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A landmark of accretion processes in active galactic nuclei (AGN) is the
continuum originating from a complex structure, i.e., an accretion disk and a
corona around a supermassive black hole. Modelling the broad-band spectral
energy distribution (SED) effectively ionizing the gas-rich broad emission line
region (BLR) is key to understanding the various radiative processes at play and
their importance that eventually leads to the emission from diverse physical
conditions. Photoionization codes are a useful tool to investigate two aspects,
the importance of the shape of the spectral energy distribution, and the physical
conditions in the broad emission line region. In this work, we critically review
long-standing issues pertaining to the spectral energy distribution shape and the
anisotropic continuum radiation from the central regions around the accreting
supermassive black holes (few 10–100 gravitational radii), with a focus on
black holes accreting at high rates, possibly much above the Eddington limit.
The anisotropic emission is a direct consequence of the development of a
geometrically and optically thick structure at regions very close to the black
hole due to a marked increase in the accretion rates. The analysis presented
in this paper took advantage of the look at the diversity of the type-1 active
galactic nuclei provided by the main sequence of quasars. The main sequence
permitted us to assess the importance of the Eddington ratio and hence to
locate the super Eddington sources in observational parameter space, as well
as to constrain the distinctive physical conditions of their line-emitting BLR. This
feat is posing the basis for the exploitation of quasars as cosmological distance
indicators, hopefully allowing us to use the fascinating super Eddington quasars
up to unprecedented distances.

KEYWORDS

galaxies: active, quasars: emission lines, quasars: supermassive black holes, quasars:
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1 Active galactic nuclei as accreting black holes

Active galactic nuclei (AGNs) are among the brightest cosmic objects known to us
(Weedman, 1976; Weedman, 1977). They harbour a supermassive black hole (SMBH) at
their very centres which due to its immense gravitational potential allows for the infalling of
matter. This in-falling matter loses angular momentum while being accreted onto the black
hole. This accreted matter manifests in the form of a multi-colour accretion disk which gets
heated up and radiates (Shakura and Sunyaev, 1973; Shields, 1978; Czerny and Elvis, 1987;
Panda et al., 2018). The photon energy of the dissipated radiation spans a wide range of
energies (from sub-eV to hundreds of eVs).The emitted photons then illuminate thematerial
surrounding the accretion disk and lead to the formation and emission of strong, broad
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emission lines (Schmidt, 1963; Greenstein and Schmidt, 1964;
Schmidt and Green, 1983; Osterbrock and Ferland, 2006; Netzer,
2015).

2 Their spectral energy distribution

AGN are observed over the entire range of the electromagnetic
spectrum from the radio regime up to MeV-GeV-TeV energy γ-
rays (Richards et al., 2006; Harrison, 2014; Yang et al., 2022). The
classical view of AGN characterized by an almost flat spectral
energy distribution (SED) over many decades in frequency—to
juxtapose to the ones of non-active galaxies—has been superseded
and extended since long (Malkan and Sargent, 1982; Malkan, 1983),
by the recognition that the SED is different for AGN in different
accretion states, and is most often characterized by significant
features associated with diverse processes and aptly called bump or
excess (i.e., IR excess, big blue bump, soft-X excess, etc.)1.

In this contribution, we shall restrict the attention mainly to
the ionizing continuum in radio-quiet quasars. In this case, various
components of the SED arise due to different radiation mechanisms
and at varying distances, notably among them:

1 The characteristic “Big Blue Bump” (Shields, 1978; Czerny and
Elvis, 1987) that is formed by the optical and ultraviolet radiation
produced due to thermal emission from the accretion disk.

2 The X-ray emission well-fit by a power-law, and produced
when the UV photons from the disk undergo inverse Compton
scattering by hot electrons in a Compton-thin corona close to the
SMBH (e.g., Zdziarski et al., 1990).

3 A spectral component observationally described as a “soft X-
ray excess” (e.g., Arnaud et al., 1985). The most widely-accepted
interpretation of the excess detected in soft X-rays is of emission
in a Compton-thick corona connected with the innermost
accretion disk (Walter and Fink, 1993; Petrucci et al., 2020
and references therein). The competing model—relativistically
blurred photoionized disc reflection (Ross and Fabian, 2005;
Crummy et al., 2006)—isn’t anymore favoured as an explanation
for the soft X-ray excess itself, although blurred accretion
disk reflection can occur independently from the soft excess
(Boissay et al., 2016). The soft excess helps bridge the absorption
gap between the UV downturn and the soft X-ray upturn (e.g.,
Elvis et al., 1994; Laor et al., 1997; Richards et al., 2006; Kubota
and Done, 2018), and changes the far-UV and soft-X-ray part
of the spectrum, affecting the line production, including Fe II

emission in the BLR (Panda et al., 2019a).

The “intrinsic” AGN continuum at photon energies high enough
to ionize Hydrogen is therefore made of the thermal emission

1 The old description of AGN continuum as non-thermal, featureless was
perhaps inspired by the earliest quasars studied that were mainly radio loud
and at any rate sub-Eddington accretors. The power-law function used
to fit the optical/UV continuum over a limited range in frequency is now
considered to represent the thermal continuum from an accretion disk,

whose power Pν ∝ v
1
3 (Shakura and Sunyaev, 1973), not as associated with a

featureless synchrotron continuum. The synchrotron radiation from relativistic
jets that accounts for most of the radio emission is only a fraction of the
optical continuum in non-blazar type-1 AGN or “thermal” radio-loud AGN
(Antonucci, 2012, and references therein).

FIGURE 1
Templates of SEDs for high Eddington radiators. Grey; the landmark
Mathews and Ferland (1987) SED; dashed blue: the Marziani and
Sulentic (2014a) SED for quasars radiating close to the Eddington limit;
blue and magenta: high and highest Eddington ratio templates from
Ferland et al. (2020)). The SEDs have been normalized at ϵ ≈0.18 Ryd.

from the accretion disk, the power-law emission from the corona,
and soft X-ray excess (Collinson, 2016; Kubota and Done, 2018;
Panda et al., 2019c; Ferland et al., 2020). Figure 1 shows templates
for quasars believed to radiate at moderate or high Eddington
ratio, η ≳ 0.1–0.2 (PopulationA and extreme PopulationA, hereafter
xA, Marziani and Sulentic 2014a and §3.3.2), along with widely-
exploited templates believed to be appropriate for populations
of quasars radiating in this range (Mathews and Ferland, 1987;
Marziani and Sulentic, 2014a; Ferland et al., 2020).There is a notable
similarity between the curves. The SED defined by Marziani and
Sulentic (2014a) for sources radiating close to the Eddington limit is
in good agreement with the high case of Ferland et al. (2020). There
is an increase in big blue bump prominence from the high to the
highest case, the latter being associated with extreme values of the
Eddington ratios. Note that the soft-X ray excess, located between
the optical-UV bump and the peak at the hard X-ray (∼100 keV),
is prominent in between ∼1 keV and 20 keV regions for the SED
corresponding to the highest Eddington ratio case (magenta curve
in Figure 1) and marginally present in the high case (blue curve in
Figure 1). One notices that this feature steepens with Γ > 2 as the
Eddington ratio increases (Jin et al., 2012b; Ferland et al., 2020).The
feature almost disappears when one transitions to low Eddington
ratio sources—see the blue dashed and grey SEDs, where the X-ray
bump close to 100 keV is increasingly prominent.

A weak but statistically significant correlation between
hard-X photon index Γ and Eddington ratio has been found
(Trakhtenbrot et al., 2017; Panagiotou and Walter, 2020; Liu et al.,
2021), and the statistical weaknesses might be explained by the
limited range of hard Γ values compared to uncertainties in
individual Γ estimates (Wang et al., 2013). In the highest case, the
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soft and hard X-ray domains are very steep to the point that a
turnover at ∼100 keV as seen in Figure 1 for the Mathews and
Ferland (1987) SED may not be anymore required. The difference
between the Mathews and Ferland (1987) SED and the extreme
case of Ferland et al. (2020) exemplifies this trend. The existence of
X-ray weak type-1 AGN and their high prevalence among highly
accreting sources (Zappacosta et al., 2020; Laurenti et al., 2022) may
also support the absence of a prominent Compton-thin coronal
component in super-Eddington sources. The sequence of SEDs
in Figure 1 is related to the 4DE1 parameter space (Section 3.3),
although its connection to some of the parameters is still incomplete.

A related issue is the location of the high energy downturn
around ∼ 100 keV that is required by limits in the measured X-
ray background (Mathews and Ferland, 1987). Observations are
mostly available up to ∼ 20 keV, and the energy of the downturn
is conventionally placed at ≈100 keV in the SEDs of Figure 1
although it wasn’t actually measured. In recent years measurements
by NuSTAR and γ-ray observatories such as SWIFT indicate a
dispersion in the actual turnover, from 50 to 200 keV (Fabian et al.,
2015; Lubiński et al., 2016). It is currently debated whether the
downturn energy may depend on the Eddington ratio, although
the trend between Γ and the Eddington ratio suggests that a
weak correlation might be possible (Ricci et al., 2018, although see
Molina et al., 2019). However, we note that there are studies of
multiple sources with cut-off energies measured by NuSTAR where
the authors suggest that this cut-off energy is not dependent on the
Eddington ratio or the black hole mass (see, e.g., Tortosa et al., 2018;
Kamraj et al., 2022).

The focus of Figure 1 is for log ϵ [Ryd] ≳ −1. We mention in
passing that in the NIR domain, as the low energy tail of the AD
emission fades, extrinsic emission is actually reprocessed emission
from the dusty torus which surrounds the accretion disk. It becomes
the dominant emission at a few μm, along with the polar dust in the
direction of SMBH spin axis (Netzer, 2015; Padovani et al., 2017). In
the FIR, the SED might be dominated by dust heated by host galaxy
star formation, more than by the AGN itself (Kirkpatrick et al.,
2015). This is occurring in systems with high accretion rate (e.g.,
Marziani et al., 2021b). In the case of highly accreting quasars, there
is a relatively large prevalence of sources with high radio power,
with radio-to-optical ratio≳ 1 (Ganci et al., 2019;Wang et al., 2022),
whose radio emission can be ascribed to star formation processes.
Highly-accreting quasars might be predominantly seen as young or
rejuvenated active nuclei whose SED is affected by star formation
processes (see, e.g., Caccianiga et al., 2015; Ganci et al., 2019).

3 Imminent challenges and
opportunities

3.1 What an AGN multi-frequency
spectrum can reveal to us?

From an observer’s point of view, we can largely quantify the
spectrum into two primary components: 1) the emission lines
originating from the BLR/NLR clouds; and 2) the AGN continuum,
prominent beyond the Lyman limit, that can photoionize the
surrounding gas leading to line emission. The ionizing photon flux
can be estimated by a careful analysis of the AGN SED, which

then gives us a rough idea of the expected line fluxes for the
multitude of ionic species (in their various ionization states) that
we see in an AGN spectrum. A careful assessment of the density of
these ionized clouds and their locations, in addition to the incident
photon flux received by them, allows us to predict the strengths
of these lines. Important information about density, ionization
conditions, and dynamics in the broad line-emitting region of AGN
can be inferred from UV spectroscopic observations which are
crucial to understanding these line-emitting regions. Past studies of
highly-accreting quasars have in turn illustrated the use of certain
line diagnostic ratios from observed spectra (e.g., C IV/He II, Al
IIIλ1860/Si III]λ1892, Fe II/Hβ) in order to estimate these (density,
ionization condition, and metallicity) parameters (Negrete et al.,
2012; Negrete et al., 2014; Śniegowska et al., 2021; Garnica et al.,
2022, and references therein). Curiously, these extreme sources
appear to be characterized by values of density, ionization, and
metallicity that are extreme but also extremely well-defined: as far
as the virialized emitting region is concerned the parameters reach
nH ∼ 1013 cm−3, logU ∼ −2.5, Z ≳ 20Z⊙2.

3.2 Dichotomy in optical and UV emission
line profiles

Historically, the BLR clouds were modelled as single clouds
where the different lines arise from different parts of the same
cloud—apicture that is still widely accepted (Kwan andKrolik, 1981,
see the BLR radial structure as shown by Negrete et al., 2012). In
the mid-1980s, propositions were made to explain the BLR as two
distinct components (Gaskell, 1982; Collin-Souffrin et al., 1988).
The broad emission spectrum in AGNs can be divided into two
parts: the first set of lines that include Lyα, C III], C IV, He I, He
II, and N V predominantly emitted by a highly ionized region that
presumably has a relatively low density (≲ 1010 cm−3). These are
known as High Ionization Lines (HILs). The upper limit to the
density of themedia emitting theseHILs is set by the semi-forbidden
CIII] in order not to be collisionally de-excited even if the actual
measurement of the blueshifted C III] is problematic because of the
blending with SiIII]λ1892. As a matter of fact, the density of the
outflow is poorly constrained, and there is good reason to believe
that a “clumpy” scenario (e.g., Takeuchi et al., 2013) might be also
appropriate. The second set of lines includes the bulk of the Balmer
lines, Mg II, Fe II, O I and Ca II, emitted by a mildly ionized medium
having a much higher density (≳ 1010 cm−3). The real scenario is
more convoluted and the search for a global unified picture is
still ongoing. However, this representation—dichotomy into LILs
and HILs originating from the vicinity of the SMBH due to the
inherent radiation of the accretion disk—has been instrumental to
identify a low-ionization virialized component and the contribution
of a high ionization wind (Leighly, 2004; Marziani et al., 2010),
that proved to be especially prominent in highly accreting sources,

2 There is a general consensus that type-1 AGN BLR gas has supersolar
abundance with canonical estimates reaching over 10 times solar (Hamann
and Ferland, 1993; Hamann and Ferland, 1999). However, the highest values
depend also on the lines employed as diagnostics: the Al and Si lines are
strongly dependent on enrichment by supernovæ ejecta, as stressed by the
authors themselves (see, e.g., Garnica et al., 2022).
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i.e., quasar radiating at maximum radiative output per unit mass
(Martínez-Aldama et al., 2019; Panda, 2022). Low-ionization lines
retain fairly symmetric profiles that indicate virial motions and
therefore that their width is suitable for virial broadening estimation
without the need of introducing large corrections (Marziani et al.,
2013; 2019; 2022). MBH estimates remain reliable even if the effect
of partially resolved outflows (in radial velocity) has to be taken
into account (Negrete et al., 2018; Marziani et al., 2022; Buendia-
Rios et al., 2023).

3.3 Quasar main sequence

3.3.1 The Eigenvector 1/main sequence
The study of Boroson and Green (1992) brought together the

spectral diversity of Type-1 AGNs under a single framework. Their
paper is fundamental for two reasons: 1) it provides one of the
first templates for fitting the Fe II pseudo-continuum. The Fe II

emission manifests itself as a pseudo-continuum owing to the
many, blended multiplets over a wide wavelength range, extracted
from the spectrum of a prototypical Narrow Line Seyfert Type-
1 (NLS1) source, I Zw 1; and more importantly, 2) it introduced
the Eigenvector 1 (E1) sequence to unify the diverse group of
AGNs. They used principal component analysis—a conventional
dimensionality reduction technique—on observed properties of a
sample of optically bright quasars to obtain a sequence. Of special
importance is the optical plane that shows the connection between
the FWHM of the broad Hβ and the strength of the Fe II blend
between 4,434 and 4,684 Å to the Hβ (or RFeII). This optical
plane of the Eigenvector 1 (or of the “main sequence” of quasars)
was eventually included in a 4D parameter space (4DE1) that
encompasses high-ionization broad line blueshifts (Sulentic et al.,
2000b; 2007), and soft-X photon index (Sulentic et al., 2000b;
Bensch et al., 2015). The 4DE1 additional parameters are related
to wind prominence and accretion status. It is therefore not
unexpected that themain sequencemight be primarily driven by the
Eddington ratio, i.e., the ratio between radiation and gravitational
forces (e.g., Sulentic et al., 2000a; Marziani et al., 2001; Boroson,
2002; Shen and Ho, 2014; Marziani et al., 2018b) affecting several
BLR physical properties (Panda et al., 2018; Panda et al., 2019a;
Panda et al., 2019c; Panda, 2021a).

3.3.2 Population A and population B
A classification based on the width of the Hβ emission line

profile in an AGN spectrum was introduced by Sulentic et al.
(2000a). Population A includes local NLS1s as well as more
massive high accretors which are mostly classified as radio-quiet
(e.g., Marziani and Sulentic, 2014a) and that have FWHM(Hβ)
≤ 4,000 km s−1. On the contrary, Population B sources are those
with broader Hβ (≥4,000 km s−1), and are, at a large prevalence,
“jetted” sources (e.g., Padovani et al., 2017). The Eigenvector 1
sequence of Boroson and Green (1992) was extended to cover the
soft-X ray domain (e.g., Sulentic et al., 2000b), assessing a relation
between the soft-X photon index Γsoft, the Hβ line width, and the
Fe II prominence (see also later developments on the relation
between X-ray and optical spectra by Grupe, 2004; Grupe et al.,
2010; Ai et al., 2011; Jin et al., 2012b; Bensch et al., 2015; Ojha et al.,
2020).

Sourceswith higher values of softX-ray excess (corresponding to
a value of the soft-X photon index3 (Γsoft ≈ 3–4) concentrate among
the highly accreting Pop. A quasars (Grupe, 2004; Sulentic et al.,
2008), while Pop. B quasars typically have Γsoft ≈ 2. The cut-off in
the FWHM of Hβ at 4,000 km s−1 was suggested by Sulentic et al.
(2000a) who found that low z AGN (z ≲ 1) properties appear to
change more significantly at this broader line-width cutoff (see also
Collin et al., 2006; Ferland et al., 2020).

The usefulness of a fixed FWHM limit—let it be 2000 km s−1 or
4,000 km s−1 is questionable, as the FWHM is dependent on MBH
(or luminosity), viewing angle, and Eddington ratio (Marziani et al.,
2018b). It makes sense if the limit is applied to samples in a narrow
range of luminosity or MBH. However, we re-iterate the question
posed a few years ago (Sulentic and Marziani, 2015):

Are populations A and B simply two extreme ends of the
main sequence or do they represent two distinct quasar
populations? Or are they tied via a smooth transition in the
accretion mode?

The issue is very relevant to our quest to use quasars as
standard, or standardizable candles, since the shape of the emission
line profiles and continuum strength is directly connected to the
central engine, especially to the black hole mass, and, the accretion
rate, in addition to the black hole spin and, the angle at which
the central engine is viewed by a distant observer (Wang et al.,
2014b; Czerny et al., 2017; Panda et al., 2017; Marziani et al., 2018b;
Panda et al., 2019c; Panda, 2021b). Looking at the black hole mass
vs. luminosity diagram, type-1 AGN in optically selected surveys are
distributed along a relatively narrow strip with 0.01 ≲ L/LEdd ≲ 1,
over a range of black hole masses MBH exceeding 4 dexes (see, e.g.,
the Figure 15 of D’Onofrio et al., 2021). For L/LEdd ≲0.01, accretion
is expected to enter into a radiatively inefficient domain, in addition
to selection effects that disfavour the lowest accretors at a given
MBH. At the other end of the L/LEdd range, sources that radiate at
L/LEdd ≫ 1 may simply not exist, as radiative efficiency is expected
to decrease at a very high accretion rate, yielding to an asymptotic
behaviour for the Eddington ratio toward a limiting value of order
unity (∼2− 3; Mineshige et al., 2000; Watarai et al., 2000; Sadowski,
2011)4. Perhaps the following scheme is already something more
than a working hypothesis: Population B is associated with modest
accretion rates, and the continuum may be fit by refined α-disk
models (Shakura and Sunyaev, 1973; Laor and Netzer, 1989).
At some threshold of the radiative efficiency, η ≳ 0.1 the inner,
advection-dominated region of the disk starts to have a significant
role in the geometry of the BLR. At a very high accretion rate, this
effect may be extreme, with collimation of ionized outflows and
shielding of the low-ionization emitting region from the luminous
continuum that is instead seen by an observer oriented at a small
angle with respect to the disk axis (Wang et al., 2014c; Giustini

3 here, the energy range considered for the estimation of the index is 0.5–2 keV
based on archival Chandra and XMM-Newton data.

4 Values of L/LEdd ≫ 1 should be viewed with extreme care, especially in cases
of very narrow emission line profiles: orientation effects may drastically reduce
the line profile in the case the emitting regions are seen pole-on. These
sources stand out in a L/LEdd vs. MBH or luminosity diagram (Marziani et al.,
2006).
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and Proga, 2019, Panda and Marziani in preparation). It is also
debatable to which extent accretion might be super-Eddington,
as a large fraction of the infalling mass that would be accretion
matter for the black hole might be actually expelled from the black
hole gravitational sphere of influence (e.g., Carniani et al., 2015;
Marziani et al., 2016; Vietri et al., 2018).

3.3.3 Narrow-line Seyfert 1s—A special class of
AGNs?

Narrow Line Seyfert Type-1 galaxies (or NLS1s)5 are a class
of Type-1 AGNs that are characterized with “narrower” broad
emission lines: FWHM(Hβbroad) ≤ 2,000 km s−1, along with the
ratio of [OIII]λ5007 to the Hβ less than 3 (Osterbrock and Pogge,
1985; Goodrich, 1989). In addition to these properties, the NLS1s
often exhibit strong Fe II emission and the relative strength of
the optical Fe II (within 4,434–4,684 Å) to the Hβ, or RFeII ≳ 1
(Sulentic et al., 2000a; Marziani et al., 2018b; Panda et al., 2019c;
Rakshit et al., 2020). NLS1s have been used to analyze the Fe II

emission since the late 1970s (Phillips, 1978) and have been regarded
among the most noticeable cooling agents of the BLR, emitting
about ∼25% of the total energy in the BLR (Wills et al., 1985;
Marinello et al., 2016). The Fe II is a strong contaminant owing to
a large number of emission lines and without proper modelling
and subtraction, it may lead to a wrong description of the physical
conditions in the BLR (Verner et al., 1999; Sigut and Pradhan, 2003;
Baldwin et al., 2004; Sigut et al., 2004; Panda, 2021b). NLSy1s tend
to be more variable than their “broader” counterparts in the X-ray
regime (Leighly, 1999; Grupe, 2004; McHardy et al., 2006), although
the scales of their variability are not as pronounced in the optical and
infrared regime (Giannuzzo et al., 1998; Ai et al., 2013).

This is a summary of the conventional view of NLSy1s. A more
exhaustive view is reached by the contextualization offered by the
Eigenvector 1 Main Sequence. More prominently, the parameter
RFeII is central to the E1 schema as it is the dominant variable
in the principal component analysis presented by Boroson and
Green (1992). The PCA analysis led for the first time to the
appreciation of the Fe II relevance in large samples of quasar
spectra. NLSy1s showing significant Fe II emission (RFeII ≳ 0.5) were
described by Sulentic et al. (2000a) “as drivers of all Eigenvector 1
correlations.” Indeed, NLS1s with high accretion rates are typically
shown to have a soft-X-ray excess (Arnaud et al., 1985) in their
broadband SED (Jin et al., 2012a; b; Kubota and Done, 2018;
Ferland et al., 2020). NLS1s also show stronger blueshifts (blueward
asymmetries) especially in the HILs (e.g., Sulentic et al., 2000a;
Sulentic et al., 2007; Leighly and Moore, 2004), as well as higher
RFeII implying high L/LEdd (e.g., Du et al., 2016b). The E1 is now
well understood to be associated with important parameters of
the accretion process in the AGNs (Sulentic et al., 2000a; Shen and
Ho, 2014; Marziani et al., 2018b; Panda et al., 2019c; Du and Wang,
2019; Martínez-Aldama et al., 2021), although the nature of the

5 Type 1/Type 2 classifications are based on the observation of the broad
emission line features in an AGN spectrum. According to unified model
(Antonucci, 1993; Urry and Padovani, 1995; Marin, 2014; Netzer, 2015), the
presence of the dusty, obscuring torus impedes/allows the direct view to the
central engine of the SMBH and the BLR region—that is located closer to the
SMBH. This then manifests in the AGN spectrum—where the broad emission
lines originating from the BLR are either seen (Type-1) or not (Type-2).

connection betweenRFeII and L/LEdd remains unclear to date. NLS1s
typically host black holes with lower masses (≲ 107 M⊙) and tend to
be less luminous and have low radio jet power—which has led many
authors (Sulentic et al., 2000a; Mathur, 2000; Berton et al., 2017;
Fraix-Burnet et al., 2017) to link them to an evolutionary scheme of
BHs. These authors have suggested that the NLS1s are the younger
versions of more evolved, more massive SMBHs that constitute the
bulk of the population of AGNs.

3.4 Accretion parameters

The estimation of black hole masses is perhaps the most sought-
after analysis when it comes to AGN studies (Vestergaard and
Peterson, 2006; Shen et al., 2011). AGNs show variations in their
continuum and emission line intensities that can range in the order
ofminutes/days for the continuum todays/weeks/months timescales
for the BLR region (Ulrich et al., 1997). This crucial feature led to
the estimation of black hole masses for a few hundred nearby AGNs
and relatively distant quasars6 using the technique of reverberation
mapping (Blandford and McKee, 1982; Peterson, 1988; Peterson,
1993; Peterson et al., 2004) with the knowledge of the location of
the line emitting region from the central SMBH7. Coupling the
information of the velocity broadening from single/multi-epoch
spectroscopy (Kaspi et al., 2000; Bentz et al., 2013; Du et al., 2014)
with a basic knowledge of the geometry of the emitting region
(Pancoast et al., 2014; Li et al., 2016; Li et al., 2018), we are well
poised to derive the black hole masses using the virial relation
(Peterson et al., 2004): MBH ∼ fSrBLRδv

2/G. There remains still a
considerable level of uncertainty in the virial factor fS (Marziani
and Sulentic, 2012; Shen, 2013): the geometry and dynamics of the
emitting regions remain poorly constrained. In dealing with MBH
estimate we actually encounter several difficulties associated with
the lack of spherical symmetry of the BLR velocity field (McLure
and Jarvis, 2002; Decarli et al., 2011), and with the possibility of
anisotropic continuum emission. The uncertainties in the MBH
estimation affect the L/LEdd estimates as well, with the complication
that L/LEdd estimates from optical/UV data depend on a bolometric
correction that in turn depends not only on accretion state as
evinced from Figure 1 but also on luminosity (e.g., Netzer, 2019, and
references therein) as well as on viewing angle (e.g., Runnoe et al.,
2013). Curiously, if the assumption of a highly flattened Hβ emitting
region is correct, there could be a way out right for super-Eddington
sources exploiting the computation of the “virial luminosity” from
line widths (Section 4; Eq. 1).

The ratios between the virial and the redshift-based luminosity
can be explained entirely by orientation effects (Negrete et al., 2018),
thereby making it possible to derive an estimate of the viewing angle

6 Quasars, or QSOs, are luminous AGNs discovered at larger redshifts. This
distinction is mainly of historical importance; in the following, we will use
the term quasars as an umbrella term for type 1 AGN.

7 In actuality, the difference in the light travel time is estimated by making a
cross-correlation between the continuum light directly reaching us and the
light that bounces first at the BLR region and then comes to us (Peterson,
1993; Horne et al., 2004). The continuum light is produced very close to the
SMBH—in correspondence with the inner accretion disk (see, e.g., Shakura
and Sunyaev, 1973; Czerny and Elvis, 1987).
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for each individual source. This method has been barely explored,
but it has in principle the ability to constrain the disk/wind scenario
in extreme Population A. We will discuss in §4.3 the anisotropy
in continuum emission for xA sources—these refer to the sources
that exhibit strong Fe II emission (RFeII ≳1) and are associated with
accretion rates close to the Eddington limit, in the optical plane of
the Eigenvector 1 main sequence diagram (Marziani et al., 2018a;
Panda et al., 2019c).

4 An avenue for cosmological studies?

A better understanding of the AGN’s inner workings can
pave the road to far-reaching applications. One of them is the
standardization of quasars (or QSOs) for measuring cosmological
parameters. Two methods that involve quasar intrinsic properties
resort to a law analogous to that of Faber-Jackson, connecting
velocity dispersion and luminosity (Section 4.1), and the radius-
luminosity scaling laws (Section 4.2). Bothmethods face challenges.

4.1 Eddington standard candles?

The application of quasars radiating at or above the Eddington
limit has been proposed for several years although the method
has not yet been exploited to its full potential (Marziani et al.,
2021b; Dultzin et al., 2020, and references therein). The method
is conceptually simple: the accretion luminosity of a quasar is
proportional to the a power of the line width,8 i.e., L∝FWHMn.
The value of the exponent n = 4 comes from the virial relation for
the black hole mass, the assumptions of constant Eddington ratio
(L/LEdd∝ L/MBH ≈ const), and of BLR radius rigorously scalingwith
luminosity as r∝ L0.5. The last assumption is likely to be verified for
sources radiating close to the Eddington limit: they are identified by
spectral similarity (RFeII >1), and so SED and the physical properties
of the emitting regions need to be similar.

More in detail, the equation connecting luminosity and line
width can be written as:

L ∼ L•η2 f2S (θ)S (SED)
1
P
δvnr (1)

Where we have evidenced the main physical factors entering
the estimate of the virial luminosity from measurements of radial
velocity dispersion δvr (FWHM, σ). The effect of orientation can be
quantified by assuming that the line broadening is due to an isotropic
component δviso + a flattened component whose virial velocity field
projection along the line of sight is

δv2r =
δv2iso
3
+ δv2K sin

2 θ. (2)

that implies:

fS (θ) =
1

1
3
(
δviso
δvK
)

2
+ sin2 θ

(3)

8 The equation is equivalent to the original formulation of the Faber-Jackson
law (Faber and Jackson, 1976) and is equivalent to other relations linking
virialized systems to the amount of radiation emitted.

The factor S is the ratio between the SED fraction of the
ionizing continuum and the average energy of the ionizing photons.
The factor P is the product density times ionization parameter
(nHU ∼ 109.6cm−3, Padovani and Rafanelli, 1988; Matsuoka et al.,
2008; Negrete et al., 2012). The two factors come from the definition
of the photoionization radius of the BLR (Wandel et al., 1999).
Deviations between the virial estimates and luminosity estimated
from redshift and assumed concordance cosmology can be fully
explained by the effect of orientation (Negrete et al., 2018). The
distributions of the viewing angles from the Negrete et al. (2018)
sample based on Hβ at low z peaks at about 17°, with only a
very small fraction of quasars, is observed at θ ≳ 30°. This means
that the effect of kinematic anisotropy on the computation of the
virial luminosity should introduce a significant dispersion, as it is
∝ 1/sin2θ.

4.2 Scatter in the R-L relation,
standardizing QSOs for cosmological
studies

An important result of the reverberation mapping studies
is from the empirical power-law relation between the BLR
radius (or light travel time delay) and the luminosity, RBLR ≈
cτ ∝ L5100

α where τ is the time delay in response to continuum
variation of a suitable line, mostly Hβ.9 Bentz et al. (2013) found a
best-fit for a sample of 41AGNs covering four orders ofmagnitude in
luminosity with a power-law slope value, α = 0.533+0.035−0.033, very close
to the theoretical value,α = 0.5 needed to preserve spectral similarity
(Davidson, 1977; Wills et al., 1985; Osterbrock and Ferland, 2006).
This function is shown using a dashed line in the left panel
of Figure 2. One can then combine the RBLR-L5100 relation with
the line widths for the broad emission lines estimated from
single/multi-epoch spectroscopy to estimate the black hole masses
which makes it especially useful for large statistical surveys of
sources throughout cosmic history (Vestergaard and Peterson, 2006;
Shen et al., 2011).

Recent observations have led to populate the RBLR-L5100
observational space and take the total count over 100, especially the
sources monitored under the SEAMBH project (Super-Eddington
Accreting Massive Black Holes, Du et al., 2014; Wang et al., 2014a;
Hu et al., 2015; Du et al., 2015; Du et al., 2016a; Du et al., 2018),
and from the SDSS-RM campaigns (Grier et al., 2017; Shen et al.,
2019). But this has introduced us to a new challenge - the
inherent dispersion in the RBLR-L5100 relation after the introduction
of these new sources. Figure 2A is an abridged version from
Martínez-Aldama et al. (2019); Panda (2021a) where the RBLR-
L5100 observational space for 117 reverberations mapped AGNs is
shown. The sources are coloured with respect to their Eddington
ratios (Lbol/LEdd). The best-fit relation for this sample is, log RHβ =
0.387×(log L5100) - 15.702, with a Spearman’s correlation coefficient
(ρ) = 0.733 and p-value = 2.733× 10−21, thusmaking the overall slope
of the relation much shallower than obtained from the previous
studies by Bentz et al. (2013) and bringing the validity of the

9 Here, the relation assumes the BLR radius for the Hβ and the nearest
continuum luminosity at 5100 Å.
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FIGURE 2
(A) BLR radius (of Hβ emitting region) versus the AGN monochromatic luminosity at 5100Å. The sources are coloured with respect to their Eddington
ratios (Lbol/LEdd). The dashed line shows the classical relation from Bentz et al. (2013). The linear best-fit relation (black solid line) for the sources has
the form: log RHβ = 0.387×(log L5100)—15.702, with a Spearman’s correlation coefficient ρ ≈0.733 and p-value ≈2.733×10−21. The shaded region in light
blue marks the 99% confidence interval about the linear best-fit relation. The shaded ellipse highlights the sources with relatively high Eddington ratio
values that deviate away from the classical relation, i.e., towards shorter BLR radii. Sources with L/LEdd > 3 are highlighted using star symbols in green.
Data are from Martínez-Aldama et al. (2019) which compiled the observational data for the 117 AGNs that consists of 48 sources previously monitored
by Bentz et al. (2009); Bentz et al. (2014); Barth et al. (2013); Pei et al. (2014); Bentz et al. (2016); Fausnaugh et al. (2017), 25 super-Eddington sources of
the SEAMBH project [Super-Eddington Accreting Massive Black Holes; Wang et al., 2014a; Du et al., 2015; Hu et al., 2015; Du et al., 2016a; 2018), 44
sources from the SDSS-RM (Grier et al., 2017) sample and the recent monitoring for NGC5548 (Lu et al., 2016) and 3C273 (Zhang et al., 2019). (B) The
difference between the observed time delay (as shown with the data points in the left panel) and the time delay predicted by the classical relation from
Bentz et al. (2013). Here, the dashed line represents the null difference between the two delays.

empirical RBLR-L5100 relation into question. But interestingly, the
sources that eventually led to the increase in the scatter in the
relation show a trend with the Eddington ratio - the larger the
dispersion of a source from the empirical RBLR-L5100 relation, the
higher its Eddington ratio! In Martínez-Aldama et al. (2019), we
found that this dispersion can be accounted for in the standard
RBLR-L5100 relation with an added dependence on the Eddington
ratio (Lbol/LEdd). This is highlighted in the Figure 2B, where the
difference between the observed time delays and that estimated
from the empirical RBLR-L5100 relation (i.e., ΔRBLR; Bentz et al.,
2013), for the sources shown in the left panel, are plotted against
their respective L5100. One can appreciate the drop in the ΔRBLR
value, especially for sources with high Eddington ratios indicating
that sources with shorter “observed” time lag especially at the
high luminosity end of the scaling relation exhibit high accretion
rates. In other words, these sources are expected to host SMBHs
with low BH masses (Du et al., 2014; Du et al., 2016a). Although
we note that there are some sources which, albeit being of high
Eddington nature, are observed to have RBLR sizes comparable to
the predicted value from Bentz et al. (2013). Du and Wang (2019)
exploited this further in their work and realized that with an
additional correction term, the relation can be reverted back to
the original relation with a slope ∼0.5. This additional correction
term is an observational parameter, the relative strength between
the optical Fe II emission and the corresponding Hβ emission (RFeII)
that has been shown in earlier studies to be a reliable observational
proxy for the Eddington ratio (Sulentic et al., 2000a; Marziani et al.,
2001; Shen and Ho, 2014; Marziani et al., 2018b; Panda et al.,

2019c; Du and Wang, 2019; Martínez-Aldama et al., 2021) which
we touched upon in earlier sections. The relation takes the form
(Du and Wang, 2019):

log(
RBLR

1 light− day
) = κ+ αlog(

L5100

1044 erg s−1
)+ γRFeII (4)

Where the flux (F) can be independently estimated from the
observed AGN spectrum for a given source. With this correction in
terms of an observable quantity, i.e., RFeII, we avoid the circularity
problemwhich was present when the correction was explicitly made
in terms of the Eddington ratio (Martínez-Aldama et al., 2019), and
can have a robust estimate of the luminosity distance (DL). This
then allows us to construct a Hubble diagram using quasars where
we know their luminosity distance and their redshifts, and test the
validity of the standard cosmological model and their alternatives
(see, e.g., Haas et al., 2011; Watson et al., 2011; Czerny et al.,
2013; Czerny et al., 2019; Czerny et al., 2021; Khadka et al., 2021;
Khadka et al., 2022; Zajaček et al., 2021). Super-Eddington accreting
sources are expected to be preferentially selected with increasing
redshift in flux-limited sample (Sulentic et al., 2014). A combination
of this selection bias and intrinsic Eddington ratio evolution (e.g.,
Cavaliere and Vittorini, 2000; Hopkins et al., 2006) makes for
high redshift quasar spectra often resembling lower-z extreme
Population A spectra (an effect predicted by Sulentic et al. 2000a).
Their inclusion is thus vital in extending the RBLR-L5100 relation to
higher luminosity regime as shown in Figure 3 where, κ = 1.65 ±
0.06, α = 0.45 ± 0.03, and γ = −0.35 ± 0.08. Clearly, the introduction
of the RFeII term and for sources with strong Fe II emission, is able to
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FIGURE 3
An abridged version of Figure 5 in Du and Wang (2019) showing the
new RBLR—L5100 relation with the inclusion of the RFeII. The sample
contains 75 reverberation-mapped sources which have RFeII estimated
from their respective spectrum. The best-fit relation is shown in a
black solid line with ρ = 0.894 and p-value = 3.466×10−27. The
corresponding shaded region (in light blue) highlights the 99%
confidence interval about the linear best-fit relation with an effective
scatter of ∼0.196 dex. Here, L44 represents the L5100 normalized by
1044 erg s−1 consistent with the formalism of Du and Wang (2019).
Sources with L/LEdd > 3 are highlighted using star symbols in green as
shown in Figure 2.

account for their shorter time-lags and hence, smaller RBLR sizes. In
addition, we are able to recover the slope (α) closer to the theoretical
predictions, i.e., 0.5 (Davidson, 1977; Davidson and Netzer, 1979)

and hence, we can safely use the modified RBLR-L5100 relation
(including the correction term wrt RFeII) to independently estimate
the monochromatic luminosity for a given source, and couple
the information from the flux obtained from direct observations,
to eventually estimate the luminosity distance to the said
source:

DL = √L5100/4πF∝
cτ
√4πF

(5)

Where the flux (F) can be independently estimated from the
observed AGN spectrum for a given source. In this way, we can
avoid circularity and can have a robust estimate of the luminosity
distance.

4.3 Anisotropic radiation from the
accretion disk

An equally important aspect in this regard is the ionizing
continuum produced by the central engine. The characterization
of the ionizing SED that comes from regions closer than the
BLR is important for our study of the emission lines. From the
photo-ionization point of view, this fraction of the broad-band
SED is closely related to the number of ionizing photons that
eventually leads to the line production that has permitted the
estimation of a photoionization radius of the BLR (Wandel et al.,
1999; Negrete et al., 2014; Martínez-Aldama et al., 2015; Panda,
2021b; Panda, 2022).

We tested the variation in the low-ionization part of the BLR by
accounting for the changes in the shape of the ionizing continuum
(the SED) and the location of the Hβ-emitting BLR from the
central ionizing source (or RBLR) from the reverberation mapping,
in the context of Main Sequence of Quasars (Panda, 2022). In

FIGURE 4
Schematic view of the inner sub-parsec region around the SMBH for a high accreting AGN. Region I is exposed to the continuum emitted from the
hottest part of the optically thick (OT) and geometrically thick advection-dominated accretion flow (ADAF). The observer sees inside of this region if the
line-of-sight is inclined by ≲30 degrees from the disk axis. Region II refers to the region shielded from the hottest region and exposed to a colder
continuum emitted from the ADAF at angles ≳ θ. Abridged version from Wang et al. (2014c); not drawn to scale.
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FIGURE 5
Spectral energy distributions (SEDs) obtained for slim accretion disks for a representative black hole mass, MBH = 108 M⊙. LEFT: SEDs are shown for a
range of viewing angle cases for a representative dimensionless accretion rate, Ṁ = 100. RIGHT: SEDs are shown for a range of Ṁ for a representative
viewing angle, i = 40°. In both panels, the vertical dash-dotted line marks the 1 Rydberg threshold.

this and previous work (Panda, 2021b), we have found that in
order to estimate the correct physical conditions for these low-
ionization lines emitting regions in the BLR, it is not sufficient
to only retrieve the flux ratios (e.g., RFeII) but to also have an
agreement with the corresponding modelled and observed line
strengths (or line equivalent widths, EWs). Compared to the results
that are directly obtained from the photoionization theory, these
new results highlight the shift in the overall location of the line-
emitting RBLR—in terms of the ionization parameter U and the
local cloud density (nH) recovered from the analysis towards lower
values (by up to 2 dexes) compared to the RBLR values estimated
from the photoionization theory. This brings the modelled location
in agreement with the reverberation mapping results, especially
for the high-accreting NLS1s which show shorter time-lags/smaller
emitting regions. A corollary result is that to retrieve such physical
conditions, the BLR should “see” a different, filtered SED with
only a fraction of the total ionizing photon flux. This analysis was
performed on selected sources with readily available broad-band
SEDs and archival spectroscopic measurements. In addition, we
assumed source-specific metallicities that were derived using the
UV diagnostic lines from earlier studies (see, e.g., Marziani et al.,
2022). There is a need to extend this analysis to a larger number
of reverberation-mapped sources. We, therefore, need synchronous
multi-wavelength observations to build robust SEDs that can be used
to confirm this scenario. Also, there is a need to bring together a
global picture where a combined analysis of the UV and optical
emitting regions can be put together—to allow us to gauge the
salient differences in the low- and high-ionization line emitting
regions.

Wang et al. (2014c) derived the analytical solutions (steady-
state) for the structure of “slim” accretion discs from sub-Eddington
accretion rates to extremely high, super-Eddington rates. They
notice the appearance of a funnel-like structure very close to the
SMBH at super-Eddington rates and attribute this feature to the
puffing up of the inner accretion disk by radiation pressure, wherein
the Shakura and Sunyaev (1973) prescription for a geometrically

TABLE 1 Fraction of ionizing continuum flux (in%) of the slim disk SED
shown in the left panel of Figure 5 (relative to the case with i = 10°).

i Ratio (%)

10° 100.00

30° 87.91

40° 77.92

50° 26.11

60° 7.95

70° 1.91

75° 0.78

80° 0.23

TABLE 2 Fraction of ionizing continuum flux (in%) under the slim disk SEDs
shown in the right panel of Figure 5 (normalized to the case withṀ = 1,000).

Ṁ Ratio (%) Ratio Ṁi/ratio Ṁi−1

1 0.44 …

10 5.71 12.98

50 32.40 5.67

100 51.49 1.59

500 89.48 1.74

1,000 100.00 1.12

thin, optically thick accretion disk doesn’t hold (Abramowicz et al.,
1988; Sadowski, 2011; Wang et al., 2014c). We show an illustration
of this scenario in Figure 4. Such modifications to the disk
structure strongly affect the overall anisotropic emission of ionizing
photons from the disk in addition to just inclination effects that
arise due to the axisymmetric nature of these systems. Therefore,

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1130103
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Panda and Marziani 10.3389/fspas.2023.1130103

FIGURE 6
A simplified model for the “high” SED of Ferland et al. (2020) using the
Ṁ = 500 SED from Wang et al. (2014c) and an X-ray emitting corona
(power law with exponential breaks). Note that the high-energy
turnover at log ν ∼20 [Hz] is actually poorly known, and in the most
extreme case, the hard X-ray SED may show no flattening and no
break (“highest” case; magenta line in Figure 1).

FIGURE 7
Composite spectrum for xA from Marziani et al. (2013), with the
Wang et al. (2014c) SED superimposed for Ṁ = 500. The inset shows
the same spectrum as a function of wavelength.

with a rise in accretion rates, a continuum anisotropy needs to
be accounted for. The anisotropy then leads to the shrinking
in the position of the BLR—exposed to a lower continuum
flux than the observer (Figure 4)—that brings the modelled
location in agreement with the observed estimates from the
reverberation mapping campaigns (see Panda, 2021b, for more
details).

The left panel in Figure 5 shows the slim-disk SEDs (Jian-
Min Wang, priv. comm.) for a representative BH mass of 108 M⊙,

accreting at Ṁ = 100 for a range of viewing angles10.The right panel
shows the distribution of slim-disk SEDs as a function of Ṁ for a
representative BH mass of 108 M⊙ observed at a viewing angle (i
= 40°). We also report the relative area under the SEDs shown in
Figure 5. These values are tabulated in Tables 1, 2 corresponding to
the left and right panels of Figure 5, respectively. We estimate the
area under the SEDs accounting only for the fluxes corresponding
to a frequency ≥1 Rydberg11. We then compute the relative area (a)
with respect to the SED case with the viewing angle, i = 10° (Table 1
and left panel of Figure 5); and (b) with respect to the SED case
with the dimensionless accretion rate, Ṁ = 1,000 (Table 2 and right
panel of Figure 5). From the left panel of Figure 5, we can notice
that going from the SED viewed at i = 10°–80°, keeping the BH mass
and accretion rate constant, the extended region II receives only a
very small fraction of the actual ionizing photon flux (only 0.23%),
meaning almost all of the ionizing photons (99.77%) nevermake it to
the BLR.This ∼2 dex reduction in the photon flux results in an equal
reduction in the ionization parameter (U) which was confirmed
already in Panda (2021b). On the other hand, changing the accretion
rate, going from Ṁ = 1 to 1,000 and keeping the BH mass and
viewing angle constant (right panel of Figure 5), we find that an
accretion rate Ṁ = 1 relates to only a 0.44% of the total photon
flux, also a factor ≳ 100 from the case Ṁ = 1,000. There is however
a fundamental difference: whereas changing Ṁ produces an almost
self-similar shift of the SED, a change in the viewing angle produces
the change by a factor ≳ 100 in the ionizing flux, while the optical
flux changes by a factor ≈a few (Figure 5). This indirectly confirms
the results of previous works that have been pointing to the main
sequence drive being the Eddington ratio convolved with the effect
of orientation (Marziani et al., 2001; Shen and Ho, 2014; Sun and
Shen, 2015; Marziani et al., 2018b; Panda et al., 2019c). The shape of
the SED thus plays an important role in explaining the trends in the
quasar main sequence wherein the information of the fundamental
BH parameters—BH mass, Eddington ratio, orientation and the BH
spin—are embedded (see Panda, 2021a, for more details).

In Figure 6, we highlight a representative fit (in grey) to the
high SED case (in blue) from Ferland et al. (2020) utilizing a two-
component model, i.e., a slim accretion disk that represents the
thermal component (in dashed red) along with a hot Comptonized
component (in dashed green). Here, the slim accretion disk SED is
modelled for a face-on viewing angle, i = 10° for a Ṁ = 500 for a BH
mass of 108 M⊙. The X-ray to optical-UV normalization is set by a
spectral index (αox = −1.47) and the high-energy cutoff is assumed
to be ∼2.5 keV with a slope (αx = −0.79) to match the exponential
drop in the observed SED. The assumed values for these parameters
are considered from Jin et al. (2012a); Jin et al. (2012b) who were
the first to carry out a broadband analysis on these composite SEDs.
This instance of the slim accretion disk SED is a good fit for xA as
shown in Figure 7 where the latter is represented by a composite
spectrum made using the optical-UV spectral observations for xA

10 This is the dimensionless accretion rate introduced by Wang et al. (2014a):
Ṁ = Ṁ/ṀEdd, with ṀEdd = L/c2, and Ṁ the mass accretion rate. In Panda
(2022) we provide a analytical form to convert Ṁ to Eddington ratio
(Lbol/LEdd, see equation 13 in their paper). This relation additionally depends
on the BH mass and the bolometric correction. For a BH mass of 108 M⊙
with Ṁ = 100, for a L5100 = 1045 erg s−1, the Eddington ratio is ∼0.1.

11 Rydberg ≈ 3.29× 1015 Hz.
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FIGURE 8
This graphic lists the variety of techniques that have been used to measure the expansion rate of the universe, known as the Hubble constant (H0). One
set of observations looked at the very early universe (or the early route, shown in the bottom half of the graphic) and the second set of observation
strategies analyzed the universe’s expansion in the local universe (or the late route, shown in the upper half of the graphic). The letters corresponding
to each technique are plotted on the bridge on the right. The location of each dot on the bridge road represents the measured value of the H0, while
the length of the associated bar shows the estimated amount of uncertainty in the measurements. The combined average from the seven methods
from the late route yields a H0 value of 73 km s−1 Mpc−1. This number is at odds with the combined value of the techniques used to calculate the
universe’s expansion rate from the early route. Their combined value for the H0 is 67.4 km s−1 Mpc−1. Abridged version. Original graphic credit: NASA,
ESA, and A. James (STScI).

sources from Marziani et al. (2013). In our forthcoming work, we
will incorporate these slim disk SEDs into our photoionization
modelling setup and recover the trends for the low- and high-
ionization emission lines, their relative strengths (e.g., RFeII) and the
EWs, concerning these fundamental BH parameters, concentrating
on the xA.

Table 2 shows that the fraction of ionizing photons at a very high
accretion rate tends to saturate, with only a 10% increasing from
the doubling of the accretion rate, from Ṁ = 500 to 1,000. At such
Ṁ the Eddington ratio should converge toward a limiting value of
O(1). The product nHU is also little affected by changes in SED in
the cases shown in Figure 1. The factors S andP are expected to be
stable,12 although their actual dispersion and systematics for sources
selected as radiating closer to the Eddington limit should be further
investigated through dedicated observations. In other words, even if
anisotropy effects in line widths are strong, anisotropy in continuum

12 The average frequency of the ionizing continuum changes by just 5% passing
from the Mathews and Ferland (1987) to Marziani and Sulentic (2014a): from
<hν >≈ 3.03 to <hν >≈ 3.17 Ryd.

emission and differences in SEDs might not be so strong as to
compromise an application to the cosmology of Eq. 1 that is—we
stress it—generally valid for all AGNs but in practice exploitable
for high accretors only. Preliminary applications to cosmology
of Eq. 1 have been encouraging (Marziani and Sulentic, 2014a;
Marziani and Sulentic, 2014b; Marziani et al., 2019; Czerny et al.,
2021; Marziani et al., 2021b; Marziani et al., 2021a).

5 Concluding remarks

We have reviewed some basic aspects of luminous type-1
AGN (Section 1) to introduce highly accreting sources with special
attention to their SEDs (Section 3), focusing on the most relevant
aspects (such as anisotropy, Section 4.3) in the context of the
possible application to the measurements of the cosmological
parameters (Sections 3, 4). We have stressed that Population A
includes NLS1s but that only a fraction of the sources can be
considered highly accreting, as a defining criterion is RFeII ≳ 1, and
this criterion isn’t met by all Population A and NLS1 sources. On
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the converse, a criterion based on line width implies a dependence
on black hole mass (and hence luminosity in flux-limited samples),
viewing angle, Eddington ratio, and yields a selection that is,
unavoidably, sample dependent (Marziani et al., 2018a; Panda et al.,
2019c).

Looking at the bigger picture, we can construct the Hubble
diagram with the luminosity distances using Eq. 5 corrected
according to Eq. 4 and the corresponding redshifts for each source.
The key here is to have the measurement of the time-delay (e.g.,
from Eq. 4) and the AGN monochromatic flux using single epoch
spectra that allow us to estimate the luminosity distances regardless
of accretion properties. Hence, very large samples of reverberation-
mapped AGNs can be used as cosmological candles (Collier et al.,
1999; Elvis and Karovska, 2002; Horne et al., 2003; Panda et al.,
2019b; Khadka et al., 2022). This may further allow us to study
the evolution of the cosmological parameters as a function of the
redshift allowing for the reconciliation of the Hubble tension—the
disparity between the measured value of the Hubble constant in the
local and the early Universe (see Figure 8).

There will be an immense potential for the ideas and results
presented in this work in the near future, serving as test-beds for the
vast number of AGNs that will be explored with the ongoing and
upcoming ground-based 10-m-class (e.g., Maunakea Spectroscopic
Explorer, Marshall et al., 2019) and 40 m-class (e.g., The European
Extremely Large Telescope, Evans et al., 2015) telescopes; and
space-based missions such as the JWST (Gardner et al., 2006;
Jakobsen et al., 2022) and the Nancy Grace Roman Space Telescope
(Spergel et al., 2013). Increased availability of high-quality, multi-
wavelength photometric, spectroscopic and interferometric
measurements extending to higher redshifts is a necessity to help
develop our ever-growing theoretical understanding of how these
massive, energetic cosmic sources work and evolve as well as how
they might be exploited for cosmic distance estimates.
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