
SIP (2020), vol. 9, e16, page 1 of 15 © The Author(s), 2020 published by Cambridge University Press in association with Asia Paci
c Signal and Information Processing

Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence

(http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative

Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

doi:10.1017/ATSIP.2020.15

original paper

High dynamic range image compression based
on visual saliency
jin wang,1,2 shenda li1 and qing zhu1

With wider luminance range than conventional low dynamic range (LDR) images, high dynamic range (HDR) images are more

consistent with human visual system (HVS). Recently, JPEG committee releases a new HDR image compression standard JPEG

XT. It decomposes an input HDR image into base layer and extension layer. The base layer code stream provides JPEG (ISO/IEC

10918) backward compatibility, while the extension layer code stream helps to reconstruct the original HDR image. However,

this method does not make full use of HVS, causing waste of bits on imperceptible regions to human eyes. In this paper, a visual

saliency-based HDR image compression scheme is proposed. The saliency map of tone mapped HDR image is �rst extracted,

then it is used to guide the encoding of extension layer. The compression quality is adaptive to the saliency of the coding region of

the image. Extensive experimental results show that our method outperforms JPEG XT pro�le A, B, C and other state-of-the-art

methods. Moreover, our proposed method o�ers the JPEG compatibility at the same time.
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I . I NTRODUCT ION

Most of the digital images we can see on the Internet are
called low dynamic range (LDR) images. Their pixel val-
ues range from 0 to 255, and the ratio of max luminance
to min luminance is 255, which may not re�ect the real
world exactly. High dynamic range (HDR) images provide a
wider luminance range compared to LDR images, and they
are closer to human visual system (HVS). Instead of con-
ventional output devices, displaying HDR images requires
high-bit-depth output devices. But for now, most existing
output devices can only show LDR images. The general
solution for this problem is to use a tone-mapping operator
(TMO) that converts HDR to LDR images [1], thus any LDR
device can display the tonemapped version of HDR images.
HDR images can improve quality of experience in most of
multimedia applications, such as photography, video, and
3D technology. But a primary drawback of HDR images is
that memory and bandwidth requirements are signi
cantly
higher than conventional ones. So the compression method
targeting for HDR images is in great need. For this reason,
more and more researches have focused on this 
eld.
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Although some researchers are interested in HDR only
compression schemes [2], the most popular image com-
pression technique is still JPEG (ISO/IEC 10918). For most
users, if they only have JPEG decoder on their devices,
they will not know any information about the HDR con-
tent. As a result, an HDR image compression algorithm
should provide JPEG compatibility to users only who have
JPEG decoder. JPEG committee proposed JPEG XT stan-
dard (ISO/IEC 18477), which is a JPEG compatible HDR
image compression scheme [3, 4]. The JPEG XT standard
aims to provide higher bit depth support that can be seam-
lessly integrated into existing products and applications.
While o ering new features such as lossy or lossless repre-
sentation ofHDR images, JPEGXT remains backward com-
patible with the legacy JPEG standard. Therefore, legacy
applications can reconstruct an 8-bit/sample LDR image
from any JPEG XT code stream. The LDR version of the
image and the original HDR image are related by a tone-
mapping process that is not constrained by the standard and
can be freely de
ned by the encoder. Although the JPEGXT
standard promotes the development of HDR imaging tech-
nology and is widely accepted, still there is much room for
improvements.

Khan [5] proposed a non-linear quantization algorithm
aiming at reducing data volume of the extension layer. This
method can signi
cantly enhance the amount of details pre-
served in the extension layer, and therefore improve the
encoding e!ciency. It is also proved that the quantization
algorithm can improve the performance on several exist-
ing two-layer encoding methods. Iwahashi et al. [6] used
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noise bias compensation to reduce variance of the noise.
They de
ned noise bias as the mean of the noise in the
same observed pixel value from di erent original values,
and compensated it according to an observed pixel value.
This method has positive e ect on bit rate saving at low
bit rate lossy compression of LDR images. Pendu et al.
[7] designed template-based inter layer prediction in order
to perform the inverse tone mapping of a block without
transmitting any additional parameter to the decoder. This
method can improve accuracy of inverse tone-mapping
model, thus obtained higher SSIM of reconstructed HDR
images. Korshunov and Ebrahimi’s work [8] is more inter-
esting. They demonstrated no one tone-mapping algorithm
can always stand out when compared with others. The
choice of the best algorithm not only depends on the con-
tent, but also depends on the device used and other envi-
ronmental parameters. They take all of those factors into
consideration and optimize the performance. Fujiku et al.
[9] 
rst calculated a base map, which is a blurred version
of the HDR image, and used it to generate the LDR image.
Their method is suitable to preserve local contrast and has
lower computational complexity. Choi et al. [10] proposed
a novel method that is completely di erent from others.
They generated the residual data in the DCT domain. The
encoder predicted the DCT coe!cients of the input HDR
image based on LDR image, then prediction coe!cients and
DCT domain residual are encoded. Because inverse DCT
process is not required in encoding phase, their method is
rather e!cient.

Although all of these methods are e ective in most
situations, the HVS factor is not considered. The pur-
pose of HDR is to improve the quality of user’s visual
experience and make multimedia content more consis-
tent with HVS. This means that some information in the
image may be insensitive to the human eyes, but many
bits have been wasted in encoding the redundant imper-
ceptible information. Therefore, we should make a com-
promise between the high quality of the salient areas and
the degradation of the non-salient areas. Feng and Abha-
yaratne [11] propose anHDR saliency estimationmodel and
apply the visual saliency to guide HDR image compression.
However, their work focuses on the saliency estimation
model and existing HDR codec is used as a Blackbox. In
this paper, we focus on the compression of HDR image
with the guidance of visual saliency and propose a visual
saliency-based HDR image compression scheme. We ana-
lyze and discover the correlation between visual saliency
and residual image in HDR image compression. We use
the extracted saliency map of a tone mapped HDR image
to guide extension layer encoding. The correlation between
visual saliency and residual image is exploited to adaptively
tune the quantization parameter according to saliency of
image content. We incorporate the visual saliency guid-
ance into the HDR image codec. This will ensure much
higher image quality of regions that humans are most
interested, and lower quality of other unimportant regions.
Our contributions are summarized into the following three
points:

(1) A visual saliency-basedHDR image compression scheme
is proposed, in which the saliencymap of a tonemapped
HDR image is used to guide extension layer encoding.

(2) The correlation between visual saliency and residual
image in HDR image compression is analyzed and
exploited, which ismodeled to adaptively tune the quan-
tization parameter according to saliency of image con-
tent.

(3) Extensive experimental results show that our method
outperforms JPEG XT pro
le A, B, C and other state-
of-the-art methods while o ering JPEG compatibility
meanwhile.

The rest of the paper is organized as follows: Section II
illustrates background information of this paper. Section III
introduces the proposed method in details. Experimental
results are given in Section IV, we 
rst analyze the e ect
of di erent saliency models and in�uence of quality range.
Then we compare the proposed scheme with JPEG XT pro-

le A, B, C and other state-of-the-art methods. Finally,
discussions and conclusions are given in Section V.

I I . PREL IM INARY

A) JPEG XT

In JPEG XT standard part 7, a backward compatible HDR
image compression scheme is proposed [3]. It is able to
encode images with bit depths higher than 8 bits per chan-
nel. The input HDR image I is encoded into base layer B
and residual layer R codestreams as shown in Fig. 1. Base
layer B is the tone mapped version of input HDR image I,
which can be compressed by the JPEG encoder, and the base
layer codestream is constructed to provide JPEG backward
compatibility. The residual layer codestream allows a resid-
ual layer decoder to reconstruct the original HDR image I
starting from the base layer B. The coding tools of the over-
all JPEG XT infrastructure used to merge B and R together
are then pro
le dependent. Since that, the two-layer JPEG
compatible compression framework has received univer-
sal approval. The choice of TMO is open to users. JPEG
XT does not de
ne an encoder, but provides three schemes
about how to reconstruct the HDR image, named pro
les
A, B, and C. The main di erences between them is how to
merge the base layer image and extension layer image.

Pro
le A reconstructs the HDR image I by multiplying
a luminance scale µ with the base image B after inverse
gamma correction using the 
rst base non-linearity�A.

I(x, y) = µ(R0(x, y)) · [C�A(B(x, y))

+ v(SC�A(B(x, y))) · DR⊥(x, y)], (1)

whereC andD are 3× 3matrices implementing color trans-
formations,µ(·) is a scalar function of the luma component
of the residual layer R, and R⊥ is the residual layer pro-
jected onto the chroma-subspace. The matrix C transforms
from ITU-R BT.601 to the target colorspace in the resid-
ual layer.D is an inverse color decorrelation transformation
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Fig. 1. Framework of JPEG XT.

from YCbCr to RGB in the residual layer to clearly separate
the luminance component from the chromaticities at the
encoding level. These matrices are also commonly used in
the other two pro
les. S is a row-vector transforming color
into luminance, and v(·) is a scalar function taking in input
luminance values.

Pro
le B reconstructs the HDR image I by computing
the quotient that can be expressed as a di erence in the
logarithmic scale:

I(x, y)i = σ exp(log([C�B(B(x, y))]i)

− log(�B([DR(x, y)]i) + ε))

= σ
[C�B(B(x, y))]i

�B([DR(x, y)]i) + ε
, (i = 0, 1, 2), (2)

where i is the index of the RGB color channels. �B and
�B are two inverse gamma applied to the base and resid-
ual layers respectively. �B has the objective to linearize the
base layer, while�B intends to better distribute values closer
to zero in the residual layer. The scalar σ is an exposure
parameter that scales the luminance of the output image to
optimize the split between base and residual layers.

Pro
le C also employs a sum to merge base and resid-
ual images, but here �C not only approximates an inverse
gamma transformation, but implements a global inverse
tone-mapping procedure that approximates the TMO that
was used to create the LDR image. The residual layer R is
encoded in the logarithmic domain directly, avoiding an
additional transformation. Finally, log and exp are substi-
tuted by piecewise linear approximations that are implic-
itly de
ned by reinterpreting the bit-pattern of the half-
logarithmic IEEE representation of �oating-point numbers
as integers. The reconstruction algorithm for pro
le C can
then be written:

I(x, y) = ψ exp(�̂C(CB(x, y))

+ DR(x, y) − 215(1, 1, 1)T), (3)

where �̂C(x) = ψ log(�C(x)), in which �C is the global
inverse tone-mapping approximation. 215 is an o set shift to

make the extension image symmetric around zero. The code
streamnever speci
es�C directly, but rather includes a rep-

resentation of �̂C in the form of a lookup-table, allowing to
skip the time-consuming computation of the logarithm.

B) Visual saliency

When watching at an image, human attention may be
attracted by some speci
c regions, while other regions
will be neglected. Visual saliency characterizes the most
sensitive regions to HVS. In general, there are two cat-
egories of models to estimate the visual saliency of an
image: bottom-up model and top-down model. In bottom-
up model, saliency is only determined by how di erent a
stimulus is from its surroundings. Top-down model, how-
ever, takes into account the internal state of the organism
at this time [12]. Due to huge di!culty and dependency
of prior knowledge, top-down model is less popular than
bottom-upmodel. Here, we introduce somemethods based
on bottom-up model.

All of these models can be divided into global meth-
ods and local methods, or the combination of them. Cheng
et al. [13] proposed a global method base on histogram
contrast. The saliency of a pixel is de
ned using its color
contrast in Lab color space to all other pixels in the image.
Hou et al. [14] proposed a global method in log-spectrum
domain. They calculated spectral residual of an image,
and constructed the corresponding saliency map accord-
ing to the spectral residual. Instead of global method,
Achanta et al. [15] considered local method. In their opin-
ions, saliency is determined as the local contrast of an
image region with respect to its neighborhood at various
scales. They added three saliency maps together, which
is obtained in di erent scales, and got the 
nal saliency.
Goferman et al. [16] combined both global and local meth-
ods. Their method considered local low-level features,
i.e. contrast and color, and global features to get better
result.

In recent years, saliency estimation of HDR image also
has been considered [11, 17, 18, 19]. Feng and Abhayaratne
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Fig. 2. Framework of our proposed method. (a) Encoder (b) Decoder.

[11] propose an HDR saliency map detection method
containing three parts: tone mapping, saliency detection,
and saliency map fusion. Brémond et al. [19] proposes a
Contrast-Feature algorithm to improve the saliency com-
putation for HDR images. Due to wider luminance range,
calculating saliency map of HDR image is more di!cult.
However, the principle does not change, some traditional
methods are also available.

I I I . PROPOSED METHOD

A) Framework of our scheme

In this paper, we propose a JPEG compatible HDR image
compression scheme based on visual saliency. The frame-
work of our work is as shown in Fig. 2.

In Fig. 2(a), the input HDR image is 
rst tone mapped
to get the corresponding LDR image. There are many pre-
vious works on tone mapping [20, 21, 22]. Rana et al.
[20] and [21] propose a locally adaptive, image-matching
optimal TMOwhich is guided by the support vector regres-
sor (SVR) based predictor model. Rana et al. [22] propose
a fast, parameter-free and scene-adaptable deep tone-
mapping operator (DeepTMO) based on conditional gener-
ative adversarial network (cGAN).Weneed to point out that
many existing tone-mappingmethods can be applied in our

compression framework, and more recent tone-mapping
methods will lead higher performance. In order to focus on
our compression scheme itself and make a fair comparison
with existing compression methods, while considering the
e!ciency of the entire codec, we use a simple logarith-
mic function for tone mapping. Then the LDR image is
encoded by JPEG (quality q) and sent to base layer code-
stream. The reconstructed LDR image, which is decoded by
JPEG decoder, is used to encode the residual. The saliency
map of reconstructed LDR is extracted by existingmethods.
Then all HDR values which are mapped to the same LDR
value are averaged, and a look-up table is created for inverse
TMO (ITMO). The ITMO of reconstructed LDR image is
used to approximate the HDR image. Finally, the di er-
ence between original HDR image and approximated HDR
image is called residual. In extension layer, we use another
JPEG-based coding scheme (quality Q), and adaptively set
di erent Q for di erent blocks. Instead of converting to
YCbCr color space, we directly encoded the residual in RGB
color space. As for decoding, as shown in Fig. 2(b), the base
layer codestream provides JPEG compatibility, which can
be decoded by JPEG decoder. Then, the saliency map of
reconstructed LDR image is extracted to guide the exten-
sion layer decoding, which is just the sameway as encoding.
At last, the residual image and ITMO of the reconstructed
LDR image are combined to obtain the 
nal reconstructed
HDR image.
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Table 1. Correlation between residual image and saliency map.

Image q Cheng [13] Hou [14] Achanta [15] Goferman [16] Average

Memorial 30 0.0688 0.1911 0.3840 0.2092 0.2631

60 0.1989 0.1998 0.4528 0.2404

90 0.3096 0.2047 0.4557 0.2426

AtriumNight 30 0.0264 0.1831 0.5557 0.2140 0.1755

60 0.0385 0.1932 0.1313 0.1935

90 0.0238 0.1901 0.1496 0.2067

Tree 30 0.4993 0.2925 0.3832 0.3483 0.3891

60 0.5254 0.2945 0.4016 0.3303

90 0.5400 0.2932 0.4220 0.3392

Nave 30 0.1141 0.0724 0.2849 0.0203 0.1428

60 0.1845 0.0766 0.3277 0.0254

90 0.1665 0.0704 0.3109 0.0595

Rosette 30 0.4373 0.1883 0.4420 0.2857 0.3544

60 0.4708 0.1951 0.5002 0.2914

90 0.4710 0.1889 0.4933 0.2883

BigFogMap 30 0.2062 0.1333 0.3443 0.2502 0.2302

60 0.1226 0.1133 0.3626 0.2465

90 0.1473 0.1509 0.3952 0.2903

Rend06 30 0.0602 0.2256 0.0438 0.1364 0.1261

60 0.0711 0.2028 0.0686 0.1536

90 0.0920 0.2271 0.0670 0.1651

Rend09 30 0.1416 0.1985 0.0534 0.1956 0.1762

60 0.1581 0.2188 0.0437 0.1968

90 0.1566 0.2414 0.2830 0.2265

Average 0.2179 0.1894 0.3065 0.2148

B) Residual analysis

The residual image is de
ned as follows:

res = I − ITMO(DEC(COM(TMO(I)))), (4)

where I denotes the original HDR image, TMO and
ITMO denote the tone-mapping operator and correspond-
ing inverse TMO,COM andDEC denote JPEG compression
and decompression. Residual mainly comes frommany-to-
one mapping in TMO and ITMO and/or quantization error
in JPEG compression and decompression.

In this section, we 
rst analyze the correlation between
residual and saliency map. Before calculating saliency map,
the reconstructed LDR image is 
rst gamma corrected with
γ = 1/2.4. The saliency maps are extracted by four dif-
ferent methods [13, 14, 15, 16]. For those methods which
can not obtain full resolution saliency map, bicubic inter-
polation is applied to extend the obtained saliency maps
to full resolution. The saliency is normalized to 1 by
equation (5):

Sal′(m, n) =
Sal(m, n)

∑

m

∑

n Sal(m, n)
, (5)

where Sal and Sal′ denote saliencymap before and after nor-
malization respectively. The correlation coe!cient between
two matrixes is de
ned as:

r =

∑

m

∑

n(Amn − Ā)(Bmn − B̄)
√

(
∑

m

∑

n(Amn − Ā)2(
∑

m

∑

n(Bmn − B̄)2
, (6)

where A and B denote two matrices, and Ā =
∑

m

∑

n Amn,
B̄ =

∑

m

∑

n Bmn.

We averaged correlation between saliencymap and abso-
lute value of residual in red, green, and blue channels.
We changed base layer image quality q. From Table 1 we
can see that for most cases, the residual images have rela-
tively high correlation with the saliency maps. We notice
for some cases the correlation coe!cients between them
are not very high, the reasons are from the following three
aspects after our study. The 
rst reason is the saliency
estimation method. We need to point out that all these
saliency estimation methods are objective approximations
of saliencymechanismofHVS, thus their results aremore or
less inconsistent with the groundtruth. These four saliency
estimation models extract saliency maps based on di er-
ent principles. From the results, the Achanta’s method [15]
has the highest average correlation. This model calculates
the di erence between the pixel value of a point and its
neighboring pixels on di erent scales, and then superim-
poses this di erence on di erent scales. For smaller regions,
the di erence between the pixel and its surrounding pix-
els on any scale can be detected, and its saliency is the
sum of these three di erent scales. Larger image areas can
only be detected at larger scales. So this model always
highlights small areas. In HDR images, the reconstruc-
tion error of the bright area is often the highest, that is,
the residual is the largest. The scale of the bright area is
generally not large and rarely appears continuously. This

ts the essence of the model and therefore has the high-
est correlation, thus we choose this model in our scheme.
The Hou’s method [14] has the lowest average correla-
tion because it considers the frequency domain charac-
teristics. The essence of the residual error is the sum of
losses in the mapping and compression process, which
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Fig. 3. Visualization of residual layers and saliency maps from di erent methods for test images Memorial, AtriumNight, Tree, and Nave. For each row, the 
rst
image is the residual layer, the second to the 
fth images are saliency map extracted by Cheng’s method [13], Hou’s method [14], Achanta’s method [15], and
Goferman’s method [16] respectively. (a) Memorial, (b) AtriumNight, (c) Tree, (d) Nave.

is not related to the frequency domain. On average, this
model is not suitable to guide the compression of HDR
images. The second reason is the compression quality. In
general, the di erences among correlation coe!cients are
not large when the same image is compressed with dif-
ferent quality, so the correlation coe!cients are nearly
the same for di erent compression quality. The exception
is the correlation between the residuals of AtriumNight
and the saliency maps obtained using Achanta’s method
[15]. They are very relevant on low-quality images. How-
ever, the correlation decreases signi
cantly as the com-
pression quality improves. One possible reason is that
high-quality images retain more details, and these newly
appeared details makes the relevant local image blocks in

low-quality images no longer relevant. The third reason is
the test images. There is vast di erence among the con-
tent of di erent images, which show quite di erent fea-
tures. We 
nd that not all image residuals are correlated
with saliency maps. For example, the correlation coe!-
cients of Nave and Rend06 are low, which indicates that
the residuals of the two images are not concentrated in the
visually signi
cant areas but in the insensitive areas. For
Tree and Rosette, the average of their correlation coe!-
cients exceed 0.35, even up to 0.5. This shows that these
image residuals are very related to saliency, that is, the
areas with large residuals are also the areas that the human
eye are sensitive to. For most cases, we can draw this
conclusion.
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Fig. 4. Visualization of residual layers and saliency maps from di erent methods for test images Rosette, BigFogMap, Rend06, and Rend09. For each row, the

rst image is the residual layer, the second to the 
fth images are saliency map extracted by Cheng’s method [13], Hou’s method [14], Achanta’s method [15], and
Goferman’s method [16] respectively. (a) Rosette, (b) BigFogMap, (c) Rend06, (d) Rend09.

More intuitive results can be found in Figs 3 and 4. It
is more obvious from Figs 3 and 4 that the residual layer
and the saliency map are highly correlated. Speci
cally, the
probability that the residual layer and the saliency map
are “light” or “dark” at the same location is very high,
which indicates that it is reasonable to use the saliency map
to approximate the distribution of the residuals. For the
decoder, although the distribution of the residuals cannot be
obtained, it is possible to obtain a saliencymap based on the
reconstructed LDR image, thus obtaining the approximate
distribution of the original residuals. Applying this property
to compression will e ectively guide the decoder to allocate
the code stream more reasonably, and 
nally improve the
overall quality of image compression.

C) Adaptive quality parameter

As we can see in Section III B), there exists correlation
between residual and saliency map. As a result, we can use
visual saliency to guide residual layer coding.

In JPEG coding, an image is divided into 8× 8 blocks,
thus we also can segment the saliency map in the same
way. We 
rst normalize the saliency map by equation (5).
Then we sum up the saliency of each block, calculating
the mean saliency S̄ of all blocks. We specify the base-
line quality of extension layer Q, but it is just an “average”
quality of all the blocks. For the blocks whose saliency
are greater than S̄, their quality is much higher, otherwise,
the quality is lower. Equation (7) shows the relationship
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Fig. 5. Example of extension layer quality distribution matrix. (a) Reconstructed LDR image, (b) Saliency map, (c) Extension layer quality distribution.

between them:

dQ = round

⎧

⎨

⎩

−k × S̄/s s < S̄

0 s = S̄

k × s/S̄ s > S̄

, (7)

where s denotes the saliency of current block, and k is the
parameter to control range between themaximumandmin-
imumof the quality. dQ is “relative quality” of current block.
As a result, the quality of current block is:

Qada = Q + dQ. (8)

In order to avoid negative quality for the least salient
region, we set minimal dQ to −Q/2. The relative quality
calculated by (8) is adjusted to 100 if it is greater than 100.
Equation (9) shows the 
nal quality of each block.

Qada =

⎧

⎨

⎩

Q/2 Qada < Q/2
100 Qada > 100
Qada otherwise

. (9)

As a result, quantization level is adaptively selected
according to saliency. Thus the rate-distortion performance
of extension layer coding can be optimized. Take Fig. 5
as an example, in this case, baseline quality Q is 70 and
k is0.4. Using equation (5), we can get the highest qual-
ity 77 and the lowest quality 46. The whole process is as
depicted in Algorithm 1. Our proposed visual saliency-
based HDR image compression and decompression are as
in Algorithms 2 and 3 respectively.

I V . EXPER IMENTAL RESULTS

A) Experimental setup

In this section, extensive experiments are carried out to
validate the performance of our compression scheme. We

Algorithm 1 Extension layer quality calculation

Input:

Baseline quality Q, coe!cient k.
Output:

Extension layer quality.
Main:

1: Get saliency map;
2: Use equation (5) to normalization;
3: Calculate saliency of each block and average saliency;
4: Calculate relative quality by equation (7);
5: Calculate extension layer quality by equation (8);
6: Adjust extension layer quality by equation (9);

return Qada.

Algorithm 2 Compression algorithm

Input:

HDR image.
Output:

Base layer codestream c1 and extension layer codestream
c2.
Main:

1: Get saliency map;
2: Tone mapping HDR image to LDR image;
3: Use JPEG to encode LDR image to get c1;
4: Calculate residual by equation (4);
5: Use Algorithm 1 to calculate extension layer quality;
6: Use extension layer quality to encode extension layer by
JPEG to get c2;

return c1,c2.

implement our proposed method in PC with Window 10
andMATLAB 2016b. The eight test images are fromWard’s
HDR image set [23], as shown in Fig. 6, with their details
shown in Table 2.
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Algorithm 3 Decompression algorithm

Input:

Base layer codestream c1 and extension layer codestream
c2.
Output:

LDR image and HDR image.
Main:

1: Decode c1 to get LDR image;
2: if JPEG user:
3: return LDR image;
4: elseHDR user:
5: Inverse tone mapping LDR image to get HDR image;
6: Use Algorithm 1 to calculate extension layer quality;
7: Decode c2 to get extension image;
8: Add base image and extension image;
9: returnHDR image;
10: end if

HDR visible di erence predictor 2 (HDR-VDP-2) is
adopted as evaluation metric as it is most consistent with
human eyes [24]. As the most widely used method to esti-
mate HDR image quality, it can predict similarity between
a pair of images and calculate mean-opinion-score of test
images.

B) Quality range adjusting

Asmentioned in Section III B), k is the parameter to control
the range of quality. In this section,we evaluate the in�uence
of di erent k. Test image Memorial and Achanta’s saliency
detectionmethod [15] is used. Then, we set base layer image

Table 2. Details of test images.

Image Resolution Dynamic range(log10) Size(MB)

Memorial 512× 768 4.8 1.27

AtriumNight 760× 1016 4.1 2.47

Tree 928× 906 4.4 2.81

Nave 720× 480 6.0 1.09

Rosette 720× 480 4.4 1.14

BigFogMap 744× 1128 3.6 2.56

Rend06 1024× 1024 3.6 2.41

Rend09 1024× 1024 3.9 2.93

quality q equal to extension layer quality Q. The result is
shown in Fig. 7.

The result shows that: (1) Adaptive quality parameter is
better than
x quality. k = 0meansQ is equal to all blocks. It
is obvious that setting quality adaptively has positive e ect.
(2) At low bit rate, k �= 0 has almost the same performance
as k = 0. Because the baselineQ itself is small, the quality of
non-salient region is extremely small, probably discarding
all residual information. When the bit rate increases, all the
blocks can obtain a suitable quality. (3) As k increases, the
quality distribution become more and more uneven. In this
case, when the quality is high, salient region can be nearly
lossless coded. However, quality of other regions is not so
satisfactory. Generally, set a moderate k can optimize the
performance.

C) Bitstream balancing

In this paper, bitstream balance refers to the bitrate alloca-
tion between the base layer and the extension layer when
the total bitrate is 
xed. In previous section, we balance

Fig. 6. Test image set.
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Fig. 7. Di erent quality ranges.

the bitstream between salient and non-salient regions in the
extension layer. In this section we discuss the allocation of
bitstream between the base layer and the extension layer.
The practical signi
cance of this discussion is that when
the user’s storage or bandwidth are limited to a 
xed bit
rate C, it is important to distribute these bitstreams to the
base layer and the extension layer to achieve best quality of
reconstructed HDR image.

In the following experiments, we 
xed the total bit rate at
2, 3, and 4 bpp respectively. As shown in Fig. 8, we can draw
these conclusions from the experimental results: (1) Amod-
erate distribution can get the best result, over-allocating on
either base layer or extension layer is not always good. (2)
With the increase of bitstream, the optimal point moves to
the right, which means base layer tends to occupy more
bitstream. (3) The gap between optimal point and other
points shrinks rapidly when the bitstream is su!cient. That
means bitstream balance is quite a problem at low bit rate.
However, as the total bitstream is enough, allocating the
bitstream between base layer and extension layer has little
e ect on overall performance.

D) Comparison with JPEG XT and other
methods

To validate the e!ciency of our proposedmethod, wemake
extensive comparisonwith othermethods. Asmentioned in
Section II A), we do not take JPEG XT pro
le D into con-
sideration, so we compare our method with pro
les A, B,
C. They are implemented by JPEG XT working group [25],
and the recommended parameters are used in our exper-
iments. Besides that, we compare our method with other
state-of-the-art work, such as Choi et al. [10],Wei et al. [26],
and Feyiz et al. [27]. HDR-VDP-2 [24] and SSIM [28] are
adopted as the evaluation metric of objective quality. In our
proposed method, Achanta’s saliency map is applied due to
its highest correlation to residual image, and the parameter

Fig. 8. Bitstream balancing.

is set as k = 0.3. The objective quality comparison results
are as shown in Figs 9 and 10.

In general, our method outperforms all of other meth-
ods, except for low bit rates. One possible reason is that
the baseline quality Q is not so high when the bit rate is
low, which may cause severe degradation in non-salient
region. As a result, the total HDR-VDP-2 of whole image is
inferior to JPEG XT. However, when the bit rate increases,
the balance between salient regions and non-salient ones
is desirable. So our proposed method is better than other
methods when the bit rate is su!cient.

We also compare the subjective quality at a 
x bit rate,
as shown in Figs 11, 12 and 13. For clarity of comparison,
the decoded image is zoomed in speci
ed region (100× 100
pixels). The regions in red square are salient regions and
regions in blue square are non-salient ones. As we can see,
in salient regions, our method achieves best quality. While
in non-salient region, our method is comparable to JPEG
XT pro
les A, B, and slightly inferior to pro
le C.

V . CONCLUS IONS

In this paper, a visual saliency-based HDR image compres-
sion scheme is proposed. It divides the input HDR image
into two layers, base layer and extension layer. The base layer
codestream provides JPEG backward compatibility, and any
JPEG decoder can reconstruct LDR version of HDR image.
Extension layer codestream helps to reconstruct the orig-
inal HDR image. The saliency map of tone mapped HDR
image is 
rst extracted, then is used to guide extension layer
coding. For the most salient region, we set the highest qual-
ity, and the quality of other regions is adaptively adjusted
depending on its saliency.

Extensive experiments have been conducted to validate
the proposed scheme. We analyze the correlation between
residual image and saliencymap extracted by some classical
approaches. It can be easily proved that local model visual
saliency will get better result. We also analyze the in�uence
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Fig. 9. HDR-VDP-2 results comparison with di erent methods.
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Fig. 10. SSIM results comparison with di erent methods.
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Fig. 11. Visual quality comparison of memorial with di erent methods at 3.2 bpp. (On the left is the original image, top two rows on the right are non-salient regions
of reconstructed image, and two bottom rows on the right are salient ones. From left to right, the 
rst row is original image, o!cial implementation of JPEG XT
pro
le A,B,C, the second row is Choi’s method10 [10], Wei’s method21 [21], Feyiz’s method22 [22], and our proposed method, respectively.)

Fig. 12. Visual quality comparison of AtriumNight with di erent methods at 2.0 bpp. (On the left is the original image, top two rows on the right are non-salient
regions of reconstructed image, and two bottom rows on the right are salient ones. From left to right, the 
rst row is original image, o!cial implementation of JPEG
XT pro
le A,B,C, the second row is Choi’s method10 [10], Wei’s method 21 [21], Feyiz’s method 22 [22], and our proposed method, respectively.)
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Fig. 13. Visual quality comparison of BigFogMap with di erent methods at 2.7 bpp. (On the left is the original image, top two rows on the right are non-salient
regions of reconstructed image, and two bottom rows on the right are salient ones. From left to right, the 
rst row is original image, o!cial implementation of JPEG
XT pro
le A,B,C, the second row is Choi’s method [10], Wei’s method [26], Feyiz’s method [27], and our proposed method, respectively.)

of quality range. Experimental result shows that a moderate
parameter can control the quality range well. Then, we use
them to guide extension layer compression, and compare it
with JPEG XT pro
les A, B, C. Using HDR-VDP-2 as eval-
uation metric, our method outperforms JPEG XT standard
in both objective and subjective quality. The main reason
is that our method balances the bit rate between salient
regions and non-salient ones. This is a desirable trade-o 
to ensure higher quality of information that is signi
cant to
human eyes, and lower quality of redundant imperceptible
information.

As to the running time, our proposed method is slower
than JPEG XT, because saliency map and relative quality
need to be calculated in both encoder and decoder side.
The computational complexity of calculating saliency map
is scheme dependent, while relative quality is easily com-
puted. So in practice, a simple saliency extraction algorithm
can keep the running time almost the same as JPEG XT.
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