines summary

RMA measures of expression from Affymetrix u95av2 microarray profiles on three sets of breast

cancer samples: 138 tumour samples from the previously published CODEx study (Huang et al.,

2002, 2003; Nevins et al., 2003; Pittman et al., 2004) from the Sun-Yat Sen Cancer Center in

Taipei, 74 additional samples from the same center collected a year or two later than the original

CODEx samples, and 83 samples on breast cancer patients collected during 2000-2004 at the

Duke University Medical Center. The combined set of n = 295 samples were processed using the

standard RMA code from Bioconductor (www.bioconductor.org) and screened to identify 5671

genes showing non-trivial variation across samples.

The initial examples of analysis outputs concern p = 250 genes. The process of selection of

these genes is discussed in Section 6. We aim to explore aspects of the patterns of variation and

covariation in genes related to the two key biological growth factor pathways: the estrogen recep-

tor (ER) pathway and the HER2/ERB-B2 pathway that are central to the pathogenesis of breast

cancer. Previous studies have explored gene expression patterns predictive of both ER and HER2,

the former representing a very large and complex network of genes playing roles in cell growth and

development as well as hormonal regulation. In addition to the gene expression data we include in

the study the clinical assays of protein levels related to both ER and HER2, based on traditional im-
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munohistochemical (IHC) staining for protein expression in sections of each tumour. One interest

relates to how mRNA signatures of biological variation in these key pathways relate to the global

and cruder designations of ER positive or negative based on the IHC assays. Discordance between

expression and protein measures arises from many factors, not the least of which is the geograph-

ical variation in expression (of both genes and proteins) throughout a tumour. For our purposes

here, collections of genes included in the analysis are known to be regulated by, or co-regulated

with, ER or other key genes in the ER pathway, and so can be expected to show patterns covariation

that will drive the identification of ER factor structure in the latent factor model. HER2/ERB-B2,

though a key and dominant biological factor in breast cancer through its roles in signal transduction

pathways leading to cell growth and differentiation, is a much lesser player than ER in terms of the

numbers of genes it interacts with, directly or indirectly, and so factor structure in expression will

be expected to relate to fewer genes.

This illustrative analysis fits the model to the p = 250 genes together with q = 2 binary

response variables defined by the IHC assays of ER and HER2. For each of the response variables

there are substantial numbers of missing or uncertain/indeterminate outcomes, so that the analysis

imputes/predicts a good fraction of the response values. The 2 response are the indicator of ER

positive versus negative based on the protein assay, referred to simply as ER (91 negative, 143

positive, 61 missing or uncertain), and the corresponding HER2 measure (60 negative, 86 positive,

149 missing or uncertain).

5.2 Exploring Variable-Factor Associations and Sparsity Patterns

Examination of aspects of the posterior for the factor loadings αg,j forms a key part of the model

exploration. The Monte Carlo estimates of the posterior loading probabilities π̂g,j = Pr(αg,j 6=

0|x1:n) are central to this. High values define significant gene-factor relationships. Figure 2

provides one first broad visual summary of key aspects of a model fitted to the p = 250 se-

lected genes together with the q = 2 specified binary response variables. This model analysis

has k = 10 latent factors, and this figure displays aspects of the posterior distribution for the

first p rows of the factor loadings matrix A that correspond to the loadings αg,j for all genes

g = 1 : 250 across the k + q = 12 factors. Frame (a) provides insight into the “skeleton” of

the fitted model, displaying the indicator of π̂g,j > θ where θ = 0.99 for this figure; frame (b)
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displays the posterior estimates of loadings for those gene-factor pairs that pass this threshold, i.e.,

α̂g,j = E(αg,j |αg,j 6= 0, x1:n)I(π̂g,j > θ). These figures give a useful general impression of the

relative sparsity/density of factors as well as the cross-talk in terms of genes significantly linked to

multiple factors, and highlight the nature of the model.

In this example the estimated latent factors labelled 1,2,4 and 5 are founded by known ER

related genes and have a number of genes known to be linked to the ER pathways with significant

loadings. Factor 1 is a primary ER factor and strongly associated with the protein IHC assay

for ER status (see Figure 5); factors 2,4 and 5 contain highly loaded genes know to relate to the

ER gene pathways but do not seem directly related to the IHC measure. Factor 3 is founded by

the primary sequence probe on the Affymetrix array for HER2/ERB-B2. The Affymetrix array

has three separate probe sets with DNA oligonucleotides representing different sections of this

gene, that has historically been referred to as both ERB-B2 and HER2, and this factor picks up co-

variation in the three along with a small number of other genes (12 at the threshold of π̂g,j > 0.99),

defining what we can therefore label the HER2 factor. Table 1 lists a few of these as well as

few of the “top genes” on some other selected factors; these genes simply score most highly in

terms of (absolute values of the) estimated factor loadings among all genes exceeding the 0.99

threshold on loading probabilities. All genes listed are known to be regulated by, co-regulated

with, interactive/synergistic with, or, from prior experimental studies, co-expressed with ER for

factors 1 and 5, and with HER2 for factor 3. These genes, and many others in the key ER related

factors this analysis identifies, have been earlier identified and discussed in, for example, our prior

studies of ER expression variation (Spang et al., 2001; West et al., 2001; Huang et al., 2003) as

well as by other authors. Factor 5 is loaded on a very small number of ER related genes, led by

the transcription factor TFF3 that is known to be estrogen responsive or associated with ER status;

the emergence of this additional ER related factor indicates potential connections into the TFF3

related signalling pathway. In the list for Factor 1 we include some of these that are lower loaded

though still significant. These include some specific genes – implicated in this primary ER factor –

that are noted in further discussions below. Some of these arise in Factor 8; this factor has very few

significantly loaded genes, and the top three here are all sequences from the Cyclin D1 gene – the

Affymetrix array has three separate probe sets with DNA oligonucleotides representing different

sections of Cyclin D1, and this factor picks up co-variation in the three along with a small number
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of other genes, defining what we label a Cyclin D1 factor in the same way that we identify several

ER factors and a single HER2 factor based on gene membership and what is known about some of

the top genes in each factor. We return to discuss the Cyclin D1 factor – its biological connections

and how it highlights some of the discovery utility of this modelling approach – below.

5.3 Factor Variation, Decompositions and Interactions

Exploring plots of estimated latent factors across samples can provide useful insights into the

nature of the contributions of the factors to patterns of variation in expression gene-by-gene and

also relationships across genes. For example, Figures 3 and 4 provide some such plots that add to

the discussion above of the ER factor structure in the data set and also the utility of this form of

analysis in revealing interacting pathways. Factors are plotted only in cases of significant gene-

factor association (π̂g,j > 0.99), so that these figures indicate highly significant attribution of

expression fluctuations to identified factors. Focus initially on the two upper frames of Figure 3;

these represent two versions of Cyclin D1. The corresponding estimates of gene-factor loadings

α̂g,j are approximately as follows: for gene PRAD1, loadings of 0.53 on the ER factor 1 and

0.83 on the Cyclin D1 factor 8; for gene BCL-1, 0.54 on the ER factor and 0.81 on the Cyclin

D1 factor. The agreement is clear: Cyclin D1 expression fluctuations are, up to residual noise

and the components labelled c3 and c2 to be discussed below, described by these two factors in

an approximate 5:8 ratio. This is a nice example not only of the agreement between factor model

decompositions for what by design should be highly related expression profiles, but also consonant

with known biology. Cyclin D1 is a regulatory component of the protein kinase Cdk4 and, together,

they mediate the phosphorylation and inactivation of the Rb protein. Thus, its activity is required

for cell cycle transitions and control of growth and proliferation. It is known (Sabbah et al., 1999)

that ER directly binds to the CCND1 gene which encodes the Cyclin D1 protein; this can promote

cell proliferation in target tissues by stimulating expression of Cyclin D1 and thus progression of

the cell cycle. This has been observed in a number of ways including the inhibition of Cyclin D1

indirectly through the application of the estrogen targeting drug tamoxifen (Kilker et al., 2004).

The relationship has feedback through the regulation of ER itself by Cyclin D1; for example,

Cyclin D1 also acts to antagonize BRCA1 repression of ER (McMahon et al., 1999; Wang et al.,

2005). There are further experimentally defined interactions between Cyclin D1 and ER – with
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consequences for the resulting levels of activation of each of the two pathways – as reviewed in

Fu et al. (2004). Hence the description of Cyclin D1 expression fluctuations via a non-ER related

cell cycle component (factor 8) together plus a significant ER related component is consonant with

known regulatory interactions between the cell cycle/Cylin D1 pathway and the ER pathway; the

factor analysis reveals and quantifies these interactions.

In the lower frame of Figure 3 the third Cyclin D1 gene probeset, CCND1, shows substantial

association with the ER and cell cycle Cyclin D1 factors, as expected; the estimated loadings are

somewhat reduced relative to those of the other two probesets, at about 0.45 for the ER factor

and 0.73 for the cell-cycle factor relative to the 0.5/0.8 levels of the other two probesets. CCND1

shows additional significant association with latent factor j = 4 with an estimated coefficient of

0.24. Though not apparently related to the ER IHC response (unlike factor 1), factor 4 is loaded

on genes that include several ER related genes and other cyclins. The founder variable for factor

4 is the LIV-1 gene that also scores highly on the primary ER factor 1. LIV-1 is well-known to be

regulated by estrogen and is coregulated with estrogen receptor in some breast cancers, though not

apparently in some other cancers. Factor 4 may reflect more complexity of the interactions between

the ER and early cell-cycle pathways. The CCND1 gene probeset shows significant association

with this factor though the practical contribution of factor 4 to expression levels of CCND1 is

relatively small compared to that of the others. Finally, CCND1 is also related to latent factor

j = 10; we discuss this factor further in the following section.

This example of three Cyclin D1 probesets highlights differences in data measured in differ-

ent ways on a single gene, and the need to consider questions of robustness and data quality in

measurement of mRNA levels; the third frame indicates some concern about the measurements

for CCND1 in the early samples, transferred to the residuals for this probeset. One strength of

the model is the realistic attribution of substantial levels of variation in expression data to residual,

unexplained terms. In many cases, purely experimental artifact and noise can be evident concor-

dantly across multiple genes; the sparse factor and regression model can then be effectively used to

protect estimation of biological effects from such contamination, as we now discuss and exemplify.
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5.4 Exploration of Factors and Artifacts in Microarray Data

Gene expression data measurements are often quite sensitive to small changes in the experimental

conditions and can show evidence of variation that is purely experimentally derived rather than

representing biological variation of interest. We have previously introduced the use of sparse re-

gression terms in which the covariates are summary measures of so-called housekeeping or control

gene data (Lucas et al., 2006a,b). With Affymetrix arrays, as used in this example study, we use

the principal components of sets of between 60-100 housekeeping gene probesets as readouts of

such assay artifacts. These measures are designed to produce mRNA expression levels that show

little or no biological or hybridization variation across samples, so that concordant patterns in these

genes that define systematic variation through dominant principal components are potential artifact

correction terms. Experience across multiple studies has demonstrated that, indeed, substantial as-

say artifacts can be identified this way, and that, typically, variation over samples in some of the

dominant housekeeping correction factors can be reflected in multiple genes of interest. Contami-

nation by assay artifact is usually sporadic, affecting multiple genes but by no means all, and hence

the immediate relevance of the sparse regression components of the model.

In this analysis the first five components of the expression measures on the housekeeping genes

were used in this way. In the upper two frames of Figure 3 we see that, in addition to the significant

associations with the ER and Cyclin D1 factors, the sister PRAD1 and BCL-1 probesets shows

significant association with, respectively, control factors 3 and 2 indicated by the labels c3 and

c2. The levels of contribution of these systematic bias predictors are rather small, but they are

nevertheless significant in that the corresponding estimated probabilities π̂g,j for these genes g and

their corresponding control covariates j are very high. Other genes are contaminated by assay

artifact appearing in control factors 1-5 though the first three dominate; for some genes – unlike

these two – the practical effect is much greater and the model does an effective job of artifact

correction. Without correction, the potential for false discovery and misleading inferences can be

substantial, as illustrated in sparse ANOVA model examples in Lucas et al. (2006a,b).

Experimental artifacts and induced variation across samples reflected in multiple genes can

also be picked up by latent factors. The housekeeping gene data can and routinely does prove

very useful in predicting artifacts, but additional systematic variation that can be linked back to

batch effects, sets of samples processed in different labs or under slightly different conditions at
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different times, for example, can often be quite substantial and impact in complex ways on many

genes. Analysis that allows latent factors to be included in the model because collections of genes

show evidence of common components of structure across samples has the ability to soak-up non-

biological variation of this kind. This is a strength of the sparse factor modelling approach: they

can confer robustness, protecting the estimation of biologically interesting structure.

One relevant example here concerns the probeset of the primary ER gene itself; see the first

frame of Figure 4. The ER gene is naturally significantly loaded on the primary ER factor 1,

but has a much lower estimated loading than other ER related genes, and shows significant as-

sociation with the second putatively ER-related factor 2. The other two factors apprearing with

significant loadings for ER itself are factors 7 and 10, the latter also loaded for CCND1 as men-

tioned above. Review of the genes substantially linked to factor 10 have not yielded biological

connections and we regard it as representing modest levels of experimentally induced variations

in a number of genes. The same conclusion applies to factor 7, but much more forcefully and

transparently. First, quite a few genes show somewhat increased volatility in expression fluctua-

tions over the first 30-40 samples; the samples are ordered temporally and the early samples were

processed in a more rapidly evolving laboratory context – as the new Affymetrix technology was

refined – than later samples, consistent with the view that increased artifactual effects might be

expected. Second, these breast samples are comprised of three distinct studies, and there are two

apparent step-changes in the plot of the estimated factor 7 over samples that demark these three

groups of samples; the very clear step-changes at or about n = 138, the end of the samples from

the first study, and a second though less abrupt change at or about n = 212, the end of the second

study. The housekeeping gene-based artifact correction covariates partly pick-up and correct for

study effects in many genes, but apparently there is more systematic study effect evident in the

data and this factor 7 is very clearly describing such structure that, by definition, must impact on a

set of genes. With respect to this ER gene itself, this exemplifies how the factor model can protect

estimation of biological structure – the ER factors and the attribution and quantification of their

relationships with this gene – in the context of substantial contaminating noise.
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5.5 Response Factors and Expression Signatures of Hormonal Status

Figure 5 scatters the samples on the estimated values of ER factor 1 and HER2 factor 3, with colour

coding by the measured IHC assays for ER and HER2. In these figures we see the biologically

interpretable groupings – naturally with much overlap – of breast tumours into ER+/HER2−,

ER−/HER2− and HER2+ as designated by the broad IHC-based protein assay for hormonal

status. Gene expression signatures, as defined here solely by these two primary latent factors

linked to these hormonal pathways through significantly loaded genes, are capable of refining the

ER and HER2 scales and placing each tumour on the biologically relevant continuum.

The model of course includes the binary ER and HER2 responses and two response factors for

them. The model has p+2 entries in xi, the final two being the linear predictors in probit regressions

for ER and HER2, respectively. Figure 6 illustrates the overall signatures of ER and HER2 in terms

of the probit transforms of the posterior means of the linear predictors. The posterior turns out to

strongly favour only rather modest additional predictive value in the gene expression data beyond

that captured by the k = 10 latent factors; that is, the posteriors for the response factor loadings

elements αg,j for g = p+ 1, p+ 2 and j = 11, 12 are almost all very concentrated at zero. There

are a few genes that contribute significantly to the ER response prediction over and above the ER

latent factors (8 genes at π̂g,j > 0.99), but none do so for HER2 prediction; this can be seen in

the images in Figure 2. For ER, it is notable that a further key signally receptor gene is significant

and most highly loaded on the ER response factor; this is the HER3 gene, known to play roles in

the development of more highly proliferative cellular states in breast cancers (Holbro et al., 2003)

as well as biochemically partnering with HER2 in promoting cellular transformation. The top two

genes loaded on the ER response factor are the two probe sets for HER3 on the Affymetrix array.

One of these is displayed in the right frame of Figure 4, where the significant association with the

primary latent ER factor 1 along with the ER response factor (labelled y1) is clear. Note also that

this probeset for HER3 also loads significantly on the artifactual factor 7, as does the ER gene, and

the assay artifact covariate c2. Though not displayed, the second probeset for HER3 has a fitted

decomposition that is almost precisely the same in terms of the split between contributions from f1

and y1, though is not apparently significantly linked to the artifactual factors. As with Cyclin D1,

this is an example of different probesets for one gene – here HER3 – that can behave somewhat

differently in terms of expression read-outs. The model analysis nevertheless identifies and extracts
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the commonalities. The posterior estimates α̂g,j for the two HER3 probes on the ER+/− response

factor 1 are each approximately −0.51, those on the primary ER latent factor 1 are approximately

0.46 and 0.47. Thus, the sparse factor model analysis clean-up the artifacts to find and quantify the

relevant associations with biologically interpretable and predictive factors.

5.6 Non-Gaussian Factor Structure Linked to Biology

The relevance of the non-Gaussian model for latent factor distributions is quite apparent from

the plots in Figure 5. Other pairwise scatter plots suggest elliptical structure for some factor di-

mensions, though the full joint distribution is evidently highly-non-Gaussian. The biologically

interpretable groupings are identified by the use of the non-parametric model that is designed to

flexibly adapt to what can be quite marked non-Gaussian structure.

Non-Gaussianity in the factor model naturally feeds through from the observed non-Gaussian

structure observed in expression of many genes individually and in subsets. This can be highlighted

in prediction, one aspect of which is in connection with subjective exploration of aspects of model

fit. The posterior distribution for the Dirichlet process model for latent factors is easily simulated,

so that we can easily simulate from the posterior predictive distribution of a future latent factor

vector λn+1; this leads to easy simulation of the approximate prediction distributions for future

outcomes xn+1 by fixing model parameters in the loadings and noise variance matrices at posterior

estimates. (The more formal technical method is to fit the model with explicit inclusion of the

sample xn+1 treated as a missing value that is imputed in the overall MCMC, though we have

not yet implemented this). Suppose a specific gene g is, based on the posterior from the model

fitted to x1:n, clearly not associated with the regression component; that is, the posterior for the

regression parameters βg is highly concentrated around 0. For such a gene, all the action is in the

latent factor component, so that simulating the posterior predictive distribution for λn+1 translates,

via the addition of simulated noise terms νg,n+1, directly to predictions for xg,n+1.

This was done for this analysis, and the graphs in Figure 7 simply select two of the bivariate

margins involving four genes for which the posterior shows high association with one or more

factors and no association with regression or artifactual effects. These are the HER2/ERB-B2 gene

already discussed and the ER-related FOXA1 in the first frame, and the two genes TFF3 and CA12

highly related to ER, in the second frame. The predictive simulation generates large samples of
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the full joint distribution of all genes in the model and the samples on these two selected bivariate

margins are simply contoured for presentation. The actual data on these genes is scattered over the

contours, and the concordance is some reflection of model adequacy – at least in these dimensions.

Sequencing through many such plots provides a useful global assessment of overall model structure

and at least some guide to genes for which the model may be lacking. These kinds of plots also

again highlight the relevance of the non-Gaussian factor model structure that feeds through to

represent the observed non-Gaussianity of observed expression gene by gene.

6 Evolutionary Stochastic Model Search

The analysis discussed above uses a model defined by a process of evolutionary stochastic model

search and refinement that has been developed to address variable (gene) selection, choice/limitation

on the number of factors and the specification of the order of the first k founding variables in the

model. This model search method is heavily inspired by the interest in evaluation of patterns of

expression of genes linked to an pathway study – such as the exemplified ER pathway – and we

have used it in a number of recent studies. The method is of course of general interest and utility

in other application areas, though we describe it here in this pathway exploration context.

Directly specifying and fitting models with large numbers of variables p and factors k is a chal-

lenge statistically and computationally. In applied contexts such as biological pathway exploration,

attempting to fit models to all the available variables (genes) would in any case be misguided sci-

entifically. In the breast cancer study above, scientific goals include developing further insights

into the genes and proteins that play roles in two key hormonal and cell proliferative processes

linked to cancer. There are two main parts to this. The first is to enrich the understanding of gene

expression patterns describing relationships among genes already known or hypothesised to partic-

ipate; evaluating sparse factor models with the notion of factors representing aspects of dissected

pathway structure on defined sets of genes in then useful. The second is to enrich the biological

understanding by identifying additional factor structure and drawing in additional genes that link to

the known biology; that is, using factor models to generate additional latent factors and expanded

sets of genes linked to them, while maintaining a focus on the “neighbourhood” of the initial bio-

logical pathways of main interest. Fitting models to all the genes, or very many, with a discovery
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intent – were it even possible – would be misguided due to the complexity of patterns of variation

in high-dimensions that would dominate and obscure the structure at the restricted pathway level.

Rather, an appropriate view is to start with an initial set of biologically relevant genes and

then expand the model by adding in new genes that appear to be linked to the factors identified in

the initial model, and then refitting the model to adapt by expanding the number of factors if the

new variables suggest additional structure. Repeating this process to iteratively refine the model

underlies our evolutionary model search.

The technical key is to note that, given an initial set of p0 variables and a model denoted by

M0 with k0 latent factors, we can view the model as embedded in a larger model on all p >> p0

variables and k > k0 factors and in which the extended matrix of loadings probabilities has πg,j =

0 for g > p0 and k > k0. Within this “full” overarching model, consider any of these variables

g > p0 and ask if it should be added to the current model with a single non-zero factor loading

on, say, latent factor j ∈ 1 : k0. Based on model parameters fixed at their posterior means based

on the current model, we can then compute, approximately, the conditional posterior probability

of inclusion, i.e., just π̃g,j = Pr(αg,j 6= 0|x1:n,M0) where M0 in conditioning simply stands

for the current model and estimated parameters (note that we use π̃g,j compared to π̂g,j to denote

these inclusion probabilities for variables currently not included in the set to which the model

is fitted). Variables g with high values of π̃g,j are candidates for inclusion – these are variables

showing significant associations with one or other of the currently estimated factors, and so provide

directions for model expansion around the currently identified latent structure. We can then rank

and choose some of these variables – perhaps those for which π̃g,j > θ for some threshold or, more

parsimoniously, a specified small number of them – and refit the model.

Expanding the set of variables may identify other aspects of common association that suggest

additional latent factors; enriching the sample space provides broader exploration of the complexity

of associations around the initial model neighbourhood. This promotes exploring an expanded

model M1 on the new p1 > p0 variables and with k1 = k0 + 1 latent factors for which the first k0

variables remain ordered as under M0 – the factor founders in M0 are those of the first k0 factors

in M1. We can then refit M1 and continue. This raises the question of the choice of the variable

k1 as founder of the new potential factor. We address this by fitting the model with some choice

of this variable – perhaps just a random selection from the p1 variables in M1; from this model we
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generate the posterior probabilities π̂g,j and choose that variable with highest loading on the new

factor j = k1. Then model M1 is refitted with this variable as founder of the new factor, assuming

that these probabilities are appreciable for more than one or two variables.

Algorithmically, the evolutionary analysis proceeds as follows:

• Initialise a model M0 and i = 0. For i = 0, 1, . . . , do the following:

• Compute approximate variable inclusion probabilities π̃g,j for variables g not in Mi and

relative to factors j = 1 : ki inMi. Rank and select at most r variables with highest inclusion

probabilities subject to π̃g,j > θ for some threshold. Stop if no additional variables are

significant at this threshold.

• Set i = i + 1 and refit the expanded model Mi on the new pi variables with ki = ki−1 + 1

latent factors. First fit the model via MCMC with a randomly chosen founder of the new fac-

tor, and then choose that variable with highest estimated π̂g,ki
as founder; refit the model and

recompute all posterior summaries, including revised π̂g,j . Reject the factor model increase

if fewer than some small prespecified number of variables have π̂g,j > θ, then cutting back

to ki−1 factors. Otherwise, accept the expanded model and continue to iterate the model

evolutionary search at stage i+ 1.

• Stop if the above process does not include additional variables or factors, or if the numbers

exceed some prespecified targets on the number of variables including in the model and/or

the number of factors.

This analysis has been developed and evaluated across a number of studies, and offers an effective

way of iteratively refining a factor model based on a primary initial set of variables – the nucleating

variables – of interest. Computational efficiencies can be realised by starting each new model

MCMC analysis using information from the previously fitted model to define initial values. Control

parameters include thresholds θ on inclusion probabilities for both variables and additional factors

at each step, a threshold to define the minimum number of significant variables “required” to add

a new latent factor, and overall targets to control the dimension of the final fitted model – specified

maximum number of variables to include out of the overall (large) p, and (possibly) a specified

maximum number of latent factors.

The analysis of Section 5 used this approach, starting with a k0 = 2 factor model for p0 = 14

initial genes chosen based on known function in the ER and HER2 pathways. The evolutionary
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search immediately identified initial ER and HER2 factors atM0, and then iteratively added in new

variables known to be related to ER and HER as the model was revised. The final model, replete

with hormonal and growth pathway genes, reflects the ability of the evolutionary search analysis to

explore and refine the initial pathway description and, as the discussions of Cyclin D1 and HER3

illustrate, discover interconnections with other known interacting pathways.

It should be remarked that, at any “final” model MI , say, we have available the computed

values π̃g,j for all variables g not included in MI . Thus, again, the model MI can be viewed as

embedded in a model for the full set of p variables, and these π̃g,j can be accessed to further

explore predicted variable-factor associations between currently identified factors and all variables

outside the model. In the breast cancer hormonal study, for example, the evolutionary process

was controlled to terminate once the dimensions exceeded 10 latent factors and 250 variables, but

the predictions indicate additional variables potentially significantly related to several of the ER

factors that, were the process to be continued, could be drawn into an expanded description. In

this sense, the images displayed in Figure 2 are only part of the full story; the full images on

several thousand genes and just these 10 factors include additional variables with high values of

the predicted loadings on these factors, but are otherwise far sparser since many of the remaining

thousands of genes are simply not related to the biological pathways these factors characterise.

7 Breast Cancer Genomics #2: The p53 Pathway and Clin-

ical Outcome

7.1 Goals, Context and Data

A second application in breast cancer genomics explores gene expression data from a study of

primary breast tumours described in Miller et al. (2005). One original focus of this study was the

patterns of tumour-derived gene expression potentially related to mutation of the p53 gene, and we

explore this and broader questions of pathway characterisation and expression-based recurrence

risk prediction using sparse factor regression models. The p53 transcription factor is a potent

tumor suppressor that responds to DNA damage and oncogenic activity. The latter is seen in

the connection of the p53 pathway to the primary Rb/E2F cell signalling pathway (Figure 1).
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The consequences of p53 activation, either by oncogenic events or DNA damage, is an arrest of

the cell cycle or an induction of cell death (apoptosis). Hence the use of models to characterise

and discover factor structure in expression patterns that may relate to known, putative or novel

connections between these pathways is certainly of current interest. Mutations in p53 occur in

roughly 50% of human cancers. Multiple direct mutations lead to deregulation of key aspects of

the p53 pathway and thus play roles in raising risk and aggressiveness of cancer due to the inability

to properly program cell death, among other things. A number of current anticancer therapies

target the p53 pathway as a result. The limited efficacy of such therapies is another motivation for

studies that enrich our understanding of the biological interactions in the Rb/E2F/p53 network and

that aid in characterising functional interactions of signalling mechanisms central to the control of

cell proliferation and oncogenic processes.

This data set (Miller et al., 2005) comprises expression profiles on RNA extracted from n =

251 primary breast tumours. The expression profiles were created on Affymetrix u133a+ microar-

rays which, after RMA processing and screening to identify genes (probesets) showing non-trivial

variation across samples, generates about p = 30, 000 genes for the analysis here. Coupled with

the expression data are clinical and genetic information on each patient. In each patient the p53

gene was sequenced for mutations at a number of loci, so generating one initial key binary vari-

able: p53 mutant versus wildtype (no other mutational information was made available). Clinical

and pathological information includes recurrence survival and the usual binary ER status from IHC

assays. Miller et al. (2005) aimed to identify a gene expression signature associated with p53 mu-

tational status; the concept under investigation was that such a signature would better represent

perturbations in the p53 pathway and could be use as a refined clinical risk predictor in the same

way that expression signatures of ER, HER2 and so forth will provide improvements over IHC

assays. With this in mind, we have developed a detailed sparse factor regression analysis to thor-

oughly explore gene expression patterns linked to the broader p53 pathway and its neighbourhood

connections to other pathways. Our final analysis seems to effectively dissect p53 activation into

latent factors that represent core aspects of known underlying biology, identifies p53 related factors

that are unrelated to mutations as well as others that are, suggests new pathway connections that tie

into cell developmental activities in the Rb/E2F pathways, and also contributes through the factor

regression component to rather more accurate recurrence risk prediction.
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7.2 Factor Model Analysis and Latent Structure Linked to p53

The starting point for our analysis is a set of 25 genes known to participate in the p53 pathway

(Sherr and McCormick, 2002). The model includes 3 response variables: the binary p53 muta-

tional status, the binary ER status, and the continuous, right censored log of time to death. The

MCMC analysis easily incorporates censoring of the continuous response, imputing the censored

survival times from relevant conditional distributions at each iteration (see subsection 2.3). The

evolutionary model search allows the model to evolve and sequentially include genes related to the

factors in any current model – beginning with this known nucleating set of p53 related genes – as

well as genes associated with the response factors in the current model. Hence the analysis can

simultaneously explore sub-branches of the p53 pathway while identifying its connections to the

outcomes of interest; that is, the regression variable selection process is part of the evolutionary

analysis. Using thresholds of θ = 0.75 for both variable and factor inclusion probabilities, and

constraining such that a minimum of 3 genes are required to exceed this threshold on a factor to

include that factor in an expanded model, the analysis terminated with a model on 1,010 genes

distributed across k = 12 latent factors and q = 3 response factors.

Exploration of genes significantly and highly loaded on each factor provides some detailed

annotation of common biological function, and potential interpretations of some of the factors in

terms of biology driving the activities of pathway components. All factors have ”top genes” that

are known to be associated with cell cycle and oncogenic activity. Table 2 presents a summary

of some of the top gene-factor pairings, with comments on their association with the two binary

responses ER positive/negative and p53 mutant/wildtype. Relevant aspects of factor variation over

samples and are displayed in Figures 8 and 9.

Of the genes in the p53 expression signature of Miller et al. (2005), our factor model identifies

all but two and they all have significant loadings on the p53 factors 1, 3 and 4. The exploration

of the p53 pathway guided by the mutational status combined with a set of canonical p53 genes

also gives us the opportunity to identify other instances of the pathway that are not affected by

mutations. This expands our understanding of alternative ways, other than mutation, in which p53

activity may be affected in cancer processes. To illustrate this we select three genes known to

be key players in the p53 pathway: BAX, PERP and SFN. Miller et al. (2005) observe that the

expression profiles of these genes do not relate to p53 mutations, raising the question that this
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might represent cross talk between p53 and other oncogenic pathways. In our analysis, these genes

are significantly loaded on factors 2 and 10; these two factors are not apparently directly associated

with p53 mutation status, nor do they contribute significantly to p53 binary regression prediction

in the analysis; but, they are composed primarily of genes that participate in cell developmental

and apoptosis, hence do reflect substructure in the p53 pathway.

7.3 p53, ER and Recurrence Prediction

Table 3 summarises the estimated probabilities and coefficients of the most highly weighted latent

and response factors in the linear predictors of the three response variables. Additional predictive

value is generated by the included response factors that linked in a number of genes to elaborate

on the predictions from the expression factors themselves, and Table 4 provides some information

on a few of the top genes of the response factors. It is of interest to explore the genes most highly

defining the factors that are implicated in prediction. Miller et al. (2005) note that p53 wildtype and

mutant tumours can be distinguished by molecular differences heavily influenced by three major

gene clusters comprising genes involved in immune response, proliferation and estrogen response,

respectively (Figure 5 of supplemental material of Miller). All of the genes listed in these published

clusters appear in our model in factors 1 and 3 (that we annotate as ER factors), factor 4 (that we

annotate as a proliferation/p53 factor) and factor 6 (that we annotate as an immunological response

factor). Each of these listed factors is directly associated with p53 status as evidence in Figures 8

and 9. A few examples of relevant genes in each of these factors are displayed in Figure 10 using

the gene-factor decomposition format presented earlier.

The predictive uses of the model, and some informal predictive evaluations, are highlighted

in Figures 11 and 12. The model analysis summarised was in fact based on fitting to a randomly

selected 201 samples as training data, treating the remaining 50 as test or validation samples to be

predicted. Figure 11 provides some indication of the within-sample discrimination for the two bi-

nary responses, p53 and ER, together with the out-of-sample predictive discrimination. Evidently,

the combined factor regression model is capable of quite accurate prediction of both ER and p53

mutational status; these predictions are based on the integration over a few latent factors rather than

a single direct signature, a point that the clinical genomics community has often, perhaps, under-

valued in studies to develop genomic prognostics (Huang et al., 2003; Pittman et al., 2004; West
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et al., 2006). The mutational outcome itself is certainly too complex, in terms of the apparent asso-

ciations with multiple factor signatures in Figure 8, to be so accurately discriminated and predicted

based on a single linear weighted signature of a set of genes. Figure 12 provides similar insight into

the nature of the predictions for cancer recurrence, displayed in a format consistent with the use of

expression signatures to indicate patient stratification into risk groups (Huang et al., 2003; Pittman

et al., 2004). Here the test and validation samples, separately, are split by thresholds on the linear

predictor of the survival regression on factors. The concordance between the resulting displays for

test and training data is excellent and support the statistical validity of these model predictions; the

potential practical relevance lies in the fact that these predictions are substantially more accurate

than those based on stratification purely by p53 status as is currently commonly used.

The exploration of the p53 pathway guided by both mutational status and transcriptional ac-

tivity of genes known to be associated in the biological process of interest is a key strategy in the

generation of new biological hypothesis to be further examined. In this analysis, one of the factors

with direct association with p53 (factor 7) and labeled as a cell development factor had a series

of genes related to the RAS pathway through oncogenes FOS and JUN; see Figure 1 where the

RAS/FOS-JUN pathways are linked to the Rb/E2F network. This discovery of significant gene

expression factor structure linked to the complex p53 pathway suggests a connection between two

very important branches of the major cell signalling network, raising questions to be explored and

highlighting the potential discovery uses of this analysis.

8 Closing Comments

Sparsity of model structures and parametrisations is fundamental to scaling of scientific models

to the higher-dimensional problems that are becoming common in many areas. Gene expression

genomics, with the studies exemplified here becoming more and more common, is one currently

active such arena. Models of both multivariate distributions in high-dimensions and regression for

prediction when there are many candidate predictors yield practicable methodologies only if the

effective dimension is explicitly or implicitly reduced. Sparsity – in terms of low-dimensional re-

lationships underlying high-dimensional patterns of association of many variables and defined via

parametric and conditional independence constraints – is key to this reduction. We have demon-
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strated some of the potential utility of sparse factor models and factor regression models in these

applications, and are utilising this approach in a number of related studies in cancer genomics as

well as non-cancer areas.

The breast cancer genomics applications here illustrate a range of uses of the sparse factor

modelling framework. Key elements of the model framework include: the use of new sparsity-

inducing prior distributions over factor loadings and regression coefficients alike, with the ability

to more adequately screen out insignificant variable-factor pairings and highlight – with quantita-

tive probabilistic assessments – associations of interest; the isolation of idiosyncratic noise terms;

the coupling of response prediction with factor analysis in an overall framework; the ability to han-

dle missing or censored responses, and missing data in the multivariate outcomes x space itself; the

integration of non-Gaussian, non-parametric factor components that are practically relevant in re-

flecting structure in common underlying patterns and their implications for non-Gaussian marginal

data configurations in x space, among others. Key elements of the model fitting and analysis frame-

work include: the implementation of efficient MCMC methods for analysis of a specified model;

the use of evolutionary stochastic search methods for model extension based on an initial specified

set of variables; and the investigation of model implications through evaluation and visualisation

of variable decompositions, and others.

Beyond extensive development of applied studies in a number of genomics applications, there

are a number of currently interesting statistical and computational developments. These include in-

vestigations of the connections between the evolutionary stochastic model search approach and re-

lated search methods, including projection pursuit methods and also the shotgun stochastic search

approach for regression variable selection (Hans et al., 2007) that has seen success in graphical

modelling (Dobra et al., 2004; Jones et al., 2005) and a range of prognostic applications in ”large

p” regression variable uncertainty problems in gene expression genomics (Rich et al., 2005; Dress-

man et al., 2006). Additional, topical investigations include: extensions of the Dirichlet process

latent factor model; investigations of non-linear variants of the overall framework utilising kernel

regression methods; and related studies of theoretical aspects of this approach to joint distribu-

tional modelling in prediction problems that link to the use of unlabelled data (Liang et al., 2007).

Further development and refinement of the software used for all analyses here, and that is available

to interested readers (see Appendix B below), are also in process.
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Appendix A: Elements of Configuration Sampling for Factors

Conditional on the data and all other model parameters, set ei = xi − µ − Bhi so that the model

(1) can be re-expressed as a linear regression ei = Aλi + νi, where the matrix A and the variance

matrix Ψ of the errors νi are fixed at the current values at each MCMC iterate. With λi ∼ F

independently, and F ∼ Dir(α0F0), this is special case of the regression and hierarchical model

framework of Dirichlet mixtures as in West et al. (1994) and MacEachern and Müller (1998). The

standard and efficient configuration sampling analysis for resampling the λ1:n uses the following

steps at each of the MCMC iterates.

1. Step 1: Resampling configuration indicators. For each i = 1, . . . , n in sequence, do the

following:

• Remove λi from the set of currently assigned factor vectors, leaving the set of n − 1

vectors in λ−i. This current set of simulated factor vectors λ−i is configured into some

s ≤ n− 1 groups with a common value within each group. Denote the s distinct factor

vectors by θ1:s = {θ1, . . . , θs} and the configuration indicators cr = j to indicate that

λr = θj for r = 1, . . . , i − 1, i + 1, . . . , n. Write nj for the number of occurrences of

θj in λ−i, i.e., nj =
∑n

r=1,r 6=i δj(cr).

• The complete conditional posterior for λi is the mixture

(λi|−) ∼ qi,0N(λi|mi,M) +

s
∑

j=1

qi,jδθj
(λi),

so that λi equals θj with probability qi,j , otherwise it is sampled anew fromN(·|mi,M)

with probability qi,0. These moments and probabilities are as follows:

– mi = MA′
Ψ

−1ei and M−1 = I + A′
Ψ

−1A
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– qi,0 ∝ αN(ei|0,AA′ + Ψ) and, for j = 1 : s, qi,j ∝ njN(ei|Aθj ,Ψ), where the

notation N here denotes the evaluated multivariate normal densities.

Draw a new configuration indicator ci from 0 : s using the probabilities qi,0:s. If ci = 0,

sample a new value λi ∼ N(λi|mi,M).

2. Step 2: Resample unique factor vectors. Following Step 1, the full set of resampled con-

figuration indicators defines a set of (some final number) s conditionally independent linear

regressions: for each group j = 1 : s, the “data” in group j is the set of nj observations

ei ∼ N(ei|Aθj ,Ψ) such that ci = j. Resample the unique factor vector θj of each group j =

1 : s from the implied conditional posterior N(θj |tj , Tj) where tj = TjA′
Ψ

−1
∑

i:ci=j ei

and T−1

j = I + njA′
Ψ

−1A.

Appendix B: Software

Efficient software implementing the MCMC and evolutionary stochastic search for the full class of

sparse Bayesian factor and regression models is available to interested readers. The BFRM code

implements the analysis in the framework of sparse latent factor models coupled with sparse re-

gression and ANOVA for multivariate data, relevant in many exploratory and predictive problems

with high-dimensional multivariate observations as well as the kinds of biological pathway stud-

ies of the applications here. The software additionally includes model components that allow for

the missing and censored data, binary, categorical and continuous responses, hold-out analyses for

predictive validation, and customisation to gene expression studies to include automatic handling

of data issues (the generalized normalisation and assay artifact correction examples here as cases

in point) that arise in all expression studies that combine data on microarrays across experimen-

tal conditions or laboratories. Interested readers can download the BFRM executable and review

instructions and examples at the web site http://icbp.genome.duke.edu/bfrm.html. Examples in-

clude studies of complex networks of intersecting biological pathways in cancer genomics as in

the studies reported here.
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(a) (b)

Figure 2: Breast cancer hormonal pathways. Skeleton of the fitted model for the 250

selected genes and 12 factors. Left frame: (binary) heatmap of thresholded approximate

posterior loading probabilities I(π̂g,j > 0.99). Right frame: heatmap of approximate

posterior means of significant gene-factor loadings α̂g,j .
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α̂g,j Gene Gene symbol

Factor 1:

1.5 Intestinal trefoil factor TFF3

1.4 Carbonic anhydrase precursor CA12

1.3 Clone AA314825:EST186646 -

1.1 Secreted cement gland protein XAG-2 homologue AGR2

1.1 Hepatocyte nuclear factor-3 alpha (HNF-3α) FOXA1

1.1 Trans-acting T-cell specific transcription factor GATA-3

1.1 Clone AL050025:DKFZp564D066 -

1.0 Breast cancer, estrogen regulated LIV-1 protein LIV-1

· · ·
0.71 Myeloblastosis viral oncogene homolog C-MYB

0.47 Human epidermal growth factor receptor HER3

0.46 Human epidermal growth factor receptor HER3

0.44 BCL-2 BCL-2

0.42 Androgen receptor AR

· · ·
0.54 PRAD1 (cyclin D) CCND1

0.53 BCL-1 (cyclin D) CCND1

0.45 CYCD1 (cyclin D) CCND1

Factor 3:

1.5 c-Erb-B2 ERB-B2

1.4 Human tyrosine kinase-type receptor (HER2) HER2b

1.4 Human tyrosine kinase-type receptor (HER2) HER2

0.93 Growth factor receptor-bound protein 7 GRB7

0.78 CAB1 STARD3

Factor 5:

1.3 Intestinal trefoil factor TFF3

1.1 Clone AA314825:EST186646 -

0.97 Clone AI985964:wr79d08.x1 -

0.45 Secreted cement gland protein XAG-2 homolog AGR2

0.18 Cytochrome b5 CYB5

0.16 Cytochrome b5 CYB5

Factor 8:

0.83 PRAD1 (cyclin D) CCND1

0.81 BCL-1 (cyclin D) CCND1

0.73 CYCD1 (cyclin D) CCND1

0.15 Cytochrome b5 CYB5

Table 1: Breast cancer hormonal pathways. Some of the genes significantly loaded on

latent factors 1,3,5 and 8 in the ER/HER2 breast cancer data analysis.
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Figure 3: Breast cancer hormonal pathways. Plot across breast tumour samples of levels

of expression (X) of the gene Cyclin D1. The upper left frame is the PRAD1/CCND1

probe set on the Affymetrix u95av2 microarray, one of the three probe sets for Cyclin

D1 on this array; the upper right frame is the BCL-1/CCND1 probeset, and the lower

frame that for the primary CCND1 probeset. Factors labelled f are primary latent factors,

c indicates assay artifact covariates, and e represents the fitted residuals. In each of three

frames, the plotted gene expression, factor and residual levels are on the same vertical

scale within the frame, so indicating the breakdown of the expression fluctuations for

Cyclin D1 gene probesets according to contributions from the factors. Factor 1 is the

primary ER factor, and factor 8 a factor defined by the three probe sets for Cyclin D1, as

discussed in text.
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Figure 4: Breast cancer hormonal pathways. Plot across breast tumour samples of levels

of expression (X) of the estrogen receptor (ER) gene and of the HER3 epidermal growth

factor receptor tyrosine kinase, together with the estimates of factors contributing signif-

icantly to their expression fluctuations. Factors labelled f are primary latent factors, y

indicates response factors, c indicates assay artifact covariates, and e represent the fitted

residuals, and other layout details are as in Figure 3.

Figure 5: Breast cancer hormonal pathways. Scatter plot of the posterior means of des-

ignated ER factor 1 and HER2/ERB-B2 factor 4. Colour coding indicates the global mea-

surement of protein level from IHC assays – Left frame: red ER+, blue ER−, magenta

missing, cyan indeterminate. Right frame: red HER2+, blue HER2−, magenta missing,

cyan indeterminate.
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Figure 6: Breast cancer hormonal pathways. Scatter plot of fitted probabilities of ER+
and HER2+ from the overall factor regression model that includes probit components for

these two binary responses. Color coding indicates hormonal receptor status as, in each

case: red +, blue −, magenta missing, cyan indeterminate.

Figure 7: Breast cancer hormonal pathways. Plots display the approximate predictive

density contours and observed data for two selected bivariate margins on four genes –

HER2/ERB-B2 and the ER-related FOXA1, TFF3 and CA12 – with the observed data

marked as crosses.
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Factor Top Genes Function p53 Status

1 CA12, TFF3, GATA3, ER Yes

SPDEF, FOXA1

2 PERP, E2F3, EP300, cell development, No

BAX, RB1 apoptosis

3 ESR1, SCUBE2, NAT1, ER Yes

BCMP11, MAPT

4 TOP2A, ASPM, CDC2, cell development, Yes

RRM2, BUB1B apoptosis

5 ASPN, COL5A2, COL10A1, No

COl3A1, COL6A2

6 CCL5, CXCL9, CXCL13, Immunoregulation Yes

LTB, TRGC2

7 FOS, JUN, EGR1, cell development, Yes

EGR3, ATF3 apoptosis

8 KRT14, KRT17, KRT5, No

KRT6B, SFRP1

9 COL12A1, LTB4DH, CSPG2 No

MYC, RRM1

10 CDKN2A, SFN, SCUBE2, cell development, No

CXCL10, BCL2 apoptosis

11 AFF3, VTCN1, CPEB2 No

ENO2, PERP

12 CAV1, GPR116, TGFBR2 No

CAV2, PLVAP

Table 2: Breast cancer p53 study: Biological annotation for the latent factors defined by

the model analysis. The p53 status column simply refers to the direct association between

p53 mutational status and the posterior mean of the factor scores in a univariate model.

See Figures 8 and 9 for some detailed investigation of the variation in factor levels across

samples, and of their visual associations with the two binary ER (positive/negative) and

p53 (mutant/wildtype) phenotypes.
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Linear Predictor Factor π̂g,j α̂g,j

1: p53 Status Response 1 1.000 0.111

Factor 3 0.926 -0.347

Factor 4 1.000 0.617

2: ER Response 2 1.000 0.104

Factor 1 0.953 -0.359

Factor 3 0.910 0.3867

3: Survival Response 3 1.000 0.089

Factor 4 0.830 -0.345

Factor 6 0.882 0.261

Table 3: Breast cancer p53 study. Coefficient probabilities and estimates for factors

contributing to the linear predictors for the three response variables.

Response Factor Top Genes α̂g,j

p53 Status CSPG2 0.721

ASPN 0.486

COL3A1 -0.468

COL3A1 -0.452

COL1A1 -0.434

ER EGR1 -0.226

NPDC1 0.180

EFEMP2 0.1607

MCM4 0.156

RBM5 0.968

Survival COL5A2 0.380

VIL2 0.342

TRPS1 0.281

TOP2A 0.272

YY1 0.183

Table 4: Breast cancer p53 study. A few of the top genes and their estimated loadings on

each of the three response factors.
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ER ER

Cell Development and Apoptosis Immunoregulation

Cell Development and Apoptosis

Figure 8: Breast cancer p53 study. Several of the estimated latent factors that show direct

association with p53 Status (Table 2). Note also the interesting evidence of association

between ER and p53 in some of these factors.
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Figure 9: Breast cancer p53 study. Additional illustrative scatter plots of some of the key

factors associated with p53 status.
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ER ER

Cell Development Cell Development

Immunoregulation Immunoregulation

Figure 10: Decomposition of expression over samples of several top genes in the anno-

tated ER factors 1 and 3, cell development factor 4 and immunoregulatory factor 6.
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Fitted Validation Set

Fitted Validation Set

Figure 11: Breast cancer p53 study. Boxplots of fitted (left column) and out-of-sample

predicted (right column) probabilities of p53 mutant versus wildtype (upper row) and

ER+ versus − (lower row).
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Model (Q1) – Fitted Model (Q1) – Predicted

Model (Q2) – Fitted Model (Q2) – Predicted

p53 status p53 status

Figure 12: Breast cancer p53 study. Kaplan-Meier survival curves for the (n = 201
training and, separately n = 50 test) samples split according to the indicated thresholds.

In the first and second rows, Q1 represents thresholding at the 1st quartile of the fitted or

predicted linear predictor, and Q2 represents thresholding at the median. The lower two

frames represent stratification simply on p53 wildtype versus mutant.

51


