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Abstract

We review statistical methods for high-dimensional data analysis and particular
attention is given to recent developments for assessing uncertainties in terms of
controlling false positive statements (type I error) and p-values. The main focus is
on regression models but we also discuss graphical modeling and causal inference
based on observational data. We illustrate the concepts and methods with various
packages from the statistical software R for a high-throughput genomic data-set
about riboflavin production with Bacillus subtilis, which we make the first time
publicly available.
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1 Introduction

High-dimensional statistical inference comes into play whenever the number p of un-
known parameters is larger than sample size n: typically, we have in mind that p is an
order of magnitude larger than n, denoted by p� n. Most often, we associate a setting
where we have more (co-)variables than n, for example in a linear model

Y = Xβ + ε (1)

with Y = (Y1, . . . , Yn)T a univariate response vector, X the n× p design matrix whose

jth columns contains the covariable X(j) = (X
(j)
1 , . . . , X

(j)
n )T and error (noise) term

ε = (ε1, . . . , εn)T with independent and identically distributed (i.i.d.) components
having E[εi] = 0 and Var(εi) = σ2. An intercept term may be implicitly present.1

Classical statistical methods, like ordinary least squares estimation, cannot be used for
estimating β and σ2 when p � n because they would overfit the data, besides severe
identifiability issues. A way out of the ill-posedness of estimation in model (1) is given

1In the later Sections 2 and 3, we typically would not penalize an intercept.
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by assuming a sparse structure, typically saying that only few of the components of β
are non-zero. We will review concepts for inference in the simple model (1) with p� n;
the approaches can be generalized to more complex scenarios and models, see Section
4.

Many applications in biology nowadays involve high-dimensional data. Typically, high-
throughput technology provides large-scale data of e.g. gene expressions (transcrip-
tomics) or peptide and protein abundances (proteomics).

Example: riboflavin production with Bacillus subtilis
As a concrete example, we discuss a data-set about riboflavin (vitamin B2) production
in Bacillus subtilis. The data has been kindly provided by DSM (Kaiseraugst, Switzer-
land), see also Lee et al. (2001) and Zamboni et al. (2005), and for the first time, we
make it publicly available in the Supplemental Section A.1. There is a single real-valued
response variable which is the logarithm of the riboflavin production rate; furthermore,
there are p = 4088 (co-)variables measuring the logarithm of the expression level of
4088 genes: these gene expressions were normalized using the default in the R-package
affy (Gautier et al., 2004). There is one rather homogeneous data-set from n = 71
samples that were hybridized repeatedly during a fed-batch fermentation process where
different engineered strains and strains grown under different fermentation conditions
were analyzed. This data-set is denoted as riboflavin and we make it available (see
Supplemental Materials). Another data-set consists of measurements (as above) at
different time points (i.e. longitudinal data) with N = 28 groups each having 2 to 6
observations at different times. Observations in the same group are from measurements
from the same strain of (genetically engineered) Bacillus subtilis while different groups
correspond to different strains. The total number of samples is n = 111. This data-set is
denoted as riboflavinGrouped and we make it available (see Supplemental Materials).

The easiest approach is to model the homogeneous riboflavin production data-set with a
linear model as in (1) with 4088 = p� n = 71, and this is discussed in Sections 2 and 3.
Many questions in biology and other sciences are, however, about causal relationships
among variables. They cannot be answered using a linear model as in (1) or extensions
of it as presented in Section 4: we will present in Section 6 a method for causal statistical
inference which can deal with high-dimensional scenarios.

2 Statistical estimation in a high-dimensional linear model

It is instructive to describe many concepts arising in high-dimensional statistical infer-
ence for linear models, as they are simple yet tremendously useful in many applications.
Extensions to other regression-type models are discussed in Section 4, and remarks on
the radically different marginal approach are given in Section 5.

Estimation of a high-dimensional linear model in (1) with p � n requires some regu-
larization. Common approaches include Bayesian or penalized likelihood methods. We
largely focus on the latter. In the sequel, we implicitly assume that the (co-)variables
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are all (at least roughly) on the same scale: very often, we achieve this by standardizing
the columns of the design matrix such that ‖X(j)‖22 = n for every j = 1, . . . , p (and

often also
∑n

i=1 X
(j)
i = 0 for all j). Ridge regression is defined as follows:

β̂Ridge = argminβ(‖Y −Xβ‖22/n+ λ‖β‖22), (2)

where ‖·‖2 is the standard Euclidean norm, and λ > 0 a regularization parameter which
has to be chosen by the user. The Lasso (Tibshirani, 1996) is replacing the `2-norm
penalty by the `1-norm:

β̂Lasso = argminβ(‖Y −Xβ‖22/n+ λ‖β‖1), (3)

where ‖β‖1 =
∑p

j=1 |βj |, and λ > 0 is again a regularization parameter (which typically

is chosen differently as in (2)).2 The estimators in (2) and (3) have a simple Bayesian
interpretation in terms of maximum a-posteriori (MAP) procedures: assuming that
β1, . . . , βp are i.i.d. with density f(·), the MAP can be easily derived:

If f(·) is from N (0, τ2): β̂MAP = argminβ(‖Y −Xβ‖22 + σ2/τ2‖β‖22),
if f(·) is from DExp(τ): β̂MAP = argminβ(‖Y −Xβ‖22 + 2σ2τ‖β‖1),

where DExp(τ) is a Double-Exponential distribution with density f(β) = τ/2 exp(−τ |β|).

Both estimators in (2) and (3) are shrinking the coefficient estimates toward zero, due to
the penalty which discourages large values. The Lasso has the special property to shrink
some coefficients exactly to zero, because of the geometry of the `1-norm penalty: i.e.,
β̂Lasso;j = 0 depending on the data and λ, and in this sense, the Lasso is doing variable
selection. This can be best understood from equivalent optimization problems: the
Lasso and Ridge estimators can be expressed as

β̂Ridge = argminβ(‖Y −Xβ‖22/n) under the constraint that ‖β‖2 ≤ R,
β̂Lasso = argminβ(‖Y −Xβ‖22/n) under the constraint that ‖β‖1 ≤ R, (4)

with a correspondence (depending on the data) between the value R and the value λ in
(2) or (3), respectively. The representations in (4) have a geometric interpretation as
displayed in Figure 1. Due to the form of the `1-norm ball with radius R, ‖β‖1 ≤ R,
the optimum of the quadratic function ‖Y−Xβ‖22/n (represented by the contour lines
in Figure 1) constrained to the set ‖β‖1 ≤ R might occur in the corners of the set such
that corresponding components of β̂Lasso are equal to zero. Such a phenomenon does
not happen for Ridge estimation.

Many versions of the Lasso have been proposed (Zou, 2006; Meinshausen, 2007; Zou
and Li, 2008; van de Geer et al., 2011), and there are other penalized estimators which
lead to sparse solutions (Fan and Li, 2001; Zhang, 2010). For further references, see for
example Bühlmann and van de Geer (2011).

2We note that the factor 1/n is irrelevant from a methodological view point: when dropped, we
simply use another λ which is n times the original one.
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Figure 1: Constrained optimization as in (4) for p = 2. The contour lines of ‖Y −
Xβ‖22/n are shown as ellipses and β̂ denotes the least squares estimator. Left: `1-
norm constraint corresponding to the Lasso; Right: `2-norm constraint corresponding
to Ridge estimation. The figure is essentially as in Tibshirani (1996) and taken from
Bühlmann and van de Geer (2011).
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2.1 Identifiability

If p > n, the model parameters in (1) are not identifiable because we always find a linear
combination of the columns in X (corresponding to some covariables) which is exactly
equal to one other column (one other covariable). Mathematically, the design matrix has
not full rank, rank(X) ≤ min(n, p) < p for p > n, and we can write Xβ = X(β + ξ) for
every ξ in the null-space of X.3 Therefore, without further assumptions, it is impossible
to infer or estimate β from data. We note that the issue is closely related to the classical
setting with p < n but rank(X) < p (due to linear dependence among covariables) or
ill-conditioned design leading to difficulties with respect to identifiability. We note,
however, that for prediction or estimation of Xβ (that is the underlying regression
surface), identifiability of the parameters is not necessarily needed. From a practical
point of view, high empirical correlations among two or a few other covariables lead to
unstable results for estimating β or for pursuing variable selection. Some more details
and additional references are given in the Supplemental Section A.2.

2.2 Point estimation without measures of uncertainty

Much progress has been made over the last decade for estimation without assigning
uncertainty, confidence or error measures, i.e., so-called point estimation. It is important
for further development of methods which quantify uncertainty (as discussed in Section
3). Among the three most important goals in such (point-) estimation are: (i) predicting
the regression surface Xβ or a new response Ynew = XT

newβ; (ii) estimation of β; and
(iii) estimation of the support of β or the so-called active set of relevant variables
S = {j; βj 6= 0}.

For the first task (i) of prediction, identifiability of β is not necessarily needed since we
are only interested in e.g. XT

newβ. Thus, from this perspective, prediction is often a much
easier problem than estimation of the parameter β or variable selection. Regarding task
(ii) of parameter estimation, an identifiability assumption is required on the design X,
for example a restricted eigenvalue condition (see Supplemental Section A.2). Finally,
for the task (iii) of variable selection, we would like to have an accurate estimator Ŝ for
the active set S. A prime example is the Lasso where we simply use Ŝ = {j; β̂Lasso,j 6=
0}. Ideally, such an estimator would satisfy Ŝ = S with high probability. Unfortunately,
such a property requires the rather strong “beta-min” condition saying that the non-zero
regression coefficients must be sufficiently large

min
j∈S
|βj | > C, (5)

where C is typically of the order
√

log(p)/n (multiplied by |S| or
√
|S|). Furthermore,

e.g. for the Lasso, a stringent (so-called irrepresentability) condition on the design is
necessary for variable selection (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006).
A less ambitious goal, which does not need such a strong assumption on the design, is

3The null-space of X is the set NX = {ξ; Xξ = 0}, and if p > n, the null-space contains other
elements than the zero vector.
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variable screening: it requires that, at least with high probability, Ŝ contains all variables
from S, i.e.,

Ŝ ⊇ S, (6)

where |Ŝ| is typically much smaller than p. For example with the Lasso, |Ŝ| ≤ min(n, p)�
p for high-dimensional settings. Thus, variable screening allows for a drastic dimension
reduction in the original covariables which is often a useful first step for many practical
applications. The screening property holds (with high probability) when the design
is sufficiently well-behaved (i.e., the so-called compatibility condition holds4) and as-
suming the beta-min condition (5). Although variable screening is less ambitious than
variable selection, the screening property in (6) is typically hard to be exactly fulfilled.

Reasonable performance of prediction and estimation can be achieved if the underlying
truth is sparse. Among the most common notions of sparsity are the size of the active
set |S| (so-called `0-sparsity), but one can also imagine the `1-norm ‖β‖1 (or some other
norms). If the sparsity is small in relation to sample size n and dimensionality p, then
there is hope that some statistical methods exist which perform reasonably well. For
example, a typical assumption of such kind is |S| � n/ log(p) which shows that the
dimensionality can be large as long as log(p)� n (allowing for reasonably large values
of |S|). If the true underlying model is not sparse, high-dimensional statistical inference
is ill-posed and not informative. Good statistical estimators for sparse situations should
be sparse themselves. The Lasso (3) is a prime example, and many versions of the Lasso
(see references just before Section 2.1) are often reasonable or even better, depending
on the problem.5

Assessing the accuracy of prediction is relatively straightforward using the tool of cross-
validation (Hastie et al., 2009, cf.). Some earlier work points to inaccuracy of cross-
validation for measuring the out-of-sample error (Gasser et al., 1991): still, assessing the
quality of prediction, e.g. with cross-validation, is a much easier task than measuring the
accuracy of parameter estimation, variable selection or screening. Regarding the latter,
the traditional thinking in frequentist statistics follows the framework of hypothesis
testing where false positive selections, corresponding to type I error, are considered to
be worse than false negatives, corresponding to type II error. The challenge in high-
dimensional models is the construction of p-values which control some type I error
measure while having good power for detecting the alternatives (i.e. avoiding some type
II error). This will be discussed in Section 3.

2.2.1 Software in R

We use the R-Package glmnet (Friedman et al., 2010) to illustrate the Lasso estimator
on the riboflavin data-set.

4The compatibility condition is weaker than the irrepresentability condition mentioned in connection
with variable selection (van de Geer and Bühlmann, 2009).

5Also Ridge estimation (2) can be sparsified by thresholding the estimated coefficients of β̂, dropping
the corresponding covariables and doing, say, a least-squares re-estimation based on fewer variables kept.
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library(glmnet)

x <- riboflavin[,-1]

y <- riboflavin[,1]

## Check dimensions

dim(x)

##- [1] 71 4088

length(y)

##- [1] 71

## Fit whole solution path for illustration

fit <- glmnet(x=x, y=y)

plot(fit)

## Perform 10-fold cross-validation

set.seed(42)

fit.cv <- cv.glmnet(x=x, y=y)

## Visualize cross-validation error-path

plot(fit.cv)

## Get selected genes

b <- as.matrix(coef(fit.cv))

rownames(b)[b != 0]

## By default, the selected variables are based on the largest value of

lambda such that the cv-error is within 1 standard error of the minimum

The resulting model contains 30 genes (plus an intercept term) with corresponding
estimated regression coefficients different from zero.

3 Assigning uncertainty in high-dimensional linear models

For the linear model (1), we are interested in two-sided testing of individual hypotheses
H0,j : βj = 0 versus HA,j : βj 6= 0 or corresponding confidence intervals; and we also
might consider hypotheses concerning a group of parameters H0,G : βj = 0 for all j ∈ G
versus HA,G : Hc

0,G (that is, at least one βj 6= 0 for some j ∈ G). In addition, we aim
for an accurate and not overly conservative correction for multiplicity of testing.

3.1 Why standard bootstrapping and subsampling do not work

As discussed above in Section 2.2, we typically use sparse estimators for high-dimensional
data analysis, for example the Lasso; for an exception see Section 3.2.2. The (limiting)
distribution of such a sparse estimator is non-Gaussian with point mass at zero, and
this is the reason why standard bootstrap or subsampling techniques do not provide
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valid confidence regions or p-values. Thus, we have to use other approaches to quantify
uncertainty.

3.2 P-values for high-dimensional linear models

3.2.1 Multi sample-splitting

A very generic method for constructing p-values for H0,j or H0,G is based on splitting
the sample into two equal parts, where we select the variables using the first and do the
statistical inference based on the second half of the data. Such a sample-splitting avoids
overly optimistic results based on selecting variables and doing subsequent inference for
the selected variables (both based on the full data-set) as if no other variables were
present.

To fix ideas, consider the following scheme for multiple testing of H0,j : βj = 0 among
all j = 1, . . . , p. Thereby, we aim for controlling the familywise error rate (FWER)
P[V > 0], where V is the number of false positives. 6

Algorithm 1 Single sample-splitting for multiple testing of H0,j among j = 1, . . . , p:

1: Split the sample {1, . . . , n} = I1 ∪ I2 with I1 ∩ I2 = ∅ and |I1| = bn/2c and |I2| =
n− bn/2c.

2: Based on I1, select the variables Ŝ ⊆ {1, . . . , p}. Assume (or ensure) that |Ŝ| ≤
|I1| = bn/2c ≤ |I2|.

3: Consider the reduced set of variables with design matrix X(Ŝ). Based on I2 with

data (YI2 ,X
(Ŝ)
I2

), compute p-values Pj for H0,j , for j ∈ Ŝ, from classical least
squares estimation assuming Gaussian errors (i.e. t-test which is well-defined since
|Ŝ| ≤ |I2|). For j /∈ Ŝ, assign Pj = 1.

4: Correct the p-values for multiple testing: consider

Pcorr,j = min(Pj · |Ŝ|, 1)

which is an adjusted p-value for H0,j for controlling the familywise error rate.

The procedure described in Algorithm 1 yields corrected p-values which control the
FWER, when assuming the screening property in (6): the whole idea is implicitly con-
tained in the work by Wasserman and Roeder (2009). In practice, the screening property
typically does not hold exactly but it is not a necessary condition for constructing valid
p-values (Bühlmann and Mandozzi, 2013). We also note that the correction for multi-
plicity of testing in Step 4 only involves the multiplicative factor |Ŝ|, while a classical
Bonferroni-adjustment would multiply the p-values with p: in high-dimensional scenar-
ios, p� n > |Ŝ|, and thus, the correction factor employed here is rather small.

6A false positive arises when the test-procedure rejects H0,j although H0,j in fact holds true.

8



A major difficulty of the single sample-splitting method is its sensitivity coming from the
choice of how one splits the sample, leading to widely different corresponding p-values.
Figure 2 illustrates such a “p-value lottery” phenomenon.
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Figure 2: Histogram of p-values Pcorr,j for a single covariable, in the riboflavin data-
set, when doing 50 different (random) sample splits.

To overcome this undesirable behavior, one can run the single sample-splitting Algo-
rithm 1 B times, with B large, leading to p-values

P
[1]
corr,j , . . . , P

[B]
corr,j (j = 1, . . . , p).

The remaining task is then to aggregate these {P [b]
corr,j ; b = 1, . . . , B} to a single p-value.

Due to dependence among the P
[b]
corr,j ’s (since all the different split samples are based

on the same full data-set), such an aggregation should be done carefully.7 A simple but
effective solution is to use an empirical γ-quantile:

Qj(γ) = min
(

emp. γ-quantile{P [b]
corr,j/γ; b = 1, . . . , B}, 1

)
.

For example, when taking γ = 1/2, we multiply all P
[b]
corr,j ’s by 2 and take the empirical

median among them. Furthermore, one can optimize over the best γ-quantile in the

7For example, the mean B−1 ∑B
b=1 P

[b]
corr,j is generally not controlling the FWER.
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range (γmin, 1) (for example with γmin equal to 0.05) leading to the aggregated p-value

Pj = min

(
(1− log(γmin)) inf

γ∈(γmin,1)
Qj(γ)

)
(j = 1, . . . , p). (7)

Thereby, the factor (1 − log(γmin)) is the price to be paid for searching for the best
γ ∈ (γmin, 1). This multi sample-splitting procedure has been proposed by Meinshausen
et al. (2009) and is summarized in Algorithm 2. The multi sample-splitting method

Algorithm 2 Multi sample-splitting for multiple testing of H0,j among j = 1, . . . , p

1: Run the single sample-splitting Algorithm 1 B times leading to p-values {P [b]
corr,j ; b =

1, . . . , B}. A typical choice is B = 100.
2: Aggregate the p-values from Step 1 as in (7) leading to Pj which are adjusted

p-values for H0,j (j = 1, . . . , p), controlling the familywise error rate.

enjoys the property that the resulting p-values are approximately reproducible and not
subject to a “lottery” as illustrated in Figure 2, and it controls the familywise error rate.
As the single sample-split method, the procedure assumes the screening property (6) (or
an approximate version of it). More precise mathematical assumptions for constructing
valid p-values are given in Supplemental Section A.4.2.

Testing group hypotheses of the form H0,G : βj = 0 for all j ∈ G can be done based on
a partial F-test instead of a t-test in Step 3 of Algorithm 1.

3.2.2 Projection and confidence intervals

The multi sample-splitting method assumes (a possibly relaxed form of) the screening
property (6), and this in turn necessarily requires a (possibly relaxed) beta-min assump-
tion (5). The methods described here do not rely on such a beta-min assumption.

The general idea is to use a linear estimator with subsequent bias correction using the
Lasso. Consider for each j = 1, . . . , p an n×1 vector Z(j)8 and corresponding estimator

b̂j =
(Z(j))TY

(Z(j))TX(j)
.

Then, by simply using the linear relation between Y and {X(k); k = 1, . . . , p} we obtain

E[b̂j ] = βj +
∑
k 6=j

Pjkβk, Pjk =
(Z(j))TX(k)

(Z(j))TX(j)
.

The second summand is a bias term which can be corrected using the Lasso, and we
then obtain the bias-corrected estimator

β̂corr;j = b̂j −
∑
k 6=j

Pjkβ̂Lasso;k. (8)

8Typically Z(j) is a residual vector when doing a regularized regression of X(j) versus all other
variables {X(k); k 6= j}), see also Supplemental Section A.3.
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Concrete suggestions for score vectors Z(j) are based on Ridge regression (Bühlmann,
2013) or on Lasso regression (Zhang and Zhang, 2011; van de Geer et al., 2013). More
details are given in the Supplemental Section A.3. The corresponding estimators in (8)
using Ridge or Lasso-based score vectors are denoted by

β̂corr−Ridge, β̂corr−Lasso.

We point out the interesting feature that these estimators β̂corr−Ridge or β̂corr−Lasso are
not sparse and they have a Gaussian limiting distribution with known covariance matrix,
except for the unknown error variance σ2ε (Bühlmann, 2013; Zhang and Zhang, 2011;
van de Geer et al., 2013). The latter can be estimated, for example using the scaled
Lasso (Sun and Zhang, 2012). We then end up with a statement of the form

√
n(β̂corr,j − βj)/σ̂j → N (0, 1), (9)

where σ̂2j = σ̂2εωj with known ωj (which is easily computable as function of the design
X). As a consequence, we can derive confidence intervals and tests for single parameters
βj , and we can also construct p-values for H0,G : βj = 0 for all j ∈ G, where G ⊆
{1, . . . , p} is any group (small or large).

Assuming sparsity of the regression vector, but without requiring a beta-min assumption
as in (5), the method provides valid inference for tests and confidence intervals. When
using β̂corr−Lasso, the procedure is optimal and reaches the semiparametric efficiency
bound (van de Geer et al., 2013). More precise mathematical assumptions for valid
p-values and asymptotic optimality are given in Supplemental Section A.4.3.

When pursuing many tests, we have to adjust for multiple testing. Consider first the
scenario when testing H0,j : βj = 0 for all j = 1, . . . , p. We then obtain p-values
P1, . . . , Pp, and we can use any multiple testing adjustment which is valid for dependent
tests (note that P1, . . . , Pp are dependent). For example, we can use the Bonferroni-
Holm method (Holm, 1979) to control the familywise error rate, or we can use a version
of the standard Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) which
controls the false discovery rate among dependent tests (Benjamini and Yekutieli, 2001),
see also Section 5.1. The R-software package multtest provides an array of methods for
multiple testing correction, see Section 5.1.1. However, the p-values P1, . . . , Pp typically
exhibit rather strong dependence which implies that the usual adjustment methods are
too conservative.9 A potential loss of power by avoiding conservative adjustment can be
addressed by exploiting the known covariance structure of the problem: more generally
than in (9) we have

√
n(β̂corr − β) ≈ Np(0, σ̂2εΩ),

where Ω is known. Such a representation allows for efficient adjustment of the p-values
P1, . . . , Pp (Bühlmann, 2013). We emphasize that such a multiple testing correction can

9As an extreme case, suppose that the data for each hypothesis and thus the p-values are the same
P1 = P2 = . . . = Pp: then the effective number of tests is 1 (instead of the nominal number of tests p)
and adjusting the p-values wouldn’t be necessary.
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be used more generally for m tests with p-values P1, . . . , Pm where each Pr corresponds
to a hypothesis test H0,Gr : βj = 0 for all j ∈ Gr ⊆ {1, . . . , p} (and each Gr can be a
small group (e.g. having one element only) or a large group).

3.2.3 Software in R

We use our own R-package hdi (Meier, 2013) to analyze the riboflavin data-set. The
multi-split method yields one significant gene (gene YXLD at), while the Ridge-type
projection estimator delivers no significant gene at all.

library(hdi)

x <- riboflavin[,-1]

y <- riboflavin[,1]

## Multi-split p-values

set.seed(12)

fit.multi <- hdi(x, y, method = "multi-split", B = 100)

fit.multi

## Ridge p-values

fit.ridge <- hdi(x, y, method = "pval-ridge")

fit.ridge

3.3 Stability selection

Stability selection (Meinshausen and Bühlmann, 2010) is a method based on subsam-
pling (or bootstrapping) but rather different from classical approaches. Consider a
random subsample I∗ ⊂ {1, . . . , n} of size |I∗| = bn/2c. For any variable selection al-
gorithm Ŝ ⊆ {1, . . . , p}, e.g. the Lasso, we consider its subsampled version Ŝ(I∗) based
on the subsample I∗. The subsampled relative selection frequencies are then

π̂j = P∗[j ∈ Ŝ(I∗)], j = 1, . . . , p,

where P∗ is with respect to the subsample I∗. In practice, this is approximated by a
stochastic simulation

π̂j ≈ B−1
B∑
b=1

I
(
j ∈ Ŝ(I∗(b))

)
where B ≈ 500− 1000 is large and I∗(1), . . . , I∗(B) are independent random subsamples
of size |I∗(b)| = bn/2c. The set of stable variables is defined as

Ŝstable = {j; π̂j ≥ πthres},

for some threshold parameter πthres.
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The threshold parameter πthres can be linked to some type I error measure about false
positive selections. For this purpose we assume that Ŝ(I) selects at most q variables for
every subsample I ⊂ {1, . . . , n} with |I| = bn/2c. As examples we mention the Lasso
which selects the q variables entering the regularization path first, as used in Section
3.3.1 below; or the Lasso selecting the top q variables having highest estimated regression
coefficients in absolute value. Furthermore, if such an Ŝ is better than random guessing
and if a so-called exchangeability condition holds (which becomes an assumption on the
design, implying that false positive selection of any variable is equally likely), we have
the following relation: denoting by V the number of false positives,

E[V ] ≤ q2

(2πthres − 1)p
, (10)

see Meinshausen and Bühlmann (2010). Therefore, by pre-specifying that E[V ] should
be at most efp (say efp = 1), and assuming efp ≥ q2/p, we would choose

πthres =
1

2
+

q2

2p · efp

which ensures by (10) that the corresponding E[V ] ≤ efp. The work in Shah and
Samworth (2013) extends the result in (10) without requiring the restrictive but not
necessary exchangeability assumption.

We note that stability selection can also be used for whole groups G ⊆ {1, . . . , p},
instead of single variables j ∈ {1, . . . , p}. For example, in the spirit of a group null-
hypothesis H0,G : βj = 0 for all j ∈ G and the complementary alternative Hc

0,G, we
would consider the stability that at least one element in a group G has been selected:
this is formalized as

π̂G = P∗[G ∩ Ŝ 6= ∅].

The error bound (10) needs to be adapted by replacing p with
(
p
k

)
and q2 with

(
q
k

)2
,

where k is the group size |G| = k (e.g. considering k = 2 for selecting stable groups of
variables of size 2).

The beauty of stability selection is its generic applicability to any problem about discrete
structure estimation: that is, the selection algorithm Ŝ does not need to be for variable
selection in a linear model but it could for example encode the selection of an edge
in a graphical model. Furthermore, in a linear model, we do not need to explicitly
estimate the error variance. However, we do not directly obtain p-values for statistical
hypothesis testing. More precise mathematical assumptions for the error control as in
(10) are given in Supplemental Section A.4.4.

3.3.1 Software in R

Again, we use the R-package hdi (Meier, 2013) to run stability selection on the riboflavin
data-set. As selector Ŝ, we use the Lasso with the q variables which enter the regular-
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ization path10 first. With q = 20, V = 1 and B = 500 we get 3 stable selected genes:
LYSC at, YOAB at and YXLD at.

library(hdi)

x <- riboflavin[,-1]

y <- riboflavin[,1]

set.seed(37)

fit.stab <- hdi(x, y, method = "stability", B = 500, EV = 1, q = 20)

fit.stab

3.4 Summary of linear model results for riboflavin data-set

For the riboflavin data-set with n = 71 and p = 4088, the results from the dif-
ferent methods vary to a certain extent. The multi sample-splitting Algorithm 2 and
the projection estimator (8), here used with Ridge-type score vectors, lead to p-values
controlling the very stringent familywise error rate (FWER). At the FWER-adjusted
5% significance level, we find 1 significant variable (gene YXLD at) based on the multi
sample-splitting Algorithm 2, while the projection estimator doesn’t find a single sig-
nificant variable or gene. This finding is not surprising: the Ridge-type projection
estimator is rather conservative and since it does not require a beta-min assumption,
its power for rejection is typically smaller, i.e., it produces typically larger p-values.

Stability selection finds more relevant variables. However, the corresponding error mea-
sure is only the expected number of false positive selections E[V ]: such an error measure
is much less stringent than FWER. Furthermore, the one significant gene found with
the multi sample-splitting Algorithm 2 has largest selection frequency in the stability
selection approach.

4 Extensions to other models

Much of the work on point estimation carries over from high-dimensional linear models
to more complex models. For assigning statistical uncertainties, the multi sample split-
ting method and stability selection are straightforward to be used for non-linear models
while the projection procedure from Section 3.2.2 needs more careful treatment.

4.1 Generalized linear models

Generalized linear models (McCullagh and Nelder, 1989) are very popular for extending
the linear model in a unified way. We consider a model with univariate response Y and

10The paths (p functions) of estimated coefficients from Lasso β̂j(λ) (j = 1, . . . , p) when varying λ
from a maximal value to 0+.
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p-dimensional covariables X:

Y1, . . . , Yn independent,

g(E[Yi|Xi = x]) = µ+

p∑
j=1

βjx
(j), (11)

where g(·) is a real-valued, known link function, µ is the intercept term and x(j) denotes
the jth component of the p-dimensional x. A well-known example is logistic regression
for binary response variables Yi ∈ {0, 1}: we denote by π(x) = P[Yi = 1|Xi = x](=
E[Yi|Xi = x]), and the model employs the logistic link function g(π) = log(π/(1 − π))
which maps (0, 1) to the real line. Another example is Poisson regression for count
data responses: Yi|Xi = x ∼ Poisson(λ(x)) and the employed link function is g(λ) =
log(λ) which maps R+ to the real line. Obviously, a linear model is a special case of a
generalized linear model with the identity link function g(θ) = θ.

An implicit assumption of the model in (11) is that the (conditional) distribution of Yi

(given Xi) is depending on Xi only through the function g(E[Yi|Xi]) = µ+
∑p

j=1 βjX
(j)
i .

That is, the (conditional) probability or density of Y |X = x is of the form

p(y|x) = pµ,β(y|x). (12)

For generalized linear models, the analogue of the Lasso estimator in (3) is defined by
penalizing the negative log-likelihood with the `1-norm. The negative log-likelihood
itself equals

−`(µ, β; data) = −
n∑
i=1

log(pµ,β(Yi|Xi)),

where pµ,β(y|x) is as in (12). For many examples and models, e.g. if the (conditional)
distribution of Y |X = x is from a sub-class of the exponential family model (see Mc-
Cullagh and Nelder (1989, Section 2.2)), the negative log-likelihood `(µ, β; data) is
convex in µ, β for all values of the data. Such convexity is not a necessary requirement
for `1-norm penalization introduced below (see for example Section 4.2) but it enables
efficient optimization and more elegant mathematical analysis of the property of the
estimator. The `1-norm penalized Lasso estimator is then defined as:

µ̂(λ), β̂(λ) = arg min
µ,β

(−`(µ, β; data)/n+ λ‖β‖1) (13)

= arg min
µ,β

(−n−1
n∑
i=1

log(pµ,β(Yi|Xi)) + λ‖β‖1). (14)

Usually, we do not penalize the intercept term.

Similarly to the Lasso (3) for high-dimensional linear models, analogous assumptions
are required for estimation of XT

newβ, for estimation of β and for the active set S =
{j; βj 6= 0}: except for estimation of XT

newβ, we need identifiability assumptions on the
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design X and a condition for the smallest non-zero regression coefficients (as in (5)),
see for example van de Geer (2008) and Bühlmann and van de Geer (2011).

Assigning measures of uncertainty and significance can be easily done using the multi
sample-splitting method from Section 3.2.1 or stability selection described in Section
3.3. Regarding the former, we can use Ŝ from the penalized estimator in (13), replace
the t-test in Step 3 of Algorithm 1 with the log-likelihood ratio test (McCullagh and
Nelder, 1989) and then proceed as in Algorithm 2. For stability selection, we could use
Ŝ from e.g. the `1-norm penalized maximum likelihood estimator in (13); a related idea
with applications to genome-wide association studies is presented in He and Lin (2011).
The method based on projection estimators in Section 3.2.2 needs a more elaborate
extension and is described in van de Geer et al. (2013) for high-dimensional generalized
linear models.

The estimator in (13) can be computed using the R-package glmnet (Friedman et al.,
2010), analogously as in Section 2.2.1.

4.2 Generalized linear mixed models

Mixed effects models are popular for modeling grouped or longitudinal data (Pinheiro
and Bates, 2000): the building blocks are fixed effects with corresponding p-dimensional
parameter vector β and random effects with corresponding random parameter b ∼
Nq(0, V ). From a frequentist point of view, the unknown parameters in the model are
β, V and possibly an error variance σ2ε .

The high-dimensional scenario typically refers to the case where p is large while the
dimension of the covariance matrix V is small (q might still be large but V would have
a low-dimensional parameterization). In such a setting, one can again use the `1-norm
penalized maximum likelihood estimator: similarly as in (13), we consider11

β̂(λ), V̂ (λ), σ̂2ε(λ) = arg min
β,V,σ2

ε

(−`(β, V, σ2ε ; data) + λ‖β‖1). (15)

The difficulty of this estimator is the fact that the negative log-likelihood−`(β, V, σ2ε ; data)
is a non-convex function in the unknown parameters and in case of non-Gaussian (e.g.
generalized linear) mixed models, already the likelihood is difficult to compute. The
latter can be addressed by numerical approximations, for example using the Laplace
approximation as used in Schelldorfer et al. (2013); the former causes generic compu-
tational difficulties as well as more subtle conditions and arguments to establish good
properties of the estimator as discussed in Schelldorfer et al. (2011) for Gaussian linear
mixed models.

Similarly as for generalized linear models, we can use the multi sample-splitting method
from Section 3.2.1 or stability selection described in Section 3.3 for quantifying uncer-
tainties. For the former, we can use the screening method from the penalized estimator
in (15), the t-test in Step 3 of Algorithm 1 has to be replaced by a valid procedure

11If not in the model, σ2
ε should be dropped in the following expressions.

16



for low-dimensional generalized linear mixed models, and we can then proceed with
Algorithm 2. For stability selection for the fixed effects variables, we can use Ŝ from
(15).

Example: grouped data about riboflavin production with Bacillus subtilis
One data-set of riboflavin production with Bacillus subtilis (see also Section 1) con-
sists of measurements (p = 4088 gene expressions and the riboflavin production rate)
at different time points (longitudinal data) with N = 28 groups each having 2 to 6
observations at different times, and the total number of samples is n = 111. We refer
to the Example in Section 1 for further description of the data-set which is denoted as
riboflavinGrouped and we make it available (see Supplemental Materials).

We can fit a linear mixed model to this data with the 28 different groups. After some
preliminary analysis, a reasonable model consists of 2 independent random effects and
p = 4088 fixed effects. The estimator in (15) with Gaussian distribution can be com-
puted with the R-package lmmlasso (Schelldorfer, 2011): the results are presented in
Schelldorfer et al. (2011).

Computation of the estimator in (15) for generalized mixed effects models can be done
with the R-package glmmixedlasso (Schelldorfer et al., 2013) which is available from
R-Forge.

4.3 Gaussian graphical models

As a further extension of linear models we mention the Gaussian graphical model:

X1, . . . , Xn i.i.d. ∼ Np(0,Σ).

Assuming that Σ−1 exists, we represent the p-dimensional Gaussian distribution in
terms of a graph with a set of nodes or vertices {1, . . . , p} and a set of undirected edges
defined as:

there is an undirected edge between node j and k if and only if Σ−1jk 6= 0.

The distribution then obeys a local and global Markov property with respect to the
defined graph (Lauritzen, 1996) and hence, the edges can be interpreted in terms of
conditional dependence statements:

there is an undirected edge between node j and k if and only if

X(j) and X(k) are conditionally dependent given all other variables {X(`); ` 6= j, k}.

Estimation of such a graph in the high-dimensional scenario can be done with a nodewise
Lasso approach (Meinshausen and Bühlmann, 2006) which is computationally efficient
and requires slightly weaker conditions than the `1-norm penalized maximum likelihood
estimation scheme, also called graphical Lasso, or GLasso (Friedman et al., 2007; Baner-
jee et al., 2008). Assigning uncertainties could be done using the multi sample-splitting
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method from Section 3.2.1. In view of the many edges and the multivariate nature of the
model, stability selection has been advocated in Meinshausen and Bühlmann (2010).

Extensions for non-Gaussian continuous distributions, based on copula models, are given
by Liu et al. (2012) and Xue and Zou (2012); this is exemplified in Section 4.3.1 below
using the so-called nonparanormal transformation. Undirected graphical model esti-
mation for the case with mixed-type binary, categorical and continuous variables is
considered in Fellinghauer et al. (2013).

4.3.1 Software in R

Two major packages dealing with estimation of undirected graphs are huge (Zhao et al.,
2012) and glasso (Friedman et al., 2011). Since huge seems to be more elaborate,
we only report using this package: for the riboflavin production data, we estimate an
undirected graph by the Meinshausen-Bühlmann method (Meinshausen and Bühlmann,
2006) and select the regularization parameter using a variant of stability selection in
Section 3.3 termed StARS (Liu et al., 2010). As an illustration and for simplicity
(without deeper biological implications), we estimate the undirected graph for the 100
genes with largest empirical variance and the riboflavin production, and we denote this
reduced data-set by riboflavinV100 (the fitting and selection process on the complete
data set takes about 2 hours CPU). The resulting graph is shown in Figure 3. We refer
the interested reader to the vignette of the huge package for more details on the use of
this package.

library(huge)

set.seed(123)

## For ease of reproduction, we only use the 100 genes

## with largest empirical variance

## The analysis on the full data takes about 2 hours

## Apply nonparanormal transformation

X.npn <- huge.npn(riboflavinV100)

## Estimate undirected graph

out.npn <- huge(X.npn, method = "mb", nlambda=30)

## Select the graph using StARS

npn.stars <- huge.select(out.npn,criterion="stars",stars.thresh=0.05)

## Extract optimal graph

resGraph <- npn.stars$refit

## Plot graph

huge.plot(resGraph)
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Figure 3: Estimated undirected graph for the riboflavinV100 data-set. For ease of
reproduction, only the 100 genes with largest empirical variance and the amount of
riboflavin produced were included in the estimation process. The graph shown was esti-
mated by the Meinshausen-Bühlmann method, after the nonparanormal transformation,
and regularized using the StARS criterion.
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5 The marginal approach

When having response (or grouping or class) variables Yi and p-dimensional (co-)variables

Xi = X
(1)
i , . . . , X

(p)
i , with (Yi, Xi) (i = 1, . . . , n) independent and identically dis-

tributed, the target of interest might be marginal associations between Y and X(j)

(j = 1, . . . , p). For example, marginal association measures are correlations between
Y and X(j) or regression parameters αj in the model Y = µ + αjX

(j) + noise. Such
marginal association parameters are very different from the parameters in e.g. a linear
model as in (1) or more general regression models: the latter measure the strength of as-
sociation which is not explained by all other variables. There are some recent attempts
for variable screening in a linear model (1) as in (6) based on marginal correlations.
Under some rather strong conditions on the design matrix, the proposed methods pro-
vide a superset of S as in (6) (Fan and Lv, 2008; Genovese et al., 2012); an extension
of such a purely marginal approach is discussed in Bühlmann et al. (2010).

The dimension p of the (co-)variables Xi is not really a disturbing issue when estimating
marginal association parameters, even if p � n.12 The only drawback comes in when
adjusting tests (and confidence intervals) with respect to multiplicity, especially when
considering all p� n marginal associations.

Genome-wide association studies (GWAS) are examples where oftentimes, only marginal
associations are considered. For example, if Yi is binary encoding healthy and diseased

status of an individual and X
(j)
i a categorical variable with three levels describing a

single-nucleotide polymorphism (SNP) at position j in the genome, we obtain p-values
from two-sample tests (the two samples are encoded by the binary response) for a
location shift at each genomic position j = 1, . . . , p. A typical value of p is ≈ 106 while
sample size is in the hundreds or low thousands.

5.1 Multiple testing adjustment

In the GWAS example above we have p-values P1, . . . , Pp where p is very large, and
adjusting for multiplicity is crucial (Roeder and Wasserman, 2009). Common type I
error measures for multiple testing are the familywise error rate (FWER; the probability
of at least one false positive selection) or the false discovery rate (FDR; the proportion
of false positive selections among the significant tests). The Bonferroni-Holm procedure
(Holm, 1979) leads to FWER control under any dependence structure among the tests,
and due to such generality, the method is often overly conservative; the Westfall-Young
method (Westfall and Young, 1989) offers an alternative, at least for some cases, which
often has better power (Meinshausen et al., 2011). The Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) leads to FDR control for independent hypotheses and
a modification allowing for arbitrary dependence among the tests, but again being
conservative, is given in Benjamini and Yekutieli (2001). If p is very large, it is often
hard to detect a single significant marginal association, because of the large multiple

12For example, the empirical correlation between Y and X(j) is not depending on whether there are
none, few or many other variables X(k) (k 6= j).
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testing adjustment factor. A hierarchical approach where statistical tests are pursued
in a top-down fashion from large groups of correlated test-statistics to smaller groups
and individual hypotheses is presented in Meinshausen (2008): it is an interesting route
to deal with the problem of very high multiplicity in testing.

5.1.1 Software in R

Several methods for multiple testing adjustment are implemented in the R-package
multtest (Pollard et al., 2012). In the following we show for the riboflavin data-
set how to select genes controlling the FWER at 0.05 and using simple linear regression
as marginal test.

## Installing this package from Bioconductor:

## source("http://bioconductor.org/biocLite.R")

## biocLite("multtest")

library(multtest)

## compute marginal regressions and extract p-values

p <- ncol(riboflavin)-1

pval <- vector("numeric", p)

for (i in 1:p) {

fit <- lm(riboflavin[,1] ~ riboflavin[,i+1])

tab <- summary(fit)$coefficients

pval[i] <- tab[2,4]

}

## Holm to control FWER (53 genes selected)

resHolm <- mt.rawp2adjp(rawp = pval, proc = "Holm")

head(resHolm$adjp)

## extract the column index of those variables

## with adjusted p-values less than 0.05

idx <- resHolm$index[which(resHolm$adjp[,"Holm"] < 0.05)] + 1

## names of corresponding genes

colnames(riboflavin)[idx]

## Benjamini-Hochberg to control FDR (375 genes selected)

resBH <- mt.rawp2adjp(rawp = pval, proc = "BH")

head(resBH$adjp)

## extract the column index of those variables

## with adjusted p-values less than 0.1

idx <- resBH$index[which(resBH$adjp[,"BH"] < 0.1)] + 1

## names of corresponding genes

colnames(riboflavin)[idx]

53 genes are selected when controlling the FWER at 0.05. Finally, we show how to
select genes controlling the FDR at 0.1 and, again, using simple linear regression as
marginal test.
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## Benjamini-Hochberg to control FDR

resBH <- mt.rawp2adjp(rawp = pval, proc = "BH")

head(resBH$adjp)

## extract the column index of those variables

## with adjusted p-values less than 0.1

idx <- resBH$index[which(resBH$adjp[,"BH"] < 0.1)] + 1

## names of corresponding genes

colnames(riboflavin)[idx]

375 genes are selected when controlling the FDR at 0.1.

Thus, with the marginal approach many more genes are selected than in the conditional
approach using the Lasso and sample splitting, projection estimators or stability selec-
tion as discussed in Section 3. This is expected since the marginal approach measures
total association which could possibly be explained away by taking information of the
remaining variables into account. In contrast, the conditional approach measures only
direct association which cannot be explained away by conditioning on the remaining
variables. In this sense, the conditional approach uses a stricter criterion for selection
and thus has the tendency of yielding a (much) smaller amount of selected variables.

6 Causal inference based on Directed Acyclic Graphs (DAGs)

In the previous sections, we largely focused on estimating a regression or marginal asso-
ciation parameter: in many applications, based on such estimated parameters, we would
then assign strength or importance to a variable. For example, if a parameter estimate
|β̂j | is large in the linear model (1), we assign a high importance to the covariable X(j)

for explaining the response Y .

Often though, a much more interesting (and ambitious) goal is to infer the causal
strength of a variable X(j) on a response of interest Y . Causal strength can be described
as an outside intervention on the variable X(j) and measuring the size of its effect on
the response Y : this can be formalized, for example using Pearl’s do-operator calculus
(Pearl, 2000).

To illustrate the difference to regression, we consider the situation where the response
Y and the covariables X = (X(1), . . . , X(p)) have a (p+ 1)-dimensional Gaussian distri-
bution. We can then always relate Y to X with a linear model as in (1):

Y =

p∑
j=1

βjX
(j) + ε,

where ε ∼ N (0, σ2ε) is independent from X. The parameter βj measures the effect on
Y when changing X(j) by one unit and keeping all other covariables fixed. In many
practical applications though, when we make an intervention at say variable X(j), we
cannot keep the other covariables {X(k); k 6= j} fixed: for example, if we make a pertur-
bation at gene j with corresponding X(j) measuring e.g. its expression, the expression
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Figure 4: Example of a causal DAG on p = 10 nodes. Imagine a corresponding linear
structural equation model with Gaussian errors that produces the data. To estimate the
causal effect of node 3 on node 9, we would regress variable 9 on variable 3 and variable
1 (since node 1 is the only parent node of node 3; variable 1 is a so-called adjustment
variable).

of the other genes {X(k); k 6= j} will change as well (and hence cannot be kept fixed).
Causal inference and intervention analysis often aim to quantify the total effect on Y
when making an intervention at variable X(j), including all indirect effects of X(j) on
Y which are caused by the chain of events that an intervention at X(j) changes many
other X(k)’s (k 6= j) which in turn have an influence on the response Y . A common
way to formalize the causal structure is given by a directed acyclic graph (DAG) which
has no directed cycles. Such a total effect of an intervention at X(j) to the response
Y , denoted by γj , can then be quantified using the do-calculus (Pearl, 2000): in the
Gaussian case, γj equals the regression parameter for covariable X(j) in a linear model
when regressing Y on X(j) and the variables {X(k); k ∈ pa(j)} where pa(j) denotes the
parental set of nodes of vertex j, i.e., pa(j) = {k; there is a directed edge from k to j}
(and pa(j) are sometimes called the adjustment variables). See Figure 4 for an example.

6.1 Bounds for causal effects based on observational data

As discussed above, estimation of a causal or intervention effect γj can be based on linear
regression and an estimate of the parental set pa(j). The latter is a structure estimation
problem of inferring a true underlying DAG. In general, however, the DAG is not iden-
tifiable from the observational distribution (i.e. the distribution from non-intervention
data) and we can only infer a so-called Markov equivalence class of DAGs (Spirtes
et al., 2000; Pearl, 2000). The latter can be estimated, for example by the PC-algorithm
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(Spirtes et al., 2000) or `0-penalized maximum likelihood estimation (Chickering, 2002):
in the high-dimensional setting where p � n but the true underlying DAG is sparse,
consistency of the estimation has been established for both the PC-algorithm (Kalisch
and Bühlmann, 2007) and the `0-penalized maximum likelihood estimator (van de Geer
and Bühlmann, 2013).

Because we can only identify a Markov equivalence class from observational data, we
cannot infer a causal or intervention effect γj from observational data. However, it is
still possible to identify lower bounds for |γj | with the so-called IDA (Inference when
Dag is Absent) procedure (Maathuis et al., 2009, 2010). These lower bounds can be
used for ranking the importance of variables X(j) in terms of their absolute value of the
intervention effect on a response variable Y , and such a ranking can be used in practice
to prioritize variables with respect to causal strength, as demonstrated in Maathuis
et al. (2010).

Assigning uncertainties for such lower bound estimates of causal effects can be pursued
with stability selection from Section 3.3 where the selection algorithm Ŝ is given by the
(top q) highest lower bound estimates, see Section 6.2. A related procedure is advocated
in Stekhoven et al. (2012).

The IDA method is based on several strong assumptions, most notably that the true
underlying influence diagram is a DAG, which does not allow for feedback mechanism,
and that all relevant variables in the causal system are observed. Some relaxations
of these conditions have been worked out: the FCI algorithm allows for hidden vari-
ables (Spirtes et al., 2000; Colombo et al., 2012) while graphs with directed cycles are
considered in Spirtes (1995), Richardson (1996) and Mooij et al. (2011).

6.2 Software in R

Software for fitting the causal effect using IDA is provided in the R-package pcalg

(Kalisch et al., 2012). As an illustrative example, we use IDA to estimate the causal
effect of gene YCIC at on the riboflavin production. For ease of reproduction, only
the 100 genes with highest empirical variances and the response variable of riboflavin
production were included in the estimation process (i.e., using the riboflavinV100

data-set).

## Estimate causal effect of YCIC_at on Riboflavin production

library(pcalg)

## For ease of reproduction, we only use the 100 Genes

## with largest empirical variance

## Full data with model selection takes more than 2 hours

n <- nrow(riboflavinV100) ## n = 71 samples

p <- ncol(riboflavinV100) ## p = 1+100 variables in total

## position of explanatory variable in data frame

xPos <- 2 ## Activity of YCIC_at is in column 2
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## position of goal variable in data frame

yPos <- 1 ## Riboflavin production is in first column

## Estimate covariance matrix of all involved variables

covMat <- cov(riboflavinV100)

corMat <- cov2cor(covMat)

## Estimate causal stucture

suffStat <- list(C = corMat, n = n) ## prepare input data

pc.fit <- pc(suffStat, indepTest = gaussCItest, p = p,

alpha = 0.01) ## fit causal structure

pcEst <- pc.fit@graph ## extract estimated graph object

## Estimate causal effects of YCIC_at on Riboflavin production

res <- ida(x.pos = xPos, y.pos = yPos, mcov = covMat, graphEst = pcEst)

The resulting estimated lower bound for the causal effect in this example is 0.26. Actu-
ally, the obtained value turns out to be not only a lower bound but in fact an estimate
of the causal effect γYCIC at (due to so-called uniqueness within an estimated Markov
equivalence class). This suggests that gene YCIC at has a causal effect for the riboflavin
production; in particular, if one increases the expression of YCIC at by one unit, the
riboflavin production is expected to increase by 0.26 units. For completeness, the ef-
fect of gene YCIC at on the riboflavin production rate was also computed based on
the full riboflavin data set with p = 4088 genes. Then, the causal effect γYCIC at is
estimated as non-identifiable (since the estimated Markov equivalence class leads to dif-
ferent causal effects): however, it is possible to obtain an estimated lower bound for the
absolute value of the causal effect |γYCIC at|. This estimated lower bound equals 0.08
which still allows for the interpretation that an increase of the expression of YCIC at by
one unit leads to a change of the riboflavin production rate of at least 0.08 units. We
refer the interested reader to Kalisch et al. (2012) for more details on the use of this
package.

We can easily use pcalg in connection with stability selection from Section 3.3. For
the riboflavinV100 data-set, using q = 5 and πthres = 0.54 resulting in E[V ] ≤ 3,
and based on B = 100 random splits, we find XHLA at as a stable gene for having
(potentially) a causal effect on the riboflavin production rate.

7 Summary Points

1. Extracting information (including assigning uncertainty) from high-dimensional
data is possible using appropriate modern statistical methods.

2. Software implementations of most methods are readily available in R (R Core
Team, 2012).

3. Two additional main assumptions are usually required to guarantee reasonable
performance, besides the standard conditions for low-dimensional settings: (i)
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sparsity for the underlying structure and (ii) identifiability of the model. An
exception is the marginal approach which does not necessarily require such con-
ditions.

4. Regarding point 3: sparsity is a fundamental and basic assumption on the un-
known parameter vector, and a typical way to ensure identifiability is given by
imposing conditions on the design matrix. For (bounds of) causal inference state-
ments, which is a much more ambitious task than regression or classification,
further assumptions are required.

5. Typically and unfortunately, the main conditions in point 3 are difficult (or impos-
sible) to check, and powerful diagnostic tools for corresponding model assumptions
are largely missing.

6. In view of point 5., drawing confirmatory conclusions from high-dimensional data
should only be done with great care.

7. Some areas in biology allow for experimental validation of hypotheses which are
derived or prioritized using statistical methods. Such validation is of major im-
portance not only for the field of application but also for further understanding
or appropriateness of statistical assumptions and techniques.
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Sidebar

H0 holds HA holds

Declared significant false positives (FP) true positives (TP)
Declared non-significant true negatives (TN) false negatives (FN)

Table 1: Terminology of different error types. A false positive is a type I error, a false
negative is a type II error.

H0 holds HA holds Total

Declared significant V S R
Declared non-significant U T m−R
Total m0 m−m0 m

Table 2: Possible outcome of a total of m different hypothesis tests. The number of
false positives is denoted by V and the number of false negatives by T .

• Familywise error rate (FWER): The probability of making at least one false
positive selection, i.e.

FWER = P[V > 0].

• False discovery rate (FDR): The expected value of the proportion of incor-
rectly rejected null hypotheses (“false discoveries”) among all rejections (“discov-
eries”), i.e.

FDR = E
[
V

R

]
.
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A Supplement

A.1 Riboflavin production data

The data-set, introduced in Section 1, about riboflavin (vitamin B2) production by
Bacillus subtilis has been kindly provided by DSM (Switzerland), see also Lee et al.
(2001) and Zamboni et al. (2005). The log-transformed riboflavin production rate is
the single real-valued response variable, and there are p = 4088 (co-)variables measuring
the logarithm of the expression level of 4088 genes. We make the data available (see
Supplemental Materials).

There is a homogeneous data-set from n = 71 samples, denoted as riboflavin. For ease
of reproduction in some examples, we also provide a data set containing only the 100
genes with largest empirical variances and the response variable of riboflavin production,
denoted as riboflavinV100.

Another data-set consists of measurements as above at different time points with N = 28
groups each having 2 to 6 observations at different times. The total number of samples
is n = 111. This data-set is denoted as riboflavinGrouped.

A.2 Some notes on identifiability

For linear models, strong conditions on maximal pairwise empirical correlations among
covariables (columns of X) are checkable and lead to (approximate) identifiability of the
parameter β. Weaker conditions on X are often formulated in terms of the compatibil-
ity constant or restricted eigenvalues of XTX/n (Bickel et al., 2009; van de Geer and
Bühlmann, 2009; Bühlmann and van de Geer, 2011). Unfortunately, they are uncheck-
able in practice: although we observe X, we typically cannot check the conditions
because essentially, we would have to consider all subsets of variables having a certain
cardinality, and this becomes very quickly computationally infeasible. An interesting
exception is some recent work by Juditsky et al. (2013) who present checkable and
“weak” conditions which lead to performance guarantees for the Lasso.

A.3 Score vectors for the projection estimators in Section 3.2.2

For the score vectors in Section 3.2.2, we consider two proposals based on Ridge and
Lasso regression. Regarding the former, consider

Z
(j)
Ridge = ([(XTX + λI)−1XT ]j·)

T ,

where Aj· denotes the jth row of a matrix A. The corresponding estimator becomes

b̂Ridge;j =
(Z

(j)
Ridge)

TY

(Z
(j)
Ridge)

TX(j)

= usual Ridge estimator for βj standardized with the factor 1/(Z
(j)
Ridge)

TX(j).
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The corrected estimator is denoted by

β̂Ridge−corr;j as in (8) based on Z
(j)
Ridge,

which has been proposed in Bühlmann (2013).

The second approach using Lasso regression is motivated from classical least-squares
methodology in the p < n settings: we can obtain the jth coefficient β̂OLS,j by running
a least-squares regression of Y versus the residuals from (least squares) regressing X(j)

against all other variables {X(k); k 6= j}. In the high-dimensional setting with p > n,
we construct the residuals from a Lasso-regression of X(j) versus {X(k); k 6= j}, and

this residual vector is our vector Z
(j)
Lasso. The corresponding estimator is then

β̂Lasso−corr;j as in (8) based on Z
(j)
Lasso,

as proposed in Zhang and Zhang (2011) and further analyzed in van de Geer et al.
(2013).

A.4 Mathematical assumptions for methods providing measures of un-
certainty

We summarize, on a superficial level, the mathematical assumptions underlying various
methods.

A.4.1 P-values from single sample splitting: Algorithm 1

For asymptotically valid p-values, in the scenario where p� n, the single sample split-
ting Algorithm 1 requires an identifiability assumption for the design X, for example a
compatibility or restricted eigenvalue condition. Also a rather standard sparsity condi-
tion is required, saying that |S| log(p)/n → 0, where |S| denotes the cardinality of the
active set, i.e., the number of non-zero regression coefficients. Furthermore, the method
is justified when assuming a beta-min condition (5) (Meinshausen et al., 2009): such a
beta-min condition can be slightly weakened to a “zonal” assumption for the underlying
regression coefficients (Bühlmann and Mandozzi, 2013): the non-zero coefficients need
to be either sufficiently large in absolute value (i.e. |βj | > const.

√
log(p)/n if βj 6= 0)

or sufficiently small (i.e. |βj | < L where L is depending on various characteristics).

Although rigorous theoretical justification has been given for linear models with Gaus-
sian errors only (Meinshausen et al., 2009), the method should provide asymptotically
valid p-values for other models (e.g. generalized linear models) when requiring a condi-
tion on the design and on the unknown coefficients (i.e. a beta-min or zonal assumption).

A.4.2 P-values from multiple sample splitting: Algorithm 2

The multiple sample splitting Algorithm 2 requires exactly the same assumptions as
the single splitting technique discussed above. Thus, the additional reproducibility,
avoiding a “p-value lottery”, and often also additional power come for free.

34



A.4.3 P-values from projection estimators in Section 3.2.2

The main difference to the sample splitting methods, regarding underlying mathemat-
ical assumptions, is that the projection estimators do not make a beta-min or zonal
assumption for the unknown regression coefficients, except that the regression coeffi-
cient vector should be sparse with |S| log(p)n−1/2 → 0 (van de Geer et al., 2013). As
usual (and e.g. for the sample splitting procedures), the projection estimators also
require some identifiability conditions on the design, for example a compatibility or
restricted eigenvalue assumption.

To achieve optimality in terms of semiparametric efficiency, when using β̂corr−Lasso, some
sparsity assumption on the design is made: for linear models, the work in van de Geer
et al. (2013) requires that regressing one covariable against all others is a sparse problem
where the number of nonzero coefficients is of small order o(n/ log(p)).

A.4.4 Stability selection

Stability selection does not require an explicit condition on e.g. the regression coefficient:
it only assumes that the selection method Ŝ performs better than random guessing, and
this seems indeed a rather weak condition. The restriction, however, comes in terms
of a so-called exchangeability condition (Meinshausen and Bühlmann, 2010): for linear
models, it essentially means that the selection of noise covariables is equally likely among
all inactive (noise) variables.
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