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Abstract. We present a collection of methods and algorithms able
to deal with high dynamic ranges of real pictures acquired by digital
engines e.g., charge-coupled device (CCD/CMOS) cameras. An ac-
curate image acquisition can be challenging under difficult light con-
ditions. A few techniques that overcome dynamic range limitations
problems are reported. The presented methods allow the recovery
of the original radiance values of the final 8-bit-depth image starting
from differently exposed pictures. This allows the capture of both
low- and high-light details by merging the various pictures into a
single map, thus providing a more faithful description of what the
real world scene was. However, in order to be viewed on a common
computer monitor, the map needs to be compressed and requan-
tized while preserving the visibility of details. The main problem
comes from the fact that the contrast of the radiance values is usu-
ally far greater than that of the display device. Various related tech-
niques are reviewed and discussed. © 2003 SPIE and IS&T.
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1 Introduction

Scenes from the real world can exhibit a broad range of
light variations. This is particularly true for scenes contain-
ing both areas of low and high illumination, like a dark
room with a sunlit window. Also, the presence of objects
with reflective or opaque surfaces contributes to the variety
of local light levels. It is clear that in such scenes, the
dynamic range, where the term refers to the ratio of the
highest and lowest recorded level of light, can be very high.
Thus it is impossible to obtain an adequate representation
of a scene having a wide dynamic range by using a film or
a digital still camera ~DSC! as a recording system. There
will be an information loss due to the limited dynamic
range of the used device. In the case of a DSC, the dynamic
range is usually described in terms of the ratio between the
maximum charge that the sensor can collect ~full well ca-

pacity! and the minimum charge that just overcomes sensor
noise ~noise floor!. The light values captured by a CCD or
CMOS sensor are usually finally quantized ~linearly or not!
in a range between @0:255# to produce an 8 bit per pixel
storage, even if more bits were initially used by the sensor
analog to digital converter ~ADC! to cover the input signal.
This yields a coarse resolution interpretation of the physi-
cally, continuously varying values present in the real world.
Information loss is observed in highly illuminated areas
~where all light variations are mapped to the same value,
and thus become saturated! and in dimly illuminated areas
~where information is overridden by sensor-noise-
producing pixel values floating nearly between 0 and 1 in a
random fashion!. Today most DSCs incorporate some kind
of automatic gain control ~AGC! acting accordingly with a
metering technique1,2 to allow the users to take pictures
without worrying about the exposure settings of the device.
In the ‘‘manual mode,’’ it is possible to selectively adjust
camera settings ~the so-called exposure bracketing!, until a
subjective satisfactory representation is obtained. It is clear
that these techniques allow only a slight control on where
information loss will occur. Furthermore, once portions of
the dynamic range have been definitively lost, there is no
way to restore them, even using some sort of postprocess-
ing technique.3 However, if multiple pictures of the same
scene are acquired using different exposure settings, each
of them will reveal different details, covering a wider dy-
namic range than the one that would have been captured
with a single shot: pictures taken with short exposure times
provide highlight information and vice versa. Multiple
shots are acquired with the aim of merging them into a
single image of increased dynamic range ~see Ref. 4 for a
merging technique used to increase image resolution!. Mul-
tiple pictures are used to obtain an estimation of the origi-
nal quantities of light falling on the sensor cells, providing
an approximation of what the original scene was, called a
radiance map. These maps somehow go further than a
usual 8 bit image, since information is expressed in arbi-
trary ranging, floating point values. To be displayed on a
common CRT monitor of limited dynamic range with finite
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available intensity values, the maps need to be compressed
and requantized. In the following sections, some techniques
to build and represent radiance maps are described and
compared. Some experimental results are also presented.

2 Radiance Map Recovery

When the observed scene contains a wide dynamic range
exceeding the one of the recording medium, there is no way
to prevent information loss in high-light or shadowed de-
tails. Once details are lost ~due to saturation or because
information has been completely overwritten by noise!,
even the application of postprocessing operations3 is com-
pletely useless. Besides this, it is possible to increase the
dynamic range by using the final 8 bit depth information
coming from multiple, differently exposed frames of the
same scene. Every image of the set provides a different
measurement of the light quantity falling on the sensor ar-
ray ~or on the film!, with each measure being more or less
reliable depending on the exposure: high-light measures are
accurate in images with low exposure and vice versa. The
exposure X is defined as the product,

X5I•t , ~1!

where I is the radiance and t the time of exposure to light.
When a pixel value Z is observed on the captured image,
the only information available is that it comes from some
scene radiance I ~at a certain exposure setting! mapped to Z
by some unknown function f. This mapping is seldom lin-
ear; pixel brightness values are not true measurements of
the relative radiance values. If a pixel value has twice the
value of another one, it rarely comes from the double of the
radiance value. Nonlinearity is more evident for film-based
systems, but even if digital image detectors are designed to
produce voltages that are linearly related to irradiance val-
ues, the mapping process from these voltages to the storage
medium often introduces nonlinearity, which is caused, for
example, by some form of gamma mapping,5 A/D conver-
sion, sensor noise, etc. Furthermore, often DSC cameras
have a built-in nonlinear mapping to mimic a film-like re-
sponse, since nonlinearity produces better images when
viewed on low-contrast displays. The more evident nonlin-
earity can be found at the saturation point of the response
curve ~the shoulder region!, where all radiance values are
mapped to white, and in the lower portion of the curve ~the
toe region!, where all radiance values are mapped to a near-
black value. By using differently exposed images, the mea-
sured brightness values change with the exposure, while
radiance values remain constant. Because of this, once the
imaging system transfer f function is known, it is possible
to use its inverse to estimate the underlying ~properly
scaled! radiance values and build an accurate estimation of
the original scene values: the so-called radiance map. In
the following sections, some of the main techniques devel-
oped for this purpose are examined.

2.1 High Dynamic Range (HDR) Image Recovering
Using Exposure Times

The algorithm described by Debevec and Malik6 considers
a sequence of N digitized pictures, representing the same
scene acquired at known exposure durations Dt j , j

51,2,...,N . The input images are used to estimate the cam-

era response function, and then to reconstruct the high dy-
namic range radiance map. Denoting with Z i j the i’th pixel

value of the j’th image, it is possible to relate pixel values
to exposures with the following equation:

Z i j5 f ~I i•Dt j!, ~2!

where I i are the unknown radiance values. Assuming that f

is monotonic ~this should be obviously true, because an
increase in radiance values always produces an increased or
equal recorded value!, its inverse can be obtained as fol-
lows:

f 21~Z i j!5I i•Dt j ~3!

taking the logarithm of both sides and substituting
log f21(Zij) with g(Z i j), we finally obtain:

g~Z i j!5log@ f 21~Z i j!#5log~I i!1log~Dt j!. ~4!

The problem consists in estimating the unknown values I i

and the different finite values ~Z values range in @0:255#!
that g can assume. This leads to minimizing the following
objective function:

O5(
i51

P

(
j51

N

$w~Z i j!@g~Z i j!2log~I i!2log~Dt j!#%
2

1l (
z5Zmin11

z5Zmax21

@w~z !g9~z !#2, ~5!

where N and P are the number of images and the number of
pixels of the images, respectively, l is a smoothing param-
eter, and w(Z) is a weighting function to anticipate the
smoothness of the curve in the middle region ~for example,
a triangular curve centered at 128!. More details for both
the parameter l and the use of the second derivatives of
g(Z) can be found in Ref. 6. A further constraint added to
the linear system, to fix a suitable scale factor, imposes
g(128)50. Equation ~5! can be solved using singular value
decomposition ~SVD!, but of course complexity makes it
impossible to use all of the available pixel values. In prac-
tice only a good subset of the pixel values is used. The
pixels considered should meet the following constraints:

1. to have a good spatial distribution all over the images

2. to be extracted from low variance regions where
noise and high radiance variations are less severe

3. to have a good tonal repartition: they should well
sample the input range.

The construction of the map is simply done by averaging
the different radiance estimates, provided by every image
of the set. In fact, from Eq. ~4!:

log~I i!5g~Z i j!2log~Dt j!. ~6!

An accurate estimate for I i , by weighting the different ra-
diance values, is then obtained as follows:
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log~I i!5

( j51
N w~Z i j!@g~Z i j!2log~Dt j!#

( j51
N w~Z i j!

. ~7!

Note how radiance values having mid-gray values are
weighted more heavily, since they can be trusted more in
the sense that they come from the middle portion of the
curve where the system is more sensitive. Each image, in
every point, provides an estimate of the underlying original
radiance value, with some of them less or more reliable,
depending of the portion of the curve it comes from. The
map reconstruction obtained by a suitable weighted average
is also used in a similar manner by the following tech-
niques. Figure 1 shows a subset of a sequence ~the full set
was composed by eight images! used to recover both curve
and radiance maps of the real scene. The images have been
captured by a conventional film camera and then digitized
using a scanner. Figure 2 ~left! shows the recovered re-
sponse curve, and Fig. 3 ~left! illustrates the weighting
function used.

2.2 HDR Recovery Using Automatically Estimated
Exposure Ratios

The basic concepts of the algorithm described by Mitsu-
naga and Nayar7 are nearly the same and they are briefly
described here. Different than Ref. 6, instead of using im-
ages with known exposure times, here exposure ratios be-
tween them are known. The response curve f is modeled as
a high-order polynomial function, which is supposed to be
monotonic or semimonotonic, and thus invertible. The only
available information is that the recorded final value of the

i’th pixel for the j’th image Z i j is related to the scaled

scene radiance I ie j , where e j is a scaling factor by some
mapping in the form

Z i j5 f ~I i•e j!. ~8!

Please note that the notation of Eq. ~8! is similar to Eq. ~2!,
and that the quantity I ie j is something equivalent to the
previously defined exposure. Thus, for example, having
two images where one has been exposed double the times
of the other yields a ratio of 0.5, and we could set e1

'0.66 and e2'1.33 ~since the absolute values of e j are not
important they are fixed such that their mean is 1!. Once
again we are interested in finding the inverse of Eq. ~8!:

g~Z i j!5 f 21~Z i j!5I ie j . ~9!

A polynomial function of order K is supposed for g:

Ie5g~Z !5 (
k50

K

ckZk. ~10!

The problem can thus be stated as recovering the order K

and the coefficients ck . If the ratios R j , j11 between the

image pairs ( j , j11) are known, then for a pixel value in
position i:

I ie j

I ie j11

5

g~Z i , j!

g~Z i , j11!
5R j , j11 . ~11!

Fig. 1 Four images extracted from a full sequence of a real scene.

Fig. 2 From left to right, the response curves obtained from the techniques described in Refs. 6, 7,
and 8. The first and the last curve are plotted using a logarithmic scale. This representation is consis-
tent with that used in the original research. The last curve shows the effective response functions just
for two images (where the second received 16 times more light than the first). All curves refer to the
sequence of Fig. 1.
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Like in the previous model, it has been derived as an ob-
jective function to be minimized:

O5(
j51

N

(
i51

P F (
k50

K

ckZ i , j
k

2R j , j11 (
k50

K

ckZ i , j11
k G 2

, ~12!

where N is the number of images and P the number of
pixels. The scale is fixed by imposing g(1)51 and the
ranges for both I and Z values are rescaled in the range
@0:1#. Since K is unknown, the evaluation of Eq. ~12! is
repeated for different values of K until the error is mini-
mized. For this reason an upper bound for K must be cho-
sen. An estimation of Eq. ~12! is obtained using only a
subset of the available pixel data by applying some selec-
tion criteria ~like in the previous model!. To merge the N
images into one radiance map, the pixel values Z of every
image are mapped onto the radiance values I by using the
recovered function and the scaling factors e. A useful fea-
ture consists of the possibility of automatically estimating
the ratios of the input images by using just raw initial esti-
mates. This is useful when the exact values are unknown.
The new ratio estimates are obtained starting from initial
user-supplied ratio values and minimizing Eq. ~12! by us-
ing Eq. ~10!. The process is repeated until the error induced
by Eq. ~12! meets a convergence criterion. However, we
have found this estimate to be successfull only if at least
five or six images are used. The obtained values are then
merged using a weighting function. For this purpose, in-
stead of using a hat or Gaussian function, we suggest tak-
ing the ratio of f and its first order derivative f 8, because
the more a signal is sensitive to changes, the more it can be
trusted. Figure 3 ~middle! shows the certainty function re-
lated to the previously computed curve illustrated in Fig. 2
~middle!, referring to the image sequences of Fig. 1. The
map construction process is thus similar to the technique
described in Ref. 6, differing only in the used weighting
function. In the case of color images, after recovering sepa-
rated functions for each channel, we propose a calibration
step, since estimated radiances are expressed in relative
units ~with any physical meaning!, where the scalings are
unknown. Calibration is performed by estimating three
scaling factors Kr , Kg , and Kb , such that the following

color constraint holds for all neutral color points and for all
channels c in the input images ~e.g., c5r , g, b!, thus pre-
serving relative color balancing:

IcKc

IrKr1IgKg1IbKb

5

Zc

Zr1Zg1Zb

. ~13!

A color Z is referred to as neutral when

uZc2mean~Zr ,Zg ,Zb!u/mean~Zr ,Zg ,Zb!,T , ~14!

where T is a suitable threshold value. This kind of simple
balancing could also be used for the other described tech-
niques.

2.3 HDR Image Recovery Using a Parametric
Response Curve

Another technique has been presented in Refs. 8 and 9. We
propose approximating the camera response function by us-
ing a simple parametric function f that relates pixel values Z
to the received light, called photoquantity q. Different para-
metrically formulated versions of Eq. ~15! are proposed.
The most flexible model is the following:

f ~q !5

1

~11exp$2@A log~q !#%!C , ~15!

where the unknown quantities are the parameters A and C,
and pixel values are supposed to range @0:1#. Parameters
estimation can be performed by using the following obser-
vation: having two different images of the same scene, ac-
quired with different exposure times, where the exposure
ratio between them is k, it is possible to write the following
statement:

g@ f ~q !#5 f ~kq !, ~16!

where g is a new unknown function expressing how a pixel
value of the first image becomes a new pixel value in the
second one. This relationship can be easily observed by
building up a cross-histogram of the two images: a 256

3256 plot where an entry at position ~x,y! means that the

Fig. 3 From left to right, the weighting functions used to build the radiance maps as described,
respectively, in Refs. 6, 7, and 8. The first and the last curve are plotted using a logarithmic scale. This
representation is consistent with that used in the original research. The last curve shows the deriva-
tives of the effective response functions just for two images (where the second received 16 times more
light than the first). All curves refer to the sequence of Fig. 1.
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gray level x of the first image becomes the gray level y in
the second image. Using Eq. ~15! we note that Eq. ~16! can
be rewritten as:

g@ f ~q !#5

f ~q !•kAC

@AC f ~q !•~kA
21 !11#C

, ~17!

where k represents the exposure ratio between two images.
By using the cross-histogram, the pair values

$ f (q),g@ f (q)#% are known, thus A and C can be retrieved
by means of nonlinear regression across well populated
pairs ~for example, using the Levenberg-Marquardt
method!. Once again the radiance map construction in-
volves a weighted average. From each image, the photo-
quantities q can be estimated by inverting the response
function and scaling the ratios k i . This is, to some extent,
equivalent to the previous algorithms. The adopted weight-
ing functions are the derivatives of the response functions
shifted by their ratios k i ~their meaning is intuitive, since
the higher the slope of the derivative for a fixed value, the
higher its reliability!. In this case the weight is computed
starting from the logarithms of the q quantities ~however,
as noted in Ref. 8 the weight could also be expressed in
terms of pixel values! and not from the pixel values. Figure
2 ~right! illustrates the shifted response curves, and Fig. 3
~right! shows their derivatives for two images of the se-
quence of Fig. 1, where one image was 16 times brighter
than the other. Curves are plotted using a logarithmic scale.
Even if this technique is a sort of simplification, it provides
an easily computable solution of the problem, avoiding the
complex system solving required by the previous two meth-
ods. This can be useful because even if, in theory, the re-
sponse functions should be estimated just once for a spe-
cific system, it could sometimes be necessary to repeat the
process for every image sequence if particular image-
dependant operations have been performed.

2.4 Storage of Radiance Maps

The previously discussed techniques are based on the same
principles. Results in building radiance maps are very simi-
lar, expecially for the two more accurate techniques. In
terms of recovered dynamic range, some differences can
sometimes be observed, mainly due to the specific software
implementation. For the sequence of Fig. 1, the recovered
range is somewhere near 1:6000. Furthermore, the pixel
values obtained after the radiance map recovery are usually
expressed as floating point values; to store these numbers
without losing any information, a floating point pixel map
could be used. But this is an expensive solution, since 32*3
bits for each pixel of an RGB image are required ~assuming
32-bit floating values!. That is why a good memory-saving
image format is described in Ref. 10, where color triplets
are represented using a mantissa/exponent format requiring
only 32 bits ~8 for the common exponent124 for the chan-
nels mantissas!. Radiance image files can also be useful to
simulate a kind of virtual camera, in the sense that, after
having saved the maps, the acquisition process can be
simulated by using the recovered response curves. Thus,
one can imagine an application where the user is allowed to
rephotograph the scene whenever he wants by using the

most satisfying exposure. Some industries are starting to
move in this direction.11 In the next paragraph an example
of this is used and shown.

2.5 Some Notes for Radiance Map Recovery on
Digitally Acquired Images

The raw output provided by a CCD image sensor represents
an image where neither gamma correction nor other algo-
rithms have been applied yet. In this case, camera response
is almost linear and the aforementioned simple parametric
model fits very well. We use some images acquired with
CMOS sensors to perform experiments. Digital still cam-
eras use CFA~color filter array! sensors to capture images.
A CFA is typically made up of an array of 232 elements
tiled across the sensor array ~see Fig. 4!. The number of
green pixels is greater than the number of red and blue
pixels because of the higher sensitivity of the human eye to
green light. This filter is known as the Bayer pattern,12 and
the final color picture is obtained by using a color interpo-
lation algorithm that joins together the information pro-
vided by the differently colored adjacent pixels. In our ex-
periments, we use only two images for building radiance
maps and then contrast reduction is applied. The main goal
of such experiments is the possibility of using the described
techniques to obtain a ‘‘nice looking’’ picture under diffi-
cult light conditions ~back or front lighting!, using as few
pictures as possible. The expression ‘‘nice looking’ picture’’
emphasizes the fact that we are not really interested in pro-
ducing physically correct radiance maps and renderings,
but images that exhibit less washed out details ~in the sense
of saturation and noise in dark areas!. We believe that for
consumer DSC users, this would be the most appealing
feature: the possibility of capturing images without worry-
ing too much about lighting conditions. Because of the
presence of the color filter array, the radiance map recovery
is performed after color interpolation by using a STMicro-
electronics patented algorithm, treating the output images
as simple RGB data. Figure 5 ~left! shows two images cap-
tured using a CMOS sensor, where the second one received
eight times more light than the first, allowing the coverage
of both high- and low-light details of the scene. The map
was built by using the simple parametric formulas de-
scribed before. Figure 5 ~right! shows the cross-histogram
of the two images and how well the estimated parameters
interpolate the sample data. It is worth mentioning that
CMOS sensors convey a lot of noise; thus the real cross-
histogram between the two images exhibits a lot of outliers

Fig. 4 The Bayer pattern.
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from the regular plot shown in Fig. 5. In fact, in order to get
rid of this noise, the histogram was regularized by discard-
ing not well-populated entries and by pixel averaging. If a
pixel p1 in the first image corresponds to many pixels

p21 ,p22 . . . ,p2n in the second picture, then they are all col-

lapsed in a single value P2 . To test, even if roughly, the
accuracy of the recovered map, this was virtually photo-
graphed into one of the input images using Eq. ~15!. Figure
6 shows the map photographed in the second of the input
images and the difference between the original and the rep-
lica ~properly scaled for visibility purposes!. A better alter-
native for radiance map construction consists of using the
Bayer pattern data directly; this would prevent a lot of

overhead computation. In this approach, the response
curves are recovered from the three channels; an extended
range Bayer pattern is generated and its range is com-
pressed and quantized to 8 bits before color interpolation.

3 Contrast Reduction

It has been shown how it is possible to combine multiple
exposures when creating high dynamic range radiance
maps. The next step consists of mapping the computed ra-
diance values, expressed in floating point precision, and
have arbitrary dynamic range in the input range ~typically
@0:255#! of a common display device. Problems arise from
the fact that usually CRT displays are capable of represent-

Fig. 5 Two images captured using a CMOS sensor with a relative exposure ratio of 8.8 (left) and
cross-histograms with their interpolating curves (right).

Fig. 6 A virtually photographed image (left) and the scaled differences between the original (right).
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ing a limited dynamic range ~usually around 50, in terms of
luminance values! which, furthermore, need to be quan-
tized into a limited number of possible gray values. Various
solutions have been proposed in the literature, some of
them taking into account very sophisticated features of hu-
man perception to produce ad hoc solutions. Some of these
methods, such as those described in Refs. 13 and 14 deal
with data expressed in absolute units @so that the response
of the human visual system ~HVS! can be taken into ac-
count#, which are usually not available to the common user.
Thus, these methods cannot be applied to images rendered
in fictitious raw units without any physical meaning. Gen-
erally speaking, the contrast reduction can be stated as the
following quantization problem:

Q@Val#5 ⌊~N21 !•F~Val!10.5⌋ with

F:@LoVal:HiVal#→@0:1# , ~18!

where N is the final quantization level ~typically N5256)
and @LoVal:HiVal# is the input dynamic range. The simplest
solution to this problem is to use a linear mapping such that
the maximum value is mapped to 1:

F~Val!5

Val

HiVal
. ~19!

Of course this kind of mapping is useless when the image
has a really wide dynamic range: the resulting image will
usually appear too dark. Gamma-corrected linear mapping
is another widely used solution in computer graphics, and
attempts also to compensate for nonlinear responses of dis-
play devices:

F~Val!5S Val

HiVal
D 1/q

qP@1:3# . ~20!

Other simple methods are exponentation and logarithmic
mappings. Exponentation mapping can be expressed as:

F~Val!5S LoVal

HiVal
D p/q

pP@0:1# qP@1:3# . ~21!

A form of logarithmic mapping can be found in Ref. 15:

F~Val!5F log~11p•Val!

log~11p•HiVal!
G1/q

pP@0,` ! qP@1:3# . ~22!

The main problem with formulas such as Eqs. ~21! and ~22!
concerns an appropriate selection of the involved param-
eters. To overcome this problem, a mapping that produces
similar results, providing a way to automatically set the
parameters, has been proposed in Ref. 16. The mathemati-
cal formulation of this operator can be expressed as:

F~Val!5

p•Val

p•Val2Val1HiVal
pP@1,` !. ~23!

The most appealing aspect of this method, besides its com-
putational speed, is the automatic selection of the parameter
p. In fact, Schlick has made the assumption that what really
changes on a visualization device, when several viewing
parameters are modified, is the M value of the smallest dark
gray level that can be distinguished from black. Thus Eq.
~23! should map the smallest nonzero floating-point value
~LoVal! of our raw image to this value M. This gives:

p5

M•HiVal2M•LoVal

N•LoVal2M•LoVal
'

M•HiVal

N•LoVal
. ~24!

The techniques described so far are very simple and do not
rely on the specific image content. A more adaptive tech-
nique has been proposed in Ref. 17. The relative adaptive
histogram adjustment is part of a bigger and really impres-
sive work, which also incorporates models for simulating
human visual system limitations such as glare, color sensi-
tivity, and visual acuity. However, histogram adjustment is
the first step of the algorithm, and also the only one that can
be implemented using arbitrary unit-expressed data. The
process starts by computing a small image, the fovea im-

Fig. 7 Two images captured using a CMOS sensor with respectively short and long exposure times.
The exposure ratio was not known but roughly estimated to be near 3.5.

High dynamic range imaging . . .

Journal of Electronic Imaging / July 2003 / Vol. 12(3) / 465



age, where each pixel represents one degree of the visual
area that will be used to determine adaptation levels at each
point. After having converted all luminance values into
brightness values ~by simply taking their logarithm!, an his-
togram is built, where values between minimum and maxi-
mum bounds Lw min , Lw max ~of the raw input image! are
equally distributed on the log scale. The cumulative distri-
bution function P(b) ~where b is a generic bin entry! is
defined in the usual way as:

P~b !5

(b i,b f ~b i!

T
, ~25!

where T is the total number of samples and f (b i) is the
frequency count for bin i. The derivative of this function
can be expressed as:

dP~b !

db
5

f ~b !

TDb
, ~26!

where Db is the size of each bin. Applying a histogram
equalization on the raw input, the output becomes an image
where all brightness values have equal probability. The
equalization formula, which always gives us a way to map
luminance values to display values, can be expressed as:

Bd5log~Ld min!1@ log~Ld max!2log~Ld min!#•P~Bw!, ~27!

where Bd is the output display brightness, Ld min and Ld max

are minimum and maximum display luminance values, and
Bw is the incoming brightness value. The main problem
with histogram equalization is that it easily exaggerates
contrast in those regions that are highly populated. To pre-
vent this, a ceiling procedure is applied on the histogram,
such that the contrast produced by equalization will never
be greater than those obtained using a linear mapping op-
erator. The ceiling can be written as:

dLd

dL
<

Ld

L
. ~28!

And from Eqs. ~26! and ~27! it can be easily obtained:

f ~b !,5

TDb

log~Ld max!2log~Ld min!
. ~29!

When the frequency count of some bin exceeds Eq. ~29!, it
is simply cut off, and the procedure is repeated until the
number of the corrected bins is under some defined thresh-
old. Figure 8 shows some renderings obtained using some
of the described techniques applied on the map constructed
by starting from the sequence of Fig. 1. Figures 9 and 10
show some mappings for the pair of Figs. 5 and 7, where it
can be seen that both low- and high-light information is
present, producing a complete rendering of the scene that

Fig. 8 From left to right, linear gamma corrected, Schlik, histogram adjusted, Retinex compressed
rendering for the radiance map recovered for the sequence of Fig. 1. The radiance map is built using
the method described in Ref. 6.

Fig. 9 From left to right, linear gamma corrected, Schlik, histogram adjusted, Retinex compressed
rendering for the radiance map recovered (using the parametric model8,9) from the two images of
Fig. 5.
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would seldom be possible to acquire using a single shot.
Other computationally more expensive solutions, aimed to
reduce the contrast of radiance maps not suitable for real-
time implementations, have been proposed in Refs. 18, 19,
and 20. These techniques are not global remapping func-
tions, as those described before. Instead, they act locally
and differently depending on the spatial locations of values
in the image. One of the first works stressing the need for
local operators was Ref. 21. In Ref. 18 the main idea that
we describe briefly consists of mimicking the way in which
a skilled artist acts when representing a high-contrast scene:
first he draws the main features and boundaries, then he
adds all fine details. Low curvature image simplifiers
~LCIS! are a set of differential equations that govern diffu-
sion of fluids across solids and that are based on the work
of Perona and Malik.22 Each equation is driven by a differ-
ent conductance threshold k to produce a set of different
details of the same image. Large values for k produce a
simplified image where only the main features are present,
while small values produce more detailed images. Once the
set of different detailed images has been generated, the
mentioned artist-like approach is inverted by recovering se-
lect details from the input map and subtracting smoothed
images from more detailed ones. At this point, the main
features are strongly compressed by multiplying the loga-
rithmically expressed input values with a scaling factor,
while fine details are only slightly compressed ~using big-
ger scaling factors!. Eventually, all differently scaled details

are summed together, exponentiated, and mapped to final
display values using a linear or gamma corrected mapping
to @0:255#. The main advantage of this technique is related
to the possibility of exhibiting all details contained in a
scene without losing contrast ~as opposed to what usually
happens using, for example, a logarithmic compression in
the presence of very wide dynamic ranges!, while draw-
backs consist of the unnatural final aspect of the picture and
high computation times ~the anisotropic diffusion equations
are applied iteratively on the input image!. On the other
hand, the correct choice of the various parameters involved
in the algorithm is very difficult, leading easily to anoma-
lous noise enhancement and halo artifacts. Figures 11 and
12 shows the detailed decomposition of a classical image
obtained from Ref. 23 that exhibits an enormous dynamic
range, and its LCIS rendering compared with a logarithmic
compressed one. The last rendering technique that we men-
tion here consists in taking advantage from the Retinex
dynamic range compression feature. The multiscale Ret-
inex mathematical formulation ~we are considering the
center/surround version of Refs. 19 and 20! is:

R i~x ,y !5 (
n51

N

wn•$log@I i~x ,y !#2log@Fn~x ,y !*I i~x ,y !#%,

~30!

where I i(x ,y) is the i’th color channel,* denotes convolu-

Fig. 10 From left to right, linear gamma corrected, Schlik, histogram adjusted, Retinex compressed
rendering for the radiance map recovered (using the parametric model8,9) from the two images of
Fig. 7.

Fig. 11 Base (simplified) image and three detail levels of LCIS decomposition. Images have been
properly scaled to achieve visibility and appear in gray scale, since LCIS is applied only on the Y
(luminance) channel.
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tion, and wn and Fn(x ,y) are the weight of the n’th scale

and the n’th Gaussian surround function, respectively.
Each scale represents a different Gaussian function of
different-sized space constant. The final RGB values are
obtained by remapping the computed R i(x ,y) values to
@0:255# after doing some clipping on their histogram distri-
bution. The main drawbacks of Retinex concern the wide
kernels of the surround functions involved in the convolu-
tion ~which require moving into the Fourier space! and the
optimal choice of parameters ~the number of scales, the
dimensions of space constants, the optimal remapping of
the final obtained values, etc.!. Examples of Retinex ren-
derings are shown in Figs. 8, 9, and 10, where parameters
were manually tuned until images looked satisfactory. The
rightmost image of Fig. 9 shows also the color constancy
feature of Retinex. Recently, another very promising algo-
rithm acting on similar principles of LCSI ~but avoiding
many of artifacts! has been described in Ref. 24 where
image gradients of large magnitude are selectively com-
pressed using an attenuating function. Solving a differential
equation from the modified gradients generates the final
image. Drawbacks consist, once again, of the high compu-
tational complexity required to solve the main differential
equations and the computation of an attenuation function
based on multiresolution decomposition.

4 Conclusions and Future Works

Various techniques dealing with expanding the dynamic
range of images are described. All techniques rely on using
differently exposed pictures of the same scene to enhance
the usual 8 bit depth representation of pictures. The im-
provement is obtained by estimating ~or using a preesti-
mated! a response curve and then building a floating point
radiance map that gives an approximate reconstruction of
how the original scene looked before the acquisition phase.
The map needs to be contrast reduced for viewing purposes
on a common CRT display. Various possible requantization
techniques are also described. Some of them are very
simple and could be easily implemented in real-time envi-
ronments, while others are computationally more expen-
sive. Such techniques can be useful when trying to obtain a

good picture under difficult light conditions using typical
consumer DSCs. Further investigation is needed to adapt
some of the presented techniques to work directly in the
Bayer pattern domain; such an implementation allows the
use of image data before color interpolation takes place, as
opposed to what is done for the images of this article. In
addition, if the input scene is critical, it is possible to auto-
matically decide when and how, in terms of exposure set-
tings, to acquire the frames. Automatic alignment of images
should also be included ~some sensor manufacturers25 are
starting to produce devices capable of acquiring in ‘‘one
shot’’ both underexposed and overexposed pictures without
any misalignment!. The basic ideas behind these techniques
introduce exciting possibilities for providing more range
detail to the final user and a better approximation of the real
scene that could also be saved and virtually photographed.
Dynamic range extension using differently exposed pic-
tures could also be achieved by using techniques based on
different principles such as the use of multiresolution fu-
sion. Interesting ideas have been proposed in Ref. 26.
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