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High Dynamic Range in Entomological

Scheimpflug Lidars
Mikkel Brydegaard , Benoit Kouakou , Samuel Jansson , Jens Rydell, and Jeremie Zoueu

Abstract—Minimizing insecticide use, preventing vector diseases
and facilitating biodiversity assessments are suitable applications of
recent advances in photonic insect surveillance and entomological
lidar. The tools also comprise a new window into fundamental as-
pect of the fascinating life and ecology of insects and their predators
in situ. At the same time, it is evident that lidars are subject to
finite detection range given by the instrument noise and saturation
levels, and therefore, intervals of the biomass spectra are sectioned
at different ranges. The Scheimpflug lidar allows an interesting
trade-off between high sample rate and low pulse energy for re-
trieving wing beat harmonics and slow sample rates with high pulse
energy for detecting small species far away. In this paper, we review
and revise calibration, sizing and associated deficiencies, and report
count rates to 104 insects/minute up to 2 km range. We investigate
if and how high dynamic range can be exploited in entomological
lidar and also how fast and slow sample rates could complement
each other and capture a wider span of the biomass spectrum. We
demonstrate that smaller insect can be detected further away by
long exposures and show consistency between the captured biomass
size spectra. However, we find unexpected discrepancies between
short and long exposures in the range distributions. We found that
vertebrates as well as specular insects can saturate signals. Error
sources and limitations are elaborated on.

Index Terms—Aerofauna, biophotonics, ecology, entomology,
environmental monitoring, laser radar, lidar, remote sensing.

I. BACKGROUND AND MOTIVATION

T
HE changing climate and the ongoing anthropogenic con-

version of the biosphere [1] leads to extinction of polli-

nating insects as well as invasion of new territories by pests
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and disease vectors. Pesticide overuse and light pollution [2]

pushes beneficiary insects and insectivores back towards the

few remaining nature reserves, particularly in the tropics [3]. A

rapidly changing world requires swift measures for conservation

ecology which in turn set demands for rapid diagnostics tools

in situ. However, when it comes to entomological surveys we

find ourselves blinded from the grand overview; what species

to catch? Which trap design and lure to use? How many?

Where to position traps in the landscape and when to empty

and with what frequency? The analysis of trap catches will

take months of work by dedicated experts, even in a limited

study.

This calls for engineering solutions and, hence, insect surveil-

lance was pursued from the 1970s by radar [4], [5]. Important

insights in insect migration insects have been revealed [6] as

well as clues to target identity [7]. However, clutter constrains

the applicability of radar near the ground.

Distributed sensors, or E-traps, have been proposed [8]–[11]

including commercial initiatives [12], [13]. Much of the dis-

cussion regarding positioning of the trap, the lure and species

biasing is, however, well known from the use of conventional

traps.

Entomological laser radar [14], hereafter called lidar, emerged

15 years ago [15], [16]. In particular, the Scheimpflug lidar

concept [17]–[19] greatly increased the efficiency of counting

insects in situ [20]–[22]. Implementation of multiple wavelength

[23]- or polarization [24]-bands makes it possible to interact with

molecules and microstructure in distant insects and improve

target classification [25]–[27]. Although the lidar penetration

into the phylogenetic tree cannot be compared to microscopic

and genetic analysis of trap catches or sweep netting, the classi-

fication can in principle be instantaneous and lidar can provide a

representative picture of flight activity across all species. Lidar

also makes it possible to study species over a large size span

from midges to birds and bats [20], [28], [29].

The optical power of E-traps and entomological lidars does

not differ noticeably, but the great advantage of lidars is that

the laser light is recycled meter after meter, thus a relatively

large probe volume can be trans-illuminated by sufficient inten-

sity. Consequently, lidars yield insect counts several orders of

magnitudes higher than E-traps. Whereas radar echoes decrease

by r4, since both the beam and the backscatter diverge, lidar

signals are generally thought to decrease by r2 since only the

backscatter diverges. This is, however, not necessarily true for

flat and specular targets [30], [31], including insect wings [32],

and effects of this will be presented in this report.
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TABLE I
VARIABLES, VALUES AND UNITS

∗diffraction limited size, ¤ for specular cases

In principle, lidars can be used vertically [29] or swept, to

produce radial 2D scans [33]–[35] or spherical 3D scans [36].

In practice, there are few reports attempting to quantitatively

evaluate and interpret range profiles of insects [35], [37]. A

major challenge is the necessity of accurate knowledge of the

beam shape at all distances and the handling of range dependent

detection limits. The latter implies that specific sections of the

aerofauna biomass spectrum is captured at different ranges.

In this paper we will first revise entomological lidar calibra-

tion. We will then explore benefits of high dynamic range by a

comparative investigation of the detection limits for insect sizing

and ranging for long and short exposures with high and low

pulse energies respectively (See Table I). Interesting ecological

aspects of how aerofauna activity changes during the course

of the day in relation to vegetation and light pollution is also

presented.

II. TEST RANGE AND INSTRUMENTATION

A. Test Range

The Ivorian Scheimpglug lidar [38] is positioned on the

second floor in the Instrumentation, Imaging and Spectroscopy

laboratory at Félix Houphouët-Boigny Institute, Yamoussoukro,

Ivory Coast. It overlooks the Ivorian bush with agricultural

patches with cassava and banana. Ground features also include

mango trees, palms and termite mounds. At the campus, aban-

doned houses and a partly collapsed basement provide shelter for

horseshoe bats and swallows. We report evening data from the

late hot and dry season with stable and reproducible weather.

The transect starts at 6°56’26.4”N 5°13’28.7” W and passes

under the canopy of a huge silk-cotton Ceiba tree at 6°53’30.1”N

5°13’13.4”W located 516 m away and heading 84°. A black

neoprene calibration target is mounted on the trunk of the tree.

In order to avoid saturation in long exposure mode, the beam was

directed off the target after calibration. The beam is horizontal

and fluctuating between 6 m and 14 m above ground in the

reported transect.

B. Scheimpflug Lidar

The instrument used is an entomological Scheimflug lidar.

The design resembles similar systems elsewhere [17], [19], [21],

[22], [24], [37], [39]–[42]. Such systems comprise a baseline,

mounted on a motorized tripod with a transmitter at one end and

a receiver at the other. The specifications are given in Table I.

The lidar data is acquired by a USB2 camera (Glaz LineScan1,

Synertronic Design, South Africa) with a linear CMOS sensor

(S11639-01, Hamamatsu, Japan). The device is controlled by

a custom made interface, provided by the manufacturer. In this

study, the sensor and lidar were operated at two distinct sampling

rates of 300 Hz and 3000 Hz during two consecutive evenings.

The sampling frequency and strobe signal in turn controlled the

laser diode modulation, intensity is constant but respective laser

energy per exposure is estimated to 2804 µJ and 225 µJ (see

Table I).

III. DATA AND CALIBRATION

In this section we revise the data format and calibration pro-

cedures, including various refinements compared to our earlier

reports [20], [39], [40].

A. Data format

Raw data is saved in files spanning 10 s each. These include

16 bit light intensity measurements, I(r,t), for 2048 pixel and

either 3000 or 30000 exposures for 300 Hz and 3000 Hz sample

rates respectively. The odd exposures, Iodd, include laser light,

Ibright(r), background light, Ibgr(r), and dark current, Idark(r).
The even exposures, Ieven, include background light and dark

current. Note that the dark current is denoted with range (pixel)

dependency. This is because of structured dark current on CMOS

and potential temperature gradients on the sensor.

We collected data during 4½ hours around sunset during two

consecutive days with fast and slow sample rates, respectively.

As we will see later, the day of slow sample rate was subject

to artificial light-pollution. In Fig. 1, an overview of the dataset

is presented. In these range-time maps each single column rep-

resents minimum-, median- and maximum- intensity values of
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Fig. 1. Time-range overview maps of the two successive evenings reported. The maps are color-coded such that each column represent the temporal minimum-,
median- and maximum- value for each pixel in each 10 s data file. Note that the range scale is logarithmic. During the evening the humidity and atmospheric scatter
coefficient increases, this increases the static atmospheric echo reflected minimum and median by magenta color. Occasional plumes also affect the static air echo.
Insects cause narrow spikes to the maximum signal and are seen as green dots. Large vertebrates can efficiently extinguish the entire beam, after which atmospheric
echo diminishes. This is seen as blue lines in 1a. The brightness in 1b have been increased tenfold to compensate for the shorter exposure. The lower panel 1c,
displays how the average properties of background sunlight (dark exposures), air signal (median) and noise (inter quartile range, IQR) changes throughout the
evenings.

each 10 s file and is color-coded accordingly. This color-coding

captures rare-events such as insects as bright dots.

B. Range Calibration and Resolution

Range calibrations are discussed in previous work [39], [40],

[43], [44]. We calibrated the range, r, by the geometry of

our lidar instrument and GPS coordinates of the lidar and a

calibration target at 516 m distance. Due to the triangulating

nature of Scheimflug lidar, range resolution [43] is thought

to deteriorate with tan(r) or approximately with r2. However,

the resolution also depends on the beam width [44], and by

strategically choosing the beam expander size [19], it is possible

to compensate for this deterioration by a converging beam and

attain a linearly deteriorating range uncertainty typically in the

order of 3% of r. The lidar beam can remain collimated (along

the axis of the lidar baseline) up to the farfield limit, rfarfieldII =
Ø2

Exp / 2.44 λ = 5 km. Whereas range estimation at distances

out to that of the calibration target is is fairly accurate, it can be

expected that small inaccuracies can cause ranging error to drift

when extrapolating to ranges beyond the calibration target. See

further discussion [45].

C. Instrument Function and Atmospheric Return

In analogy to spectral response curves of spectrometers, lidars

have a range response, referred to as the lidar form factor. This

function is distinct for the distributed atmospheric propagation

media and also for diffuse and specular hard targets. Because the

depth of each successive probe volume of Scheimpflug lidars in-

creases by r2, the backscatter increases accordingly. This implies

that the echo from the air or atmospheric return in Scheimpflug

lidars are not subject to r−2 attenuation, as known from Time-
of-Flight lidars. The atmospheric lidar formfactor is therefore

equivalent to the fraction of laser light transilluminating each

pixel footprint in the atmosphere. Due to beam expansion, the

beam is typically wider than the Field-of-View at close distance.

This is known as the region of incomplete overlap. The overlap

function of Scheimpflug lidars can be expressed as:

Goverlap(r) =
1

1 +
(

r0
r

)γ (1)

This sigmoidal response resembles previous analytical over-

lap functions [46] (1. is a hi-pass transfer function of order γ also

known as the loglogistic or Fisk’s cumulant). The r0 denotes

range of half overlap and γ is a steepness factor. For our setup,

we found r0 = 79 m and γ = 1.8. Previous work [19] gives a

longer indication of complete overlap than 2r0. We note that it

is comparable, but the previous estimate is based on geometrical

optics and gives a longer and more restrictive value.

Scheimpflug lidars commonly employ synchronized lock-in
detection for background rejection [18], [42], [47]. This implies

that the laser is switched on and off between even and odd
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exposures, and that the difference constitutes the lidar signals.

As in ordinary lock-in detection, there can be a phase delay,

ϕ, between the sampling (line array exposures) and the carrier

wave after the round trip. Thus, ϕ is range dependent and with

high sample rate the signal and dark timeslot will eventually

swap for the distant pixels. This phenomena can be expressed

and corrected for by a rotational matrix operation;
[

Ibright(r)
Ibgr(r)

]

=

[

cos sin
−sin cos

]ϕ(r)
[

Iodd(r) − Idark(r)
Ieven(r) − Idark(r)

]

(2)

ϕ(r) =
πfsr nair

c
+ ϕdriver (3)

Isig(r,t) = Ibright(r,t) − Ibgr(r,t) (4)

Ideally there is no driver delays, but we detectedϕdriver=0.9°

@ fs = 300 Hz and 4.1° @ fs = 3000 Hz. This constitute a laser

leak from odd to even exposures of 1.6% and 7% respectively.

This depends on laser diode fall-times and can be fixed by

improving the laser driver circuit, adjusting exposure times and

read-out gap and by choosing the right polarity on the trigger

flank. For now, this was corrected according to 2 to 4 and the

specified ϕdriver. Since the exposures and carrier wave are more

squared than sinusoidal, the range dependent time-of-flight loss

can be expressed as a triangle wave:

GToF (r,fs) = 1− 4fsr nair

c , 2fsrnair < c (5)

Our experiment employed a horizontal beam, and between oc-

casional plumes from agricultural burnings, the signal is smooth

in time and space, and the atmosphere can be assumed homo-

geneous. When this is the case, the expected lidar backscatter

should attain the form:

Gair(r,t) = e−2µs(t)r (6)

Since the 808 nm lidar band does not coincide with any

absorption bands in the atmosphere, the attenuation coefficient

entirely derives from scattering. Note that the scatter coefficient,

µs, varies with temperature and humidity, and thus commonly

changes during the evenings, see Fig. 1. At 808 nm, the minimal

µs value is 0.0025 km−1 (molecular Rayleigh scattering), but

typically the value varies between 0.1 km−1 in clear conditions

to 10 km−1 in dense fog. The homogeneous air lidar signal

can be found statistically by the time median [37] during clear

conditions. When this is the case, it can be described accurately

by the combined instrument function:

Iair(r,t) = E0 Sµs(t)Gair(r,t)GToF (r,fs)Goverlap(r) (7)

Here, E0 is the laser energy during the exposure and S is the

lidar sensitivity. This analytic function yielded an explanation

grade of 99.98% adjusted R2 when fitted to the median homo-

geneous air signal, see example in Fig. 2. We encountered S ≈

5.2 kBits km mJ−1. With our pulse energies, E0, of 2.8mJ @

300Hz and 0.3 mJ @ 3000 Hz and µs ≈ 0.1km−1, we acquired

respectively Isig ≈ 1.1 kBit and Isig ≈ 0.1 kBit, at complete

overlap, for comparison the single shot noise level (IQR) is

around Inoise = 0.1 kBit, see Fig. 1c. The modelled signal, Isig,

is compared to data in Fig. 2.

Fig. 2. When the atmosphere is homogenous, the retrieved air signal can
be accurately (R2: 99.98) described by an overlap function, the time-of-flight
desynchronization and the atmospheric scatter coefficient. This reduced lidar
sensitivity to a single value, S, in units of bits km J−1 to be compared to noise
bits or across systems.

D. Calibration of Insect Cross Sections and Sizes

Inspired from Radar Cross Sections [48] (RCS), an optical

cross section, σ, was introduced [49]. The backscattered cross

section quantity is the product of the geometrical cross section

from the projected aspect and the diffuse reflectance of a hard

target, σback scat. = AR. Correspondingly the extinction cross

section would be the product of area and opacity, σext. = A
(1-T) ≈ A (ballistic light is either scattered or absorbed when

transilluminating insects). In our setup σext. can be seen for

vertebrates (Fig. 1a) but is generally below noise threshold for

insects. The cross sections are wavelength dependent, and in the

near infrared in this study (700-1000 nm) mainly influenced by

melanin absorption. In the short wave infrared (1000–1700 nm)

it is primary affected by liquid water absorption. When resolved

at kHz sampling, the cross sections depend on the phase in the

wing beat cycle and can be decomposed into a body envelope

and oscillatory part. When wing surface normal coincides with

the beam, the spectral cross section can be explained by thin film

interference across the spectrum [32], [50]. For more details on

lidar light interaction with insects, see [51].

While insect cross sections can be characterized fairly accu-

rately in the laboratory [25], [52], [53], they are challenging to

estimate accurately remotely beyond the first digit. Such esti-

mate relies on the assumption that a) the insect is much smaller

than the beam, b) that the insect does not transit peripherally and

c) that the beam is top-hat rather than Gaussian, see discussion

[54]. In practice, the assumptions are partially valid.

At 808 nm the reflectance of most aerofauna is approximately

20% due to melanin [55]. On the other hand, specular conditions
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can yield scattering hundreds times relative to a Lambertian

white target [32].

Although optical cross section suffers from these deficiencies,

it remains as a fairly intuitive measure and one of the few

entities to compare between studies, species and instruments. In

laboratory, cross sections can be calibrated by white Lambertian

Teflon balls [25], [54]. In lidar studies like this, the beam is

inaccessible and we calibrate the value against a flat board at a

known distance, coated with black diffuse neoprene foam with

a reflectance, Rterm., of 1.8% @ 808 nm.

σterm = Rterm σprobe(rterm) (8)

Here, σprobe, is the spatial overlapping area of the beam

and field of view. We then use the analytical air signal in 7

to extrapolate the lidar sensitivity to other ranges accordingly:

σinsect(r,t)

=
σtermIair(rterm)r

2
insect

(

I(rinsect,t) − Iair(rinsect)

)

Iair(rinsect)r
2
term

(

Iterm − Iair(rterm)

) (9)

The equation can be checked by replacing the sub index term

“insect” with term “term.”. With the assumption of a homo-

geneous atmosphere, Iair denotes the instrument atmospheric

range response. In previous work [20] Iair was encountered em-

pirically by the temporal median and could assume any shape, in

this work Iair is analytical and noise free and derives from system

parameters and the momentary atmospheric scattering, µs(t).

The term σterm denotes a fixpoint with known cross section and

range. Such cross section assessment assumes that the insect

is fully embedded in the probe volume during the transit. This

is generally true, since most insects are small compared to the

probe volume of the lidar system, see parameters in Table I. The

probe volume is the spatial union of the emitted- and sensed

light flux (beam and field-of-view). The r2 terms in 9 represent

the assumption of diffuse Lambertian and omnidirectional scat-

tering from insect and calibration target. We will later return to

this discussion.

Apart from cross sections deduced from light intensities, we

also successfully applied an additional size measure; apparent

size, δinsect. This entity is deduced from opening-angle in the

beam and the pixel spread of the echoes according to;

pcent(t) =

∑

mask Iinsect(p,t)p
∑

mask Iinsect(p,t)
(10)

δinsect(t)=
r cos θsenslpix

Frec

√

∑

mask Iinsect(p,t)(p− pcent.)
2

∑

mask Iinsect(p,t)

Here, the center pixel, pcent, is calculated by the first statistical

moment (center of mass formula, CoM), mask denotes the pixels

and exposures exceeding the noise level. Apparent size, δinsect,
is then calculated as the root of the second statistical moment

of the echo (pixel spread) and rescaled by r and the system

parameters in Table I. The saturation bound of δ is given by

beam width at r, while the lower bound is given by the receiver

point spread function (PSF). In principle pcent and δinsect can

assume sub-pixel resolution, in practice both δ and σ are crude

size represented approximately only by the first digit.

Since insect envelopes varies from Gaussian- to top hat

shapes, and can include specular flashes, we choose to robustly

reduce the time dependent size measuresσinsect(t) and δinsect(t),

by taking the temporal median for their duration of the ob-

servation. In addition, note that wingbeats are not resolved in

the 300 Hz mode. Hereafter, each observation is represented

by a single pair of size measures. Note that apparent size is

unaffected by melanin and specular flashes. From their units

(see Table I), we understand that σ � δ2. A crude estimate of

diffuse reflectance of the insects is therefore Rinsect ≈ σδ−2.
Although σ is a measure of area, we know that light interacts

ballistically with the tissue in the abdomen of small insects such

as mosquitoes [53]. This happens when the organism is small

in relation to the mean free path in the tissue. This implies that

the interaction path-length of the backscattered light is longer

and thus more depolarized than for the forward scattered light

[53]. In this regime, light scatters from the tissue and eggs [54]

inside the insects, and scattering scales additionally with insect

thickness. In other words; for small insects, then the retrieved

light Iinsect, originates from the volume and not the area, this

would imply a σ � δ3 relation.

IV. RESULTS

We mask by a threshold on the instantaneous lidar signal,

Isig, when this exceeds the static signal plus three times the

noise amplitude (>SNR = 3); Isig(r,t) > Imedian(r) + 5 IIQR(r).

An insect observation is hereafter defined as a connected island

in this range-time mask. The procedure is identical to previous

work [39], [40]. The range, cross section and apparent size is

calibrated as in the previous section.

A. Aerofauna detection in Time and Space

All detected insects are presented in time and space in Fig. 3.

As expected, more insects are detected closer to the lidar. How-

ever, a pronounced spatial feature, with increased activity, is

where the beam passes under the shade of the canopy of the

Ceiba tree at 516 m distance. This is particularly visible for the

300 Hz measurements. Such monumental trees are known to

create a humid micro-climate, shelter and food for both insects

and bats [56]. For bats, such trees also provide protection from

predators and constitute a landmark and social meeting point

in the landscape. We tested observations for detector saturation,

and encountered 142 and 21 saturated observations in 300 Hz

and 3000 Hz mode respectively. These were predominantly at

close range during the rush hour right after sunset but also at

longer ranges later in the evening. This period is a popular

feeding time for insectivores [28], [29], [56]. In Fig. 3b the

counting rates for 300 Hz and 3000 Hz mode is displayed. In

the afternoon the curves look surprisingly similar with some

500 observations per minute. The range distribution is however

fairly distinct; the 3000 Hz mode generally detects insects at

further distances but fails to detect insects in the canopy shade

at 516 m. At 19:00 the day of the 300 Hz measurement, the

guard at the institute campus switched on the lights at the
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Fig. 3. During 4½ hours, 158244 insects were detected at 3000 Hz rate and 426327 insects were detected at 300 Hz rate. 3a: Display of all observations in
time and space. Generally, more insects are detected at close ranges, however, during daytime the shade of the large Ceiba tree canopy at 516 m induce increased
activity, which is predominantly seen in the long exposure more at 300 Hz. After sunset, this aggregate broadens in the landscape. 3b: Surprisingly, the counting
rate is equivalent for 300 Hz and 3000 Hz during the afternoon and after sunset. At 19:00 on the day of the 300 Hz measurements the test range was subject to light
pollution. This was not the case for the 3000 Hz measurements. 3c: shows the range distributions of detected insects. Because of the light pollution during the 300
Hz measurements, the data is split in two parts; before and after 19:00.

parking lot (35-90m range). This is a significant light pollution

source in the otherwise dark and sparsely populated outskirts of

Yamoussoukro. Within a few minutes this drained the remnants

of the population under the tree and induced a tenfold increase

in activity in the 35-300 m range. Because of this disturbance in

the 300 Hz data, we divided both days into two parts before and

after the light-pollution event.

The range distributions are displayed in Fig. 3c. The light

pollution during the 300 Hz measurements increases the activity

in the vicinity (35-300 m), but the range distribution is roughly

the same. The activity associated with the tree disappear because

of the light pollution, but this is not the case during the day

of the 3000 Hz data with no light pollution. At night time,

aerofauna is detected at longer distances both for 300 Hz and

3000 Hz measurements and could be due to increased activity

of night active bats and moths high over ground (the beam

height over ground increases beyond the tree at 516 m). As in

previous studies [35], [37], the range distribution can be roughly

explained by a power law; N=N0 r−α. We applied this fit for the

range between the lidar and the tree with proportions explained

(adj-R2) higher than 96%, see lower right insert in Fig. 3. The

aim of this study was to investigate if high pulse energies during

long exposures with slow sample rate could be used to detect

smaller insects at further distance at the expense of wingbeat

information. On the contrary, we now find with significance by

95% confidence intervals (Fig. 3c) that 3000 Hz acquisition gives

a lowerα value than 300 Hz. Thus 3000 Hz detected more insects

far away and the absolute number is identical between the slow

and fast rate mode (not considering the light pollution one of

the days and not the range tree and beyond). We cannot exclude

the possibility that insects behave differently between the days,

however. The weather was stable and the probe volume high

over ground topography with no obvious landmark preferences

apart from the tree. In relation to the range dependence, α, we

note that the width- and height of the probe volume, Hprobe(r)

and Wprobe(r), changes over distance accordingly;

Wprobe(r) =
rℓpix

frec
,

Hprobe(r) = δterm

√

1 +

(

∅exp

δterm
− 1

)(

r − rterm

rterm

)2

σprobe = Wprobe(r) Hprobe(r) ≈ 40 r0.88, 40 < r < 500
(11)

The width is simply the magnification of the tall pixel foot-

print, while height is given by the beam waist formula. For the

fitted range, the probe volume cross section can be approximated

by a power law, the coefficients are in relation to the units in

Table I. This expansion will increase the observed abundance
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Fig. 4. Range dependence of detected aero fauna sizes. 4a: Whereas large organisms can be detected in both modes and seldom saturate, smaller insects with
smaller cross sections can be seen further away with long exposures at 300 Hz (note the activity under the tree which is not detected in 3000 Hz mode). 4b: The
detected biomass is fairly consistent between the overlap in the two modes. In the evening larger organisms are seen at far distance, the distributed is roughly N�.σ
−1. 4c: The apparent size shares the same minimum in the two modes (note that the red dots are plotted on top), but could be subject to motion blur smearing out
features in the distribution in 4d.

for insects up to their maximum detection range. It is, however,

not trivial to compensate for the observed numbers because

laterally moving insect would increase by Hprobe and ascending

and descending insects would increase by Wprobe. Still the α

values can be compared between the two acquisition modes,

since the probe volume is identical.

B. Range Dependence of the Observable Span in the Biomass
Size Spectrum

Are the insects seen in the 300 Hz and 3000 Hz data the

same? Or could a high dynamic resolution (HDR) approach of

stitching together intensities of short and long exposures provide

a benefit? Since wingbeat modulation is not resolved in the

300 Hz data, our means of classification are limited to the range

and sizing features discussed in Section III.D. In Fig. 4, we

plot detection range, r, against the size features σ and δ. Again,

we split the data into before and after the light pollution event

at 19:00. In order to get a sense of the density of the 584571

observations during the 9 hours, we diluted the scatter plot

and only plot every 10th observation in Fig. 4ac. The complete

statistics is shown in Fig. 4bd. The cross section, σ, values in

Fig. 4ab span three orders of magnitude in each of the modes,

limited on the smaller side by detector read-out noise and on

the larger side by detector saturation, which is fairly infrequent

(∼1‰). This range essentially covers aerofauna from midges,

fruit flies, mosquitoes, through bees, moth and dragonflies to

bats and swallows (see rough indication in Fig. 4. right pane).

At close range the scatterplots in Fig. 4a display flat threshold

due to 1. Beyond the range of complete overlap, r>2r0, a clear

increasing range dependent threshold of σthrs � r2 is seen. This

is essentially a consequence of the diffuse assumption in 9. At

a couple of km range, the detection limit reaches the larger end

of the biomass spectrum.

When lowering the sample rate tenfold, we do indeed see

ten times smaller members of the aerofauna. The fact that the

remaining and overlapping part of the biomass spectrum is

consistent with the fast measurements displaying a reciprocal

N�σ −1 behavior [57] gives us confidence in the calibration

routines (note that this is not compensated for probe volumes of

detectable intervals at different ranges).

In particular, we see that much of the activity in the Ceiba tree

shade are small insects, that fall below the detection limit at 3000

Hz. This explain the missing feature in Fig. 3a. Admittedly 10−2

mm2 seems small, but low values could arise when exposure

times, τ , exceeds transit times,∆t. It could also be dust or pollen,

since we could not check for wing beats at 300 Hz.

The range of apparent sizes, δ, is smaller and limited on the

small side by the size of the pixel footprints in the atmosphere

and by the beam width on the larger side (Fig. 4c). The 300 Hz
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Fig. 5. The signals of saturated events in the 3000 Hz were inspected individually. Some signals could be associated with swallows, insects and later bats. Not
only vertebrates but also specular flashes from insects causes saturation. Note the associated parameters with each event around each subfigure. 5f display both a
bat and an insect at 160 m distance.

measurements could be subject to motion blur of the wingbeats

(The stripes arise from a pixel rounding operation).

C. Inspection of Saturated Echoes

What caused saturation in entomological lidar? We used the

3000 Hz data and inspected the 21 saturated observations, see

selected examples in Fig. 5. In many cases nothing enlightening

could be deduced from the signals, but some part of the ob-

servation could be attributed to swallows, see Fig. 5ad. When

swallows intercept the beam, they are scanned by the lidar line

arrays, the observation starting with the beak and ending with

the split tail, see Fig. 5ad. Because of the driver leakage between

odd and even exposures in combination with the strong signal,

it causes substantial signal in the Ieven, and consequently. the

lock-in subtraction produces a hole in the middle of the echo.

Not only do strong signals saturate, they also become weaker

due to this (this is a hardware issue and can be fixed).

Although birds and bats account for many of the saturated

signals, specular flashes from insect wings also saturated the

detector in several cases at 3000 Hz, see Fig. 5be. These are

peculiar cases, where specular flashes occur in a single 3000

Hz exposure of 310 µs. This occurs when wing surface normal

coincides with the beam and when the membrane thickness

resonates with the laser in backscattering (this happen when

wing thickness is close to either 531, 797, 1063, 1329, 1595 or

1860 nm with a 808 nm lidar). Such flashes would be smeared

out in time with the long exposures at 300 Hz rate. The crude

reflectance, Rinsect, of the case in Fig. 5b is 500% compared

to Lambertian white. However, the size measures, σ and δ, are

temporal medians of the observation, omitting specular flashes.

The instantaneous reflectance during the flash (which is hardly

resolved in time), is saturated at 1155%. Specular reflectance

relate to diffuse reflectance accordingly;

RSpec. =
4RLamb.

∫∫ 1/2θrec

−
1/2θrec

cos (θ) dθ2

≈
4RLamb.

θ2rec
≈

4RLamb.r
2

∅2
rec

, ∅rec ≪ r (12)

Here, the denominator is the fraction of Lambertian re-

flectance collected by the received light cone, θrec. The factor 4

is the hemispherical double integral of Lambertian reflectance.

At 57 m range a perfect mirror would imply more than a million



BRYDEGAARD et al.: HIGH DYNAMIC RANGE IN ENTOMOLOGICAL SCHEIMPFLUG LIDARS 6900711

Fig. 6. Covariation of backscatter cross section and apparent size for both
300 Hz and 3000 Hz. Various power relations are displayed ranging from linear
relation of saturated observations to quadratic relation from diffuse target to a
steep cluster exceeding 100% diffuse reflectance.

percent compared to a diffuse white target. The beam height,

parallel to the baseline, can remain collimated up to rfarfield||

= 0.4 λ
−1Ø2

exp = 5 km (diffraction). The limit for the width

is rfarfield├ = ØexpFexpℓ
−1

LD = 250m (magnification). From

this, we understand that the r2 attenuation for omnidirectional

scattering does not apply to specular flashes from wings which

can propagate in a collimated manner. The r2 attenuation is

generally accepted in the lidar community and also appear in

9. But this could explain why we see insects further away

and a lower α coefficient for faster rate in Fig. 3. It also

leads to a number of issues, e.g., can diffuse cross sections

be used? Are oscillatory waveforms in entomological lidar

range- dependent?

D. Apparent Sizing and Cross Section

As a final aspect, we looked into the covariance of the two

size measures; σ and δ, and we compared the quantities in the

slow and fast acquisition mode, see Fig. 6. When considering

and comparing the two size measures it is important to think

of how they are measured; σ from intensity and δ from pixel

spread. Thus a large σ could imply either a large organism or a

shiny organism, whereas large δ could imply a large or a motion

blurred observation. The crude median NIR reflectance, σδ−2,
for 3000Hz is 24%. This is in accordance with our previous

work [25], [55] and can be attributed to melanization. At 300

Hz, median reflectance drops to just 3%, corresponding to the

refractive index difference (nchitin = 1.55). Melanin could not

absorb 97% at 808 nm, so the losses would need to be explained

by transmittance losses in the smaller organisms detected and

particularly the fact that the minimum δ is limited by the PSF of

a single pixel, so the actual size could be smaller than observed

δ. We analyzed the pixel spread (10 without range), in the two

cases; 75% of the 3000 Hz observations were focused down to a

single pixel, whereas this number was 60% for the 300 Hz obser-

vations, due to motion blur from insects. While this verifies the

functionality of the Scheimpflug method, it also indicates that δ

is not applicable for tiny observations, in particular those picked

up in high sensitivity mode. We also investigated whether the

wrong median reflectance value in 300 Hz data could arise from

transit times shorter than the long exposures, thus diminishing

theσ, but we found no indications of increase median reflectance

by excluding short observations.

In Fig. 6 we find a main axis of σ�δ2 relation which to

some extent validates the concept of cross sections [49]. We

found that few but large [28] observations pertain to a σ�δ

axis, and we attribute this both saturation and situation, where

the organism size exceeds the probe width, Wprobe, and thus

intensity scales linearly with the pixel spread. We only found

limited support for the volumetric scatteringσ�δ3 from the idea

of ballistic interaction [53], also this axis is primarily seen for

larger organisms in the 300 Hz mode. It should be considered that

e.g., mosquitoes could appear larger in the 300 Hz mode, since

the fast wingbeat could increase bothσ and δ. In particular, in the

3000 Hz mode we observe a very steep relation ofσ�δ6. Distinct

melanization and observation aspect can change σ a factor three

whereas δ would be unaffected. However, it can be seen from

Fig. 6 that observations on the σ�δ6 ridge exceed 100% diffuse

reflectance, thus they must be attributed to specular scattering

despite that σ is the temporal median thought to be insensitive

to flashes [32]. Finally, we found a σ�δ3/2 for the tiniest and

most numerous observations. We restrain from overinterpreting

this, since these are affected by minimum limits and we do not

have experience in these small scales.

V. CONCLUSION AND OUTLOOK

We evaluated entomological lidar recordings with slow and

fast sample rates, to investigate the dynamic and ranging prop-

erties. We could compare the performance although one of

the measurement sessions included a light pollution event. We

reported more than half a million observations during nine

hours at ranges up to couple of kilometers over the Ivorian

bush. We provided an accurate analytical explanation for the

retrieved air signal during homogeneous conditions. From this,

we could reduce the lidar sensitivity to a single value which

can be rescaled for laser power and atmospheric conditions and

related to noise levels. We have discussed effects and provided
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corrections of the time-of-flight roundtrip delay and driver rise

time for lock-in detection in Scheimpflug lidar. We revised cross

section calibration for diffuse targets.

We could indeed verify that slow rates with long exposures,

high laser energies and a just single read-out noise [58], could

section smaller organisms in the biomass spectrum and that the

overlapping section is in agreement between the two rates. We

also demonstrated a case where distant small insects in the tree

shade fell under the detection limit of the fast acquisition, but

could be detected by the slow sample rate. However, the total

number of observations with slow and fast rate was similar,

since fast acquisition observed insects significantly further away,

we speculate that this is related to rapid flashes of specular

scattering dominating over distances. The overlapping region

of the biomass spectrum was fairly consistent between slow and

fast mode and displayed a plain reciprocal relation N�σ −1.

Through closer inspection of saturated events at 3000 Hz, we

could identify large vertebrate insectivores such as swallows and

bats. We could also identify insects by wingbeat and demonstrate

intensive flashes and realistic size measures for mosquitoes

comparing to previous literature [25], [53].

We investigated the covariance of cross section and apparent

size. While much of the data supported the idea of a diffuse cross

section with a σ�δ2 relation, some events did not follow the

assumption of smaller organism size than probe volume (σ�δ2).

Another group displayed diffuse reflectance exceeding 100%,

and were interpreted as glossy. This analysis would benefit

considerably from a more refined study at fast rate, separating

and resolving size contributions from bodies and wings.

From an ecological perspective, we observed the effect of

shade of a large tree, which is well-known [56]. After sunset,

we could observe how this range feature disperses, and also

how a light pollution event drastically changed the insect ac-

tivity within minutes within ca. 300 m vicinity of the light.

In the relatively dark area surrounding the campus, such light

pollution would have an impact on the biodiversity [59] and

disturb local bat and insect populations [60], [61]. We could

identify a predating bat during the dark evening, with a prey

with slightly lower wing beat frequencies than mosquitoes. But

bats are able to consume around two thousand mosquitoes per

night per bat [62]. The presented approach could in principle be

used to evaluate bats´ predation on mosquito populations, and

hence possible benefits of malaria transmission reduction, but

long term seasonal data remains to be seen.

V. DATA AVAILABILITY

The data presented here may be obtained by contacting the

authors. The raw data is approximately 500 Gb.
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