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ABSTRACT

We present a high dynamic range (HDR) imaging algorithm

that utilizes a modern rank minimization framework. Lin-

ear dependency exists among low dynamic range (LDR) im-

ages. However, global or local misalignment by camera mo-

tion and moving objects breaks down the low-rank structure

of LDR images. The proposed algorithm simultaneously esti-

mates global geometric transforms to align LDR images and

detects moving objects and under-/over-exposed regions us-

ing a rank minimization approach. In the HDR composition

step, structural consistency weighting is proposed to generate

an artifact-free HDR image from an user-selected reference

image. We demonstrate the robustness and effectiveness of

the proposed method with real datasets.

Index Terms— HDR, Rank Minimization, Alignment.

1. INTRODUCTION

Radiance of a scene has far wider dynamic range than the

dynamic range of consumer cameras. Due to the limited dy-

namic range of cameras, the photographer should adjust the

range to focus on the region of interest of a scene by control-

ling the exposure time. Modern digital cameras provide pho-

tographers with convenient functions such as auto-exposure

to a focused region. However, the user cannot avoid under- or

over-saturation if the captured scene has a large difference be-

tween low and high radiance. The issue of HDR composition

therefore must be addressed to overcome the inherent differ-

ence between the dynamic range of human visual perception

and that of electronic imaging devices in practice.

To recover the wider range of scene radiance, conven-

tional approaches inversely follow an image acquisition

pipeline and estimate sensor irradiance from multi-exposure

images. These HDR composition methods with multi-

exposure LDR images recover radiance maps of static scenes

well. However, there are difficulties in directly applying the

conventional methods because ghost artifacts and alignment

errors occur due to both global transformations among LDR

images by camera shake and local misalignment by moving

objects and under-/over-saturation.

In this paper, we present an Intensity Observation Model

(IOM) that describes an intensity acquisition pipeline from
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sensor irradiance to image intensity. From the IOM, a linear

dependent relationship (rank-1 representation) among differ-

ently exposed images naturally arises. We exploit the linearity

in the IOM to handle geometric transformations and misalign-

ment in a unified rank minimization framework with a rank-1

constraint.

2. RELATED WORK

Mann and Picard [1] and Debevec and Malik [2] are consid-

ered pioneer works in the field of HDR imaging. In [1, 2],

they estimate the camera response function (CRF) and com-

pose radiance maps from multi-exposure images with the as-

sumption; that a static scene is captured with a fixed cam-

era. Ward [3] presents a translation based alignment algo-

rithm to account for camera motion among multi-exposure

images. The method searches translational motions along the

X/Y-axis. In practice, real camera motions by hand shake

include rotational motions that cannot be modeled with trans-

lations. Also, captured scenes may contain moving objects,

which cause ghost artifacts in the HDR image.

There have recently been some efforts to make artifact-

free HDR images. Gallo et al. [4] detect artifact regions

using a linear property of log radiance values by a block-wise

comparison. While their approach can handle ghost artifacts,

blocking artifacts may remain near block boundaries. Heo et

al. [5] propose a ghost-free HDR imaging framework by

using a joint bilateral filter approach. They align LDR im-

ages by homographies and detect ghost regions using graph

cuts [6]. The method shows appealing results, but there are

many parameters in each step and due to the heuristic com-

bination of various algorithms the results strongly depend

on the performance of each algorithm. For instance, ghost

detection results tend to be sensitive to threshold parameters

and the method fails to recover ghost-free HDR images if any

unsuitable parameter is selected.

Contrary to the above methods, our work is based on the

inherent property from an image acquisition model, and also

provides a joint optimization approach for registration and

outlier detection simultaneously.

3. PROPOSED ALGORITHM

In this section, we formulate the HDR composition as a rank

minimization problem that simultaneously estimates a set of

geometric transformations to align LDR images and detects

both moving objects and under/over-saturated regions.
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3.1. Low-Rank Structure of Multi-Exposure Images

For a static scene, multi-exposure images taken from a fixed

camera are linearly proportional to the exposure time ∆t un-

der a linear CRF, because the sensor irradiance R of the scene

is constant [7, 8]. While a linear relationship is imposed

among the images, we cannot directly observe the ideal re-

lationship in practice due to artifacts such as camera motions,

moving objects, and intensity saturation.

We model a forward-intensity acquisition pipeline, called

an IOM, in consideration of the artifacts. The artifacts from

moving objects or saturation occupy a relatively small region

in the LDR images. They are modeled as sparse error ES

with sparse non-zero entries and large magnitudes. The cam-

era motion is represented as g in the homography transforma-

tion group G, which is a p-parameter group. Therefore, the

intensity image I is observed though the IOM as

I = f (k(R+ ES)∆t) ◦ g−1, (1)

where f denotes CRF, ◦ is the element-wise mapping oper-

ator, and k denotes a constant scaling factor. We assume a

linear CRF because it can be estimated by various calibra-

tion methods even if images are unaligned (e.g.Grossberg et

al. [9]). Under this assumption, each observed image is rep-

resented as

Ii ◦ gi = f
(

k
(

R+ Ei
S

)

·∆ti
)

= kR ·∆ti + kEi
S ·∆ti (if f is linear)

= Ai + Ei (Ai = kR ·∆ti,

Ei = kEi
S ·∆ti), (2)

where i denotes an image index of multiple input images.

By stacking the vectorized images Ii, we construct the ob-

served intensity matrix O = [vec(I1)| · · · |vec(In)] ∈ R
m×n,

where m and n are the number of pixels and images, re-

spectively. We then use matrix representation for A =
[vec(A1)| · · · |vec(An)], E = [vec(E1)| · · · |vec(En)], and

g = {g1, . . . , gn} ∈ R
p×n. The IOM from Eq. (2) is rep-

resented as a matrix form O ◦ g = A + E. Each column of

the matrix A is spanned by sensor irradiance R. This means

that the aligned observation O ◦ g is equal to the background

irradiance A, which is the rank-1 matrix, if there is no artifact

in a scene (E = 0). In practice, the rank of O ◦ g is higher

than 1 due to the aforementioned artifacts. Therefore, HDR

composition that is robust to outliers becomes a problem

to decompose the observation matrix O ◦ g into the rank-1

matrix A and sparse error matrix E, and simultaneously to

estimate transformations g that make the matrix O possibly

close to rank-1.

3.2. Rank Minimization Approach

Our formulation is inspired by Peng et al. [10], which is a

batch image alignment task [11] that utilizes low-rank and

sparsity of the matrices A and E. We observed that the solu-

tion from [10] includes some outliers as inliers and vice versa,

and the alignment accuracy is degenerated when the number

of inputs in O is very limited. Such limited observations are

common in HDR problems due to a practical reason. Com-

mon HDR methods capture images with only 2-5 exposures,

and the use of five exposures could be enough to cover almost

all the informative dynamic range of a scene.

To derive a more satisfying solution, we utilize the prior

rank information as a constraint. We encourage the constraint

as an inequality constraint to robustly deal with residual fac-

tors, which cannot be modeled with sparsity with large magni-

tudes (e.g. Gaussian noise has dense entries with small magni-

tudes). With the rank constraint, our rank minimization prob-

lem is formulated as follows:

A∗,E∗ = argmin
A,E

rank(A) + λ‖E‖0,

subject to O ◦ g = A+E, rank(A) ≧ 1, (3)

where ‖·‖0 denotes l0-norm (the number of non-zero entries

in matrix), and λ is the weight for sparse error. Unfortu-

nately, solving Eq. (3) is known to be intractable and opti-

mization with an inequality constraint is not easy. We ap-

proximate Eq. (3) by the convex relaxation [12, 13, 10] and

encourage the constraint by replacing the rank(·) and inequal-

ity rank constraint with the sum of singular value ratios of A,

similar to the definition in [8]. Minimizing the sum satisfies

the constraint and is equal to minimizing the residual rank of

A, because the first ratio is always 1. Our convex relaxed

objective function is given by

A∗,E∗,g∗ = argmin
A,E,g

∑

min(m,n)
i=2

σi(A)

σ1(A)
+ λ‖E‖1,

subject toO ◦ g +
∑

n
j=1Jj∆gǫjǫ

T
j = A+E, (4)

where σi(A) denotes the i-th singular value of A, Ji =
∂
∂ς
vec(Ii ◦ ς)|ς=gi ∈ R

p×n is the Jacobian of the i-th image

with respect to the transformation gi (we invite the reader to

[10] for details about the Jacobian representation.), and {ǫi}
denotes the standard basis for Rn. To avoid trivial solutions,

we use the ratio of singular values instead of directly using

singular values [8].

3.3. Optimization

The proposed objective function in Eq. (4) is a constrained

optimization problem. Lin et al. [14] propose an augmented

Lagrange multipliers (ALM) method to minimize high di-

mensional nuclear norm, and Peng et al. [10] adapt the ALM

method to solve the similar problem of Eq. (4). These ap-

proaches are known as scalable and fast convergence meth-

ods. We follow the optimization procedure in [10]. Let us

define h(A,E,∆g) = O ◦ g +
∑n

j=1 Jj∆gǫjǫ
T
j −A−E.

The proposed Lagrangian function of Eq. (4) is then given by

L(A,E,∆g,Z, µ) =
∑

min(m,n)
i=2 σi(A)/σ1(A) + λ‖E‖1

+ < Z, h(A,E,∆g) > +
µ

2
‖h(A,E,∆g)‖

2
F , (5)
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where µ is a positive scalar, Z ∈ R
m×n is an estimate of

the Lagrange multiplier matrix, <,> denotes the matrix inner

product, and ‖·‖F denotes the Frobenius norm. To solve this

easily, Eq. (5) is divided into three sub-problems for A,E,
and ∆g and iteratively minimized. The sub-problems for E

and ∆g are identical with [10], and therefore those problems

can be solved by [15, 10]. The reader can refer to papers [15,

10] for details. The sub-problem for A is updated by fixing

the other variables, and it is derived by

At+1 = argmin
A

L(A,Et,∆gt,Zt, µt)

= argmin
A

∑

min(m,n)
i=2 σi(A)/σ1(A)

+ < Zt,O
′ −A−Et > +

µt

2
‖O′ −A−Et‖

2
F

= argmin
A

µ−1
t

∑

min(m,n)
i=2 σi(A)/σ1(A)

+
1

2

∥

∥A− (O′ −Et + µ−1Zt)
∥

∥

2

F
, (6)

where O′ = O ◦ g +
∑n

j=1 Jj∆gǫjǫ
T
j , and t indicates the

iteration index.

We normalize A by l2-norm in the initial step. Then,

σ1(A) becomes 1 and Eq. (6) can be solved by the Partial Sin-

gular Value Thresholding (PSVT) operator [16] (rank-1 case):

Pτ [Y] =U(DY 1 + Sτ [DY 2])V
T

= argmin
X

1

2
‖X−Y‖

2
F + τ

∑

min(m,n)
i=2 σi(X),

where DY 1 = diag(σ1, 0, · · · , 0),

DY 2 = diag(0, σ2, · · · , σl),
(7)

where τ > 0 and Sτ [X] = {max(0, x−τ)} denotes the entry-

wise soft-thresholding operator [15]. U,V and D(= DY1
+

DY2
) correspond to the singular value decomposition of Y.

In Oh et al. [16], the PSVT operator provides the closed-form

solution of Eq. (7).

For each iteration, At+1 can be updated with P as

At+1 = P[O′ −Et + Zt/µt, µ
−1
t ]. (8)

3.4. HDR composition

Since different exposure images capture different dynamic

range of a scene, taking multiple exposure images and com-

bining them may create a more informative image that cap-

tures all details of the scene. LDR images are combined by

H(x) =
∑n

i=1 W
i(x) ·Ri(x)/∆ti, where n represents the

number of input images and H(x), Ri(x), and W i(x) denote

the estimated radiance, the sensor irradiance, and the weight

of the pixel located at x in the ith exposure, respectively.

Instead of direct use of a low-rank matrix, we use ra-

diometrically calibrated intensity Ri(x), and utilize the es-

timated sparse error as a weight, due to the following reason.

A photographer might want to compose a HDR image with a

moving object that appears in one of multi-exposure images.

Hence, the composition quality relies on the weight term W ,

which can help to remove undesired artifacts and to leave de-

sired objects by selecting a reference image.

In this paper, we use two different weighting terms given

as

W i(x) =
W i

E(x)
N
∑

i=1

W i
E(x)

·
W i

S(I
i(x))

N
∑

i=1

W i
S(I

i(x))

, (9)

where WE and WS denote structure consistency and satura-

tion weighting terms, respectively.

Structural Consistency Assessment In images taken at

different times, each image may have different foreground

content. Therefore, it is useful to let the user select the ref-

erence image frame. We can generate HDR images with any

reference image because we already know the exact informa-

tion for inconsistent regions from the sparse error matrix E.

We define the structural consistency weight term as

W i
E(X) =

{

1 , if i = iref,

exp
(

−‖Ei(x)‖
2
2 /σ

)

, otherwise,

where Ei(x) = vec
(

Ei
r(x), Ei

g(x), Ei
b(x)

)

, (10)

where σ is a variance and fixed to 3/255 in all experiments,

iref represents the image index selected as a reference, and

Ec
i (x) represents the magnitude of the sparse error matrix of

the c-color channel (in RGB space) at pixel location x.

Saturation Assessment The sparse error E is obtained

based on a majority of observations. Namely, if some re-

gions are over-exposed for more than half the input images,

a low-rank system may consider the over-exposure regions

as inliers. Thus, it is necessary to design another weight for

penalizing the undesired saturation. We observe that a simple

penalty such as WS(I) ≈ 0 for I = {0, 255}, WS(I) = 1
otherwise is sufficient, rather than a precise weighting func-

tion. We use the weighting function in [17], which has the

above property.

4. EXPERIMENTS

To show the performance of our method, we perform experi-

ments with real datasets. We set λ = 1/
√

max(m,n) where

m and n are row and column size of the matrix O during all

experiments; therefore there is no manual parameter. We ap-

ply a coarse-to-fine approach with a scale pyramid to avoid

local minima. The result from a coarser step is used as an

initial estimate of the next finer step. We compare our results

to results of Photoshop CS5 and Heo et al. [5]. For display, a

simple gamma function is applied to the results of Photoshop

and ours. For the results of Heo et al. [5], their tone mapping

is applied.

First, we perform global alignment with the Ache dataset [4].

The dataset consists of only five images and includes moving
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(b) 
(c) 

(b) Decomposition results 

(d) HDR results with reference #4 of Ache 

(a) Alignment results 

(f) HDR results of StandingPerson dataset 

(1) Photoshop (2) Ours 
(1) Photoshop (2) Heo et. al. (3) Ours 

(1) Background 
from RASL 

(2) Outlier 
from RASL 

(3) Background 
from Ours 

(4) Outlier 
from Ours 

(Top) Input 

(Middle) RASL 

(Bottom) Ours 

(e) HDR results of MovingPerson dataset (c) HDR results with reference #3 of Ache 
(1) Photoshop (2) Heo et. al. (3) Ours 

(1) Photoshop (2) Ours 

Fig. 1. Experiment results. (a) Alignment results (Top: Unaligned Input, Middle: RASL [10], Bottom: Ours). (b) Results of decomposition

to background and outliers from RASL and ours (c-d) HDR results from differently selected references of Ache dataset. (e-f) Additional

HDR results of Photoshop CS5 (left) and Ours (right).

objects. We additionally add geometric transformations with

a maximum of 5 degree rotation and 20 pixel translation to

each image for simulating camera motion. We compare our

alignment result to the result of RASL [10] and a resulting

average image is shown in Fig. 1-(a). Our method estimates

all the transformations accurately while RASL fails to esti-

mate transformations due to the limited number of samples

for directly applying their rank minimization approach.

Background estimations by decomposing the low-rank

matrix and sparse outliers from RASL and our approach are

shown in Fig. 1-(b). We apply both algorithms to each color

channel independently and transform all channel results into

a single canonical coordinate to align the results of RGB

channels. Ideally, the decomposed background (low-rank

matrix A’s) in Fig. 1-(b)-(1,3) should have similar intensities

with inputs where moving objects or saturation artifacts are

removed. In Fig. 1-(b)-(1), the brightness of background

from RASL has a large difference with our estimated back-

ground in Fig. 1-(b)-(3). The degenerated outliers (sparse

error matrix E’s) of RASL in Fig. 1-(b)-(2) yield dense non-

zero entries that should be originally sparse. In contrast, our

method shows the correct background scene in Fig. 1-(b)-(3)

and successfully detects outlier regions in Fig. 1-(b)-(4).

Figs. 1-(c,d) show HDR results with differently selected

references. In the results of Photoshop CS5 in Fig. 1-(c,d)-

(1), under-saturated radiance is observed. The result of Heo et

al. [5] in Fig. 1-(d)-(2) has ghost artifacts in moving object

regions. This originates from the performance of the unsta-

ble moving object detection. In contrast, our results clearly

reconstruct the HDR images of scenes without any artifacts.

Figs. 1-(e,f) show additional results. The results from Pho-

toshop CS5 have artifacts due to the aforementioned reason

while our results properly recover HDR images including

moving objects.

5. DISCUSSION AND CONCLUSION

We show that the low-rank (especially rank-1) and sparsity

models offer key information to analyze dynamic scenes con-

taining camera motion, moving objects, and saturation. By

virtue of advanced optimization methods, the artifacts are

effectively decomposed by our unified method without any

manual parameters. The performance and robustness of the

proposed method are demonstrated with real datasets. There

is room to improve the perceptual quality of HDR. As fu-

ture work, we will investigate preserving color balancing and

include outcomes in our unified framework.
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