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ABSTRACT

Encrypting data in unprotected memory has gained much
interest lately for digital rights protection and security rea-
sons. Counter Mode is a well-known encryption scheme. It
is a symmetric-key encryption scheme based on any block
cipher, e.g. AES. The scheme’s encryption algorithm uses a
block cipher, a secret key and a counter (or a sequence num-
ber) to generate an encryption pad which is XORed with
the data stored in memory. Like other memory encryption
schemes, this method suffers from the inherent latency of
decrypting encrypted data when loading them into the on-
chip cache. One solution that parallelizes data fetching and
encryption pad generation requires the sequence numbers of
evicted cache lines to be cached on-chip. On-chip sequence
number caching can be successful in reducing the latency at
the cost of a large area overhead.

In this paper, we present a novel technique to hide the la-
tency overhead of decrypting counter mode encrypted mem-
ory by predicting the sequence number and pre-computing
the encryption pad that we call one-time-pad or OTP. In
contrast to the prior techniques of sequence number caching,
our mechanism solves the latency issue by using idle decryp-
tion engine cycles to speculatively predict and pre-compute
OTPs before the corresponding sequence number is loaded.
This technique incurs very little area overhead. In addition,
a novel adaptive OTP prediction technique is also presented
to further improve our regular OTP prediction and precom-
putation mechanism. This adaptive scheme is not only able
to predict encryption pads associated with static and infre-
quently updated cache lines but also those frequently up-
dated ones as well. Experimental results using SPEC2000
benchmark show an 82% prediction rate.

Moreover, we also explore several optimization techniques
for improving the prediction accuracy. Two specific tech-
niques, Two-level prediction and Context-based prediction
are presented and evaluated. For the two-level prediction,
the prediction rate was improved from 82% to 96%. With
the context-based prediction, the prediction rate approaches
99%. Context-based OTP prediction outperforms a very
large 512KB sequence number cache for many memory-bound
SPEC programs. IPC results show an overall 15% to 40%
performance improvement using our prediction and precom-
putation, and another 7% improvement when context-based
prediction techniques is used.

1. INTRODUCTION
There is a growing interest in creating secure software

execution environment that combines the strengths of cryp-
tography and secure operating systems to fight against at-
tacks on software copyrights [12, 13, 20, 21, 25, 26] or to
counter malicious buffer overflow and code injection exploits
[6]. One critical design component of these security systems
is memory encryption that provides protection for program
and data privacy. For such security systems, memory en-
cryption often lies at the center of protection. It is primar-
ily used to create a security platform to obstruct software-
based exploits or to construct a network security system
to avoid code injection attacks. For example, a security sys-
tem can feature a security co-processor to provide protection
on data privacy. Important information and dynamic data
can be encrypted or sealed by the secure co-processor when
they are stored in memory. Another interesting application
is to use memory encryption against remote code injection
attack [6]. The technique presented in this paper, though
discussed in the context of a secure processor with an in-
tegrated crypto-engine, can be extended to many scenarios
of a security system design that uses memory encryption.
The actual memory encryption can be performed either in
software, co-processor, or in an integrated crypto-engine.
However, since memory encryption is often a component of
a security system, we do not elaborate on how to create
a specific security system for a specific goal using memory
encryption in this paper.

One crucial performance challenge of memory encryption
is the decryption latency. Fast protection schemes based on
counter mode encryption were introduced recently to meet
this challenge as counter mode allows parallel execution of
encrypted data fetching and decryption pad generation [20,
25]. But, a counter (also called sequence number) associated
with each data block has to be cached inside the secure pro-
cessor to exploit such parallelism enabled by counter mode.
When the sequence number is missing in the on-chip cache,
it needs to be brought back to the secure processor, then
used to generate the corresponding encryption OTP using
a block cipher. The whole process often takes hundreds of
cycles to complete before the resultant OTP can be used for
decryption data. Incorporating a large size sequence num-
ber cache inside the processor may help reduce the latency,
however, by paying a substantial area overhead.

In this paper, we propose a novel technique called OTP
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prediction for addressing the long decryption latency issue.
OTP prediction tackles the latency problem by using idle
decryption engine cycles to predict sequence numbers and
speculatively pre-compute their corresponding OTPs for missed
memory blocks. The advantages of OTP prediction over
sequence number caching are twofold. First, OTP predic-
tion has far less demand on chip area than sequence number
caching. Second, OTP prediction is far more effective in hid-
ing memory fetch latency than sequence number caching.
Performance analysis shows a significant improvement in
both prediction rate and IPC using OTP prediction. We
show that OTP prediction without any sequence number
cache outperforms a large 512KB sequence number cache in
many cases. In addition, we also propose and evaluate sev-
eral prediction optimization techniques that can approach
perfect prediction of sequence numbers. This means that
using OTP prediction and given that the OTP generation la-
tency is less than the memory latency, we can support mem-
ory protection without loss of performance. Note that unlike
sequence number caching, all the performance improvement
is achieved with little area overhead since OTP prediction
is not based on caching, rather, it uses idle pipeline stages
of decryption engine to speculate and pre-compute OTPs
required for decrypting incoming memory blocks.

The major contributions of this work are:

• We propose a novel OTP prediction and precomputation
framework that successfully hides the latency overhead
of fetching counter mode encrypted data from memory.

• We propose a unique adaptive OTP prediction mecha-
nism that can predict both the static and infrequently
updated data and the frequently updated dynamic data.

• We evaluate two OTP prediction optimization techniques:
Two-level OTP prediction and Context-based OTP pre-
diction. Both can improve the OTP misprediction rate
substantially. Two-level prediction uses a range predic-
tor that first predicts the relative range of a sequence
number. Then the regular OTP prediction is carried
out in that predicted range. Context-based prediction
maintains a relative sequence number of the most re-
cent memory access in a history register and uses it to
generate predictions in addition to the regular OTP pre-
diction.

The rest of the paper is organized as follows. Section 2
discusses the concept of counter mode in general and its ap-
plication to secure processor design. Section 3 describes our
OTP prediction and precomputation framework followed by
security analysis in Section 4. We then evaluate and analyze
the performance of our proposed techniques and optimiza-
tions from Section 5 to Section 8. Section 9 discusses prior
work and finally, Section 10 concludes our work.

2. COUNTER MODE SECURITY

2.1 Counter mode encryption
Counter mode encryption is a common symmetric-key en-

cryption scheme [7]. It uses a block cipher (e.g. AES [8]),
a keyed invertible transform that can be applied to short
fixed-length bit strings. To encrypt with the counter mode,
one starts with a plaintext P, a counter cnt, a block ci-
pher E, and a key. An encryption bitstream (OTP) of the
form E(key, cnt) || E(key, cnt+1) || E(key, cnt+2) ...|| E(key,
cnt+n-1) is generated as shown in Figure 1(a). This bit-
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Key
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Key

Ciphertext 0
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(a) Encryption Process
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(b) Decryption Process

Figure 1: Counter Mode Encryption

stream is XORed with the plaintext bit string P, producing
the encrypted string ciphertext C. To decrypt, the receiver
computes the same pad used by the sender based on the
same counter and key, XORs the pad with C, then restores
the plaintext P. P is padded, if necessary, to facilitate the
OTP length.

Counter mode is known to be secure against chosen-plaintext
attacks, meaning the ciphertexts hide all partial information
about the plaintexts, even if some a priori information about
the plaintext is known. This has been formally proved in [3].
Security holds under the assumptions that the underlying
block cipher is a pseudo-random function family (this is con-
jectured to be true for AES) and that a new unique counter
value is used at every step. Thus a sequence number, a time
stamp or a random number can be used as an initial counter.
Note that the counter does not have to be encrypted. As
most encryption modes, counter mode is malleable and thus
is not secure against chosen-ciphertext attacks. For exam-
ple, flipping one bit in a ciphertext results in the flipped
bit in the plaintext. Also, counter mode does not provide
authentication (integrity) of the data. For these reasons
an additional measure such as message authentication code
(MAC) should be used. If a secure MAC is applied to the
counter mode ciphertext during the encryption and is veri-
fied during the decryption process, then the resulting scheme
provides authentication and integrity, is non-malleable and
is secure against chosen-ciphertext attacks. This is formally
proved in [4]. As pointed out by [15], most other perceived
disadvantages of counter mode are invalid, and are caused
by lack of knowledge.

2.2 Counter mode security architecture
Memory encryption schemes based on counter mode were

employed for its high efficiency by prior proposed security
architectures [20, 25]. In these schemes, a counter1 is associ-

1In many encryption mode descriptions the counter is some-
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Figure 2: Concept of Counter Mode Security

ated with each cache line size memory block of the physical
RAM as shown in Figure 2. Whenever a cache line is evicted
from the secure processor, the corresponding counter is in-
cremented and the result is forwarded to the crypto-engine
to generate the OTP for the evicted cache line. Mean-
while, the corresponding counter value in the memory is
updated. When an encrypted memory block is fetched,
the corresponding counter must be fetched first from the
memory to regenerate the OTP for decryption. As we men-
tioned earlier the counters do not need to be encrypted be-
cause the security strength of counter mode does not rely on
their secrecy [3]. Unlike other regular block cipher based di-
rect memory encryption schemes that serialize line fetching
and decryption process, the potential advantage offered by
counter mode is that it overlaps the OTP generation with
fetching of encrypted program and data [20, 25]. However,
to computer the OTP for a fetched cache line, the counter
needs to be fetched from the memory first, eliminating the
advantage of OTP pre-computation.

In [20, 25], a small sequence number (or counter) cache
is used to cache counter values on-chip to exploit this ad-
vantage of counter mode architecture. In practice, however,
these specialized caches do not hide decryption latency ef-
fectively because its hit rate does not grow steadily with its
size. One possible explanation of this “plateau” effect of the
sequence number cache is that the sequence number cache
may contain (multiple) very large working sets . A small
cache of several Kbytes may be enough to capture the first
working set, but other working sets might be too large to be
captured by a sequence number cache of tens or even hun-
dreds of Kbytes. In other words, the area cost to improve
the hit rate via simple caching can be prohibitively high.

We propose an alternative solution via prediction and pre-
computation to hide memory latency more effectively with
minimal area overhead. The premise is that predictable
counters are often used to generate the encryption OTP
deterministically using some standard encryption function.
Hence one can speculate the counter value and pre-compute
the OTP before the counter is loaded from memory. It is
important to point out that even though the counter value
is deterministic and predictable, the cryptographic function
used to generate the OTP is not. These functions involve a
secret key only known to the processor itself. It is computa-
tionally infeasible for adversaries to predict the OTP even
with a known counter value.

There are some assumptions behind a security processor

times referred to as sequence number, nonce, initial vector.
We will use sequence number or counter interchangeably
throughout this paper.

in general for protecting software and data privacy. As
mentioned earlier, memory encryption is the central com-
ponent for building a variety of security systems, ranging
from hardware-based tamper-resistant system, to systems
countering remote or local software exploits on user data.
Throughout this paper, we present our latency hiding tech-
niques applied to memory encryption in the context of tam-
per resistant system supported with an integrated crypto-
engine as shown in Figure 2. Nonetheless, the techniques
can be generalized to other security systems based on mem-
ory encryption as well. We highlight the assumptions of
our security processor model below based on prior security
architecture frameworks [13, 19, 20].

• Like any other encryption mode, counter mode encryp-
tion itself does not provide integrity protection. Extra or
additional measures such as Hash/MAC tree for integrity
protection [21] must be used together with counter mode
encryption.

• We assume a trusted OS kernel and a secure boot [1]
that protect and properly manage security-related pro-
cess context during context switch and interrupt han-
dling [13, 21]. Proper management means maintaining
privacy of information related to a protected process2.
Methods for creating a trusted nucleus such as secure
boot and secure kernel have been studied before [1].

• In a multiprogrammed environment, dynamic data of
each process is protected with different cryptographic
keys.

The above list of assumptions is by no means complete.
But, it is important to note that many of these assumptions
are design specific. For example, if the goal of a secure
system is to use memory encryption to prevent remote code
injection attacks [6] or countering malicious scan of memory
space using illegitimate software, many of these assumptions
are not needed.

3. OTP PREDICTION AND PRECOMPUTA

TION
In this section we explain the concept behind OTP predic-

tion and pre-computation3. We first explain the technique
using our proposed regular sequence number prediction algo-
rithm and we point out a potential performance issue for the
regular sequence number prediction. Next, we discuss a sim-
ple modification to the regular prediction scheme to redress
the potential performance problem. It is also important to
note that OTP prediction can be tied with any scheme based
on stream cipher such as those discussed in [20, 25].

3.1 Regular OTP prediction
The concept of OTP prediction and pre-computation can

be understood from the time-lines shown in Figure 4. We
assume that the memory access latency and the encryption
OTP generation latency are comparable4. We also assume

2Security related to context includes but not limited to reg-
ister values, page table, hash/MAC tree node, dirty cache
lines, and other per-process security related information, for
instance root sequence numbers, context information used
by OTP Prediction.
3Hereafter we use OTP prediction to represent OTP predic-
tion and pre-computation.
4We later justify this assumption in Section 5.
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Figure 3: OTP Encryption Modes

a fully-pipelined encryption and decryption AES crypto-
engine as illustrated in Figure 3. The input block of the AES
is a concatenation of a 64-bit virtual address and a 64-bit se-
quence number. For 32-bit architecture, the virtual address
is padded to 64-bit. The timeline of Figure 4(a) shows a
scenario when fetching a cache line in a baseline security ar-
chitecture without any support to accelerate the decryption
process. It is obvious that the crypto-engine pipeline sits idle
for the whole time between the time when the request is sent
to the memory and the time when the sequence number is
returned. Now suppose that in our architecture the sequence
number of a given cache line is predictable and only depends
on the page the cache line is associated with. We will justify
our claim later. Figure 4(b) shows the timeline of our frame-
work. A certain number of sequence number guesses, G1,
G2, ..., Gx, can be tried and passed to the crypto-engine for
pre-computing their corresponding OTPs while the actual
memory request is being sent to memory. Since the AES ci-
pher is pipelined, the predicted and precomputed OTPs will
be available around the time the actual sequence number is
obtained from memory. The precomputed OTPs are repre-
sented as E(Key,G1),E(Key,G2)... in the Figure 4(b). When
the actual sequence number returns, we check it against all
the guessed numbers. If one of them matches, in our case
G3, we already have the encryption pad E(key,G3) for G3.
We can now directly obtain the plaintext by XORing the
pre-computed OTP with the encrypted cache line fetched.
The rationale of our scheme is to utilize the idle time of the
crypto-engine pipeline for pre-computing several OTPs and
thus hide the memory access latency if one of the specula-
tions succeeds. To demonstrate its difference from prior art,
Figure 4(c) shows the sequence number caching technique.
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Figure 4: Timeline Comparison of Different OTP
Computation

A sequence number cache stores a finite set of sequence num-
bers for evicted lines. If a request hits the sequence number
cache, the sequence number is obtained and the OTP gen-
eration can begin much before the cache line returns from
memory. For a sequence number cache miss, the decryption
process will be serialized similar to the baseline scenario.
One issue of sequence number caching is the hit rate, which
can be substantially reduced when the working set is large or
in-between context switches. Another issue is the potential
large hardware overhead dedicated to the sequence number
storage for achieving decent hit rates. It should be kept in
mind that the area overhead of our scheme is minimal com-
pared to the caching scheme for we only need a small buffer
to store the pre-computed OTPs. We will show in our re-
sults that the benefit we receive with our optimized design
cannot be achieved even with a very large sequence number
cache. Our scheme is also complementary to the sequence
number cache. We can combine them in a design to gain
benefits offered by both. Now we elaborate our prediction
architecture in details.

Figure 5 shows the design of our OTP prediction and pre-
computation mechanism. A root OTP sequence number is
assigned to each virtual memory page by a hardware ran-
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dom number generator each time the virtual page is mapped
to a physical one. All the cache lines of the same page use
the same root OTP sequence number for their initial values.
Each TLB entry is tagged with the root sequence number
of the corresponding page. Whenever a dirty line is evicted
from the secure processor, the sequence number associated
with the corresponding line is incremented. For each miss-
ing cache line, a request for the line itself and its associated
sequence number is sent to memory. Simultaneously, the
prediction logic takes the root OTP sequence number associ-
ated with the virtual page, and inserts a few sequence num-
ber guesses into the request queue. The pipelined crypto-
engine takes each request and computes its corresponding
encryption OTP. Upon the receipt of the correct sequence
number from memory, the processor compares it with the set
of sequence number predictions. If a match is found, then
the corresponding pre-computed OTP is used to decrypt the
fetched memory data. If no match can be found, the crypto-
pipeline will take the newly received sequence number and
computes its OTP, same as baseline. In summary, OTP
prediction effectively hides the latency of encryption pad
generation by speculatively pre-computes encryption pads
using speculated sequence numbers.

Sequence number prediction is based on the observation,
that during the whole lifetime a physical memory page is
bound to a virtual memory page, many of its cache lines are
only updated a very small number of times. Our profiling
study of SPEC benchmarks indicates that many lines are
rarely updated during the entire process lifetime, in other
words, when a cache line missing the L2 cache, its sequence
number is very likely to be within a small range of the first
time initialized random sequence number associated with
that memory page. Regular OTP prediction is designed to
predict sequence numbers associated with static and infre-
quently updated data.

3.2 Adaptive OTP prediction for frequently
updated data

There is a concern about the performance of OTP pre-
diction over a large time window of execution. It is rea-
sonable to suspect that prediction rate may drop as data
are frequently updated. To address this issue, a dynamic
prediction rate tracking and sequence number reset mecha-
nism is proposed. The purpose of this mechanism is to iden-
tify those virtual pages with low prediction rate caused by
frequent memory updates and reset its page root sequence

Prediction History Vector
(16 bits)

Root Sequence Number
(64 bits)

0 1 0 0 1 0 0 1 1 0 0 0 0 00 0

Prediction History Vector 
           (Shift Register)

Sequence Number
 Prediction Logic

Prediction Result
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    TLB

0xabcddcba123443210x0000ff00

...

......

...

...

...

...

If Total(miss)>threshold, reset the
corresponding Root Sequence Number

Hit = 0

Miss = 1

Figure 6: Prediction Tracking and Sequence Num-
ber Resetting

number to a new random value so that high predictability
can be maintained.

Prediction tracking is performed in hardware using a scheme
as follows. There is a 16 bit prediction history vector (PHV)
for each memory page. The PHV records hit or miss of the
last 16 sequence number prediction on cache lines of the
associated page. Every time a cache line is loaded from
memory, the PHV of that page is updated by shifting the
new prediction result into the vector. (1 for misprediction
and 0 for hit). When the total number of mispredictions of
the last 16 predictions is greater than a threshold, the root
sequence number associated with that page will be reset to a
new randomly generated number. After reset, blocks of the
involved page will use this new number for OTP generation
next time when it is evicted from the L2.

The adaptive predictor requires the ability to test whether
a sequence number used by a cache line is counted based on
the current root sequence number. Note that this function
does not have to be 100% accurate because a wrong test re-
sult will only cause reset of the sequence number. A simple
implementation is to use the distance between a sequence
number and the current root sequence number as a crite-
ria. To decide whether a sequence number started its count
from the current root sequence number, its distance to the
current root is calculated. If the distance is negative or too
large, the sequence number is considered counting from an
old root sequence number. If a mismatch is detected, the
corresponding cache line will reset its sequence number to
the current root sequence number.

4. SECURITY ANALYSIS
We discuss a few issues about OTP prediction security in

this section.

• Security is guaranteed by the security analysis provided
in [3] since we did not modify the counter mode encryp-
tion scheme itself, but rather showed how to decrease the
long decryption process latency via architectural tech-
niques.

• In OTP prediction, different memory blocks of the same
page may use the same sequence number. This, however
will not weaken security. When the OTP is generated,
the address is used together with the sequence number
and a prefix-padding. Since each memory block has a
different address, the resultant OTP will be different for
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different memory blocks. Knowing OTP of a particular
memory block does not reveal any information about the
OTPs of other blocks of the same page.

• The root sequence number is set and reset using a hard-
ware random number generator. For the sequence num-
ber to wrap-around, it has to be incremented 264 times.
This equals hundreds of years under current processor
clock speed.

5. SIMULATION METHODOLOGY AND IM

PLEMENTATION

5.1 Simulation framework
Our simulation framework is based on SimpleScalar 3.0

running SPEC2000 INT and FP benchmark programs com-
piled with -O3 option. We implemented architecture sup-
port for OTP Prediction and root sequence number history
over SimpleScalar’s out-of-order Alpha simulator. We also
integrated an accurate DRAM model [9] to improve the sys-
tem memory modeling, in which bank conflicts, page miss,
row miss are all modeled following the PC SDRAM specifi-
cation. The architectural parameters used for performance
evaluation are listed in Table 1. To model OTP predic-
tion faithfully, we added memory profiling support to Sim-
pleScalar that keeps track of memory transactions for eval-
uating OTP prediction, such as number of times a memory
block is evicted from L2 cache, the sequence number as-
signed to each virtual page, and etc. Each benchmark is
fast-forwarded at least 4 billion instructions and simulated
in a representative place according to SimPoint [18] for 400M
instructions in performance mode. During fast-forwarding,
L1 cache, L2 cache, sequence number cache, sequence num-
ber prediction mechanism are simulated. The profiled mem-
ory status is also updated during fast-forwarding. To study
the performance sensitivity of OTP prediction optimization,
we also run each benchmark in a simplified mode that simu-
lates the memory hierarchy and OTP prediction for 8 billion
instructions. We used 16 bits for the prediction history win-
dow. By default, the sequence number of each virtual page
is reset if the number of prediction misses over the last 16
is greater than or equal to 12. The prediction depth, that is
the number of guesses generated for each missing sequence
number, is set to 5. We also use a prediction swing of 3
for context-based prediction to be discussed in Section 7.4.
Per-page root sequence numbers require small storage space.
Given a 64-bit sequence number and 256 page entries cached,
the total cost of storing root sequence numbers is about
2KB. Also, to simulate the effect of OS and system, dirty
lines of caches are flushed every 25million cycles. Further-
more, we subset the SPEC simulations for those with high
L2 misses. All the benchmarks are simulated under the se-
curity setting that data privacy must be protected.

5.2 Block cipher implementation
The AES cipher processes 128-bit data blocks by using key

lengths of 128, 192 and 256 bits. It is based on a round func-
tion, which is iterated 10 times for a 128-bit length key, 12
times for a 192-bit key, and 14 times for a 256-bit key. Each
round consists of four stages. The first stage is subbytes
transformation. This is a non-linear byte substitution for
each byte of the block. The second stage known as shiftrows
transformation, cyclically shifts (permutes) the bytes within

Parameters Values

Fetch/Decode width 8
Issue/Commit width 8

L1 I-Cache DM, 8KB, 32B line
L1 D-Cache DM, 8KB, 32B line
L2 Cache 4way, Unified, 32B line,

Writeback, 256KB and 1MB
L1 Latency 1 cycle
L2 Latency 4 cycles (256KB), 8 cycles (1MB)

I-TLB 4-way, 256 entries
D-TLB 4-way, 256 entries

Memory Bus 200MHz, 8B wide
14 rounds with an initial and

AES latency a final round, 6 stages 1ns each
96ns

Sequence number cache 4KB, 128KB, 512KB (32B line)
Prediction History Vector 16 bit

PHV threshold 12
Prediction depth

(used by all predictions) 5
Prediction swing

(used by context-based only) 3

Table 1: Processor model parameters

the block. The third stage involves mixcolumns transforma-
tion. It groups 4 bytes together forming 4-term polynomi-
als and multiplies the polynomials with a fixed polynomial
mod (x4+1). The fourth stage is addroundkey transforma-
tion. It adds the round key with the block of data. For high
throughput and high speed hardware implementation, AES
is often unrolled and with each round pipelined into multiple
pipeline stages (4-7) to achieve high decryption/encryption
throughput [10, 16, 11]. The minimal total area of unrolled
and pipelined Rijndael is about 100K - 150K gates to achieve
15-20Gbit/sec throughput [11]. Based on our real verilog im-
plementation and synthesis results, each round of pipelined
AES takes about 5nsec - 6nsec using 0.18 µ standard cell
library. In this study, the default latency is 96ns for 256-bit
AES.

6. EVALUATION OF ADAPTIVE OTP PRE

DICTION
In this section we summarize the prediction rates and IPC

results of adaptive OTP prediction. The results are collected
for two L2 cache sizes, 256KB and 1MB. Choosing a 256KB
L2 cache is not only representative for many contemporary
machines but also appropriate for our evaluation given the
SPEC benchmark suite is known to have relative small work-
ing set.

6.1 OTP prediction rate over large execution
time

One concern about OTP prediction is that its performance
over execution time or its capability to predict dynamic
data. To answer this question, we simulated performance of
OTP prediction over a relatively large time window, 8 bil-
lion instructions. We also used two different sequence num-
ber cache sizes, 128KB, and 512KB, for our reference com-
parison. Figure 7 shows the sequence number hit rates for
different sequence number cache sizes and our OTP predic-
tion. As the results indicate, the hit rate of sequence num-
ber cache is relatively low even with a decent sized 128KB
sequence number cache. The results also indicate that se-
quence number prediction can achieve good prediction rate
over a long execution window. The average prediction rate
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Figure 7: Sequence Number Hit Rates, 256KB L2,
8 billion instructions
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Figure 8: Sequence Number Hit Rates, 1MB L2, 8
billion instructions

is 82%, higher than that of a 128KB or a 512KB sequence
number cache. Figure 8 shows the same comparison with a
1MB L2. Similarly, OTP prediction also achieves a better
performance than sequence number caching for a fairly large
L2. The average prediction rate is 80% compared to 57%
for a 128KB sequence number cache.

The results also verify the initial assumption that sequence
numbers tend to have large working set. One possible ex-
planation is that for the sequence number cache to perform
well, the processor has to miss on the same memory block
many times within a short time window before the sequence
number is evicted from the sequence number cache. Due
to the temporal locality and memory working set, a proces-
sor rarely repeats missing on the same memory block many
times in a short duration of time. This illustrates the limi-
tation of using caching for improving performance since the
area cost can be prohibitively high.

Figure 9 breaks the total number of hits into three cat-
egories, 1) hit both, a sequence number that is in the se-
quence number cache and can be predicted; 2) prediction
only, a sequence number that is missing in the sequence
number cache, but can be predicted; 3) sequence cache only,
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Figure 9: Breakdown of Contribution of Sequence
Number Cache, and OTP Prediction

sequence number cannot be predicted but available in the
cache. The results are collected from simulation using a
32KB sequence number cache plus prediction. As seen from
the figure, OTP prediction can uncover more performance
opportunities lost by the sequence number caching scheme.

6.2 IPC improvement using OTP prediction
Increasing prediction rate has a great performance impact

on memory-bound benchmarks. For example, without OTP
prediction, the average IPC of the selected benchmarks only
reaches 82% of IPC of an oracle scenario where every se-
quence number is cached. In particular, bzip2, mcf, mgrid,
twolf, and vpr have their ratios in the range of 60% to 80%. If
OTP prediction can achieve ideal 100% prediction rate, the
potential performance improvement would be in the range
of 20% to 40%.

Figure 10 and Figure 11 show normalized IPC perfor-
mance of large sequence number caches vs. adaptive OTP
prediction. The IPC is normalized to the oracle case. As
shown, OTP prediction can effectively improve performance.
On average, IPC is increased by 18% and 11% for a 256KB
L2 and a 1MB L2, respectively. For ten of the fourteen
SPEC2000 benchmarks, the improvement is in the range
from 15% to 40%. Six benchmarks have their improvements
over 20% and two over 30%. For every benchmark, OTP
prediction outperforms a 128KB sequence number cache.
For average IPC, OTP prediction even performs better than
a very large 512KB sequence number cache. The results
clearly show the advantage of OTP prediction over a pure
sequence number caching.

Consistent with the prediction rate results, sequence num-
ber prediction is more effective than caching for overall per-
formance. To achieve similar performance using caching, the
required sequence number cache size needs to be unreason-
ably large, larger than a typical unified L2 cache.

7. OPTIMIZING OTP PREDICTION
Although adaptive OTP prediction can handle both infre-

quently and some frequently updated data, our study of pre-
diction rate shows that there is still room for improvement.
In this section, we propose and investigate some unique op-
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Figure 10: Normalized IPC Under Different Se-
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512KB) vs OTP Prediction, 256KB L2
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Figure 11: Normalized IPC Under Different Se-
quence Number Cache Sizes(4KB, 128KB and
512KB) vs OTP Prediction, 1MB L2

timizing techniques to increase the prediction performance
for frequently updated data.

7.1 Profiling misprediction
First, we conduct profiling studies on OTP misprediction.

We found there are two main contributors. One is prediction
depth which is equivalent to the number of predictions can
be made for each missing line. Profiling studies reveal that
some lines are evicted far more often than the others and
they are often outside the prediction range. Increasing the
prediction depth, i.e. more predictions per line, does not
solve the problem as too many predictions will overload the
crypto-engine and could lead to negative impact on perfor-
mance. The second contributor is due to the reset of the
root sequence number. After the per-page root sequence
number is reset, all the future predictions on cache lines of
the same page will use the new root sequence number in-
stead of the old ones that causes predictions of lines using
old root sequence numbers to fail.

7.2 Twolevel prediction
To reduce mispredictions caused by short prediction depth,

we introduce a novel range prediction technique to be used
in combination with the regular OTP prediction. Regular
OTP prediction is good at predicting sequence numbers that
are not updated frequently. For example, if the prediction
depth is 8 and a cache line has been evicted 23 times. It
is not possible for the regular OTP prediction to predict
correctly. However, if we divide the distance between each
sequence number to its root sequence number into multiple
ranges, for instance, four ranges, [1, 8], [9, 16], [17, 24], [25,
∞] and have OTP predictions generated only under a partic-
ular range for each sequence number, it will greatly increase
the hit rate of OTP prediction without adding pressure to
the crypto-engine pipeline. We call this design, Two-level
OTP Prediction, with the first level predicting the possi-
ble range of a sequence number and the second level us-
ing regular OTP prediction in that range. To implement
a two-level OTP prediction, range information associated
with each cache line needs to be encoded and stored. In
fact, the cost of the first level prediction is small. For ex-
ample, assume that there are four ranges, this information
can be encoded with only 2 bits. Under a 4KB page and
32-byte lines, the cost to store range information for all the
128 lines of a page is only 256 bits.

When accessing a sequence number, the secure processor
will look up the range prediction table, where each entry of
the table stores the range information for all lines in a page.
Then the retrieved range information is used by the regu-
lar OTP prediction where a number of predicted sequence
numbers are inserted to the prediction queue. The starting
predicted sequence number is root sequence number + range
lower bound, and the last predicted sequence number is root
sequence number + range lower bound + prediction depth.
When a line is evicted from the processor, its associated
entry in the range prediction table is updated.

The additional cost of range prediction is relatively small
considering a 64 entry table costs only about 2KB with the
benefit of quadruple the effective prediction depth.

7.3 Root sequence number history
Per-page root sequence number reset is important to main-

tain a satisfactory OTP prediction performance. However,
resetting and discarding old root sequence numbers may
cause predictions on sequence numbers based on discarded
root numbers to fail. To prevent misprediction caused by
resetting, we introduced a sequence number memoization
technique that keeps a certain number of old root sequence
numbers (usually very small, 1 or 2 at most) as history.
When predicting a missing sequence number, predictions
based on both the new root sequence number and the old
sequence number(s) are generated. It is important to note
that when a dirty cache line is being evicted, the writeback
is always encrypted using a new OTP based on the current
root sequence number.

7.4 Context Based Prediction
Context-based prediction is another OTP prediction opti-

mization that can significantly improve the OTP prediction
rate. The idea of context-based prediction is very simple.
We use a register called Latest Offset Register (LOR) that
records the offset sequence number of the most recent mem-
ory access ( = sequence number - root sequence number).
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For a new memory fetch, aside from the regular predictions
based on the per-page root sequence number, the context-
based OTP prediction mechanism also generates a few more
predictions based on the LOR value. In context-based pre-
diction, two sets of prediction are made. The first is our
regular prediction using the prediction depth (pred depth).
Assume that root(addr) returns the root sequence number
associated with fetched data, so the prediction of sequence
numbers falls in the range of [root(addr), root(addr)+pred depth],
in other words, (pred depth + 1) predictions are generated.
The second prediction set uses the LOR value with a predic-
tion swing (pred swing). The prediction falls in the range of
[Max(root(addr)+LOR−pred swing, root(addr)), root(addr)+
LOR + pred swing] with a maximum of 2 · pred swing + 1
predictions to be made. In our simulation, the pred depth

and pred swing are set to 5 and 3 respectively.
Context-based prediction has far less overhead than Two-

level prediction because it requires only one extra register
rather than a range table. Comparing with the regular OTP
prediction scheme, the additional cost is almost negligible.
However, Context-based prediction does increase the work-
load on the OTP engine because it generates more predic-
tions. As will be shown, context-based prediction in fact has
the best prediction rate among all three prediction schemes.

8. PERFORMANCE EVALUATION
In this section, we present performance evaluation of the

proposed optimizations for improving OTP prediction rate.
We do not report the results for the root sequence number
history method since it shows only marginal improvement
over the regular OTP prediction scheme.

8.0.1 Twolevel and Context based predictions

We use a 4-bit range predictor for each memory block
and there are 64 entries in the range prediction table (about
4KB size). The prediction rates of two-level prediction are
shown in Figure 12 and Figure 13. We can see a significant
improvement over the regular OTP prediction. The average
prediction rate of two-level prediction is almost 96% with
a 256KB L2 and 95% with 1MB. Comparing with results
in Figure 7 and Figure 8, two-level OTP prediction us-
ing only 4KB range prediction table actually outperforms
both the 128KB and 512KB sequence number cache set-
tings. However, the best prediction performance is achieved
by context-based prediction. For nearly all benchmark pro-
grams, context-based prediction attains almost perfect pre-
diction rate.

The prediction rate using a large L2 is often smaller than
the prediction rate using smaller L2 size. Since a large
L2 typically reduces memory traffic, the number of predic-
tions made with a larger L2 is usually far less than that of
a smaller one. In terms of absolute number of miss pre-
dictions, larger L2 has less number of overall misses than
smaller L2. Figure 14 shows the absolute number of predic-
tions.

Figure 15 and Figure 16 show normalized IPC results
for two-level and context-based predictions. Both two-level
and context-based predictions achieve better performance
over their regular counterpart. Using 256KB L2, for some
benchmarks such as ammp, bzip2, twolf, and vpr, the im-
provement is about 7%. With 1MB L2, the improvement
is about 4% for a number of benchmarks including applu,
bzip2, mgrid, swim, twolf and vpr. For most benchmarks,

Figure 12: Hit Rate of Two-level Pred vs. Context-
based Pred vs. Regular Pred, 256KB L2, 8 billion
instructions

context-based prediction outperforms two-level prediction.
Note that context-based prediction also generates more pre-
dictions than two-level prediction. Considering the extra
range table cost of two-level prediction, context-based pre-
diction is a better choice because on average, it delivers bet-
ter performance with far less hardware requirement.

9. RELATED WORK

9.1 Sequence number caching
Caching sequence numbers or time stamps required for

decryption was proposed in [20, 25]. In this paper, we have
compared the difference between caching and our scheme.
In contrast to caching, OTP prediction does not use any on-
chip cache (either dedicated or shared) for storing sequence
numbers of cache lines that might be used in the future.
As we showed, OTP prediction has better performance with
much less area overhead.

9.2 Memory Predecryption
Prefetch is a mature technique for latency hiding [5, 2, 22,

23]. When memory is encrypted, a prefetched cache line can
be pre-decrypted as shown recently [17]. Prefetch and pre-
decryption can cause cache pollution if the pre-decrypted
data are stored in the regular caches. Furthermore, prefetch
and pre-decryption can increase workload on the front side
bus and memory controller if they become too aggressive.
Different from pre-decryption, OTP prediction fetches only
those lines absolutely required, thus no throttling on the bus.
However, memory pre-decryption and OTP prediction are
orthogonal techniques. A hybrid approach can be designed
for further performance improvement.

9.3 Value prediction
Value prediction can be applied to tolerate memory la-

tency [14, 24]. OTP prediction is different from value pre-
diction because value prediction does not specifically ad-
dress the issue of sequence number fetch on the critical path
of memory decryption. Another major difference between
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Figure 13: Hit Rate of Two-level Pred vs. Context-
based Pred vs. Regular Pred, 1MB L2, 8 billion
instructions

Figure 14: Number of Predictions under 256KB vs.
1MB L2

these two techniques is the source of predictability. Sequence
number predictability mainly relies on the spatial and tempo-
ral coherence of the number of times cache lines are updated.

10. CONCLUSIONS
This paper introduces an OTP prediction and precompu-

tation mechanism for hiding decryption latency in counter
mode security architectures. In addition, we propose and
evaluate several novel optimization techniques to further im-
prove the performance of OTP prediction. The proposed
adaptive OTP prediction improves performance of memory-
bound applications significantly over prior sequence number
caching method with a much smaller area overhead. With-
out any extra on-chip cache, our adaptive OTP prediction
can achieve an average of 82% OTP prediction rate for both
infrequently and frequently updated memory. For several
memory-bound SPEC benchmark programs, the IPC im-

Figure 15: Normalized IPC of Two-level Pred vs.
Context-based Pred vs. Regular Pred, 256KB L2

Figure 16: Normalized IPC of Two-level Pred vs.
Context-based Pred vs. Regular Pred, 1MB L2

provement is in the range of 15% to 40%. In addition to
the regular prediction technique, Two-level OTP prediction
is proposed to further improve the prediction rate from 82%
to 96%. Finally, we propose a context-based OTP prediction
that performs even better than two-level prediction. It also
outperforms the caching scheme with a very large 512KB se-
quence number cache. Two-level and context-based predic-
tions can provide additional 7% IPC improvement on top of
the regular OTP prediction. To summarize, with a minimal
area overhead, our techniques succeed in achieving signifi-
cant performance improvement for counter mode encrypted
memory architectures. We envision that OTP prediction
would help in making encrypted memory secure processors
more practical in the future.

11. ACKNOWLEDGMENTS
This research was supported by NSF Grants CCF-0326396

and CNS-0325536.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE



12. REFERENCES

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure
and Reliable Bootstrap Architecture. In Proceedings of the
1997 IEEE Symposium on Security and Privacy, page 65.
IEEE Computer Society, 1997.

[2] J.-L. Baer and T.-F. Chen. Effective Hardware-Based Data
Prefetching for High-Performance Processors. IEEE
Transactions on Computers, 44(5):609–623, 1995.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
Concrete Security Treatment of Symmetric Encryption. In
Proceedings of the 38th Annual Symposium on Foundations
of Computer Science, page 394. IEEE Computer Society,
1997.

[4] M. Bellare and C. Namprempre. Authenticated Encryption:
Relations among Notions and Analysis of the Generic
Composition Paradigm. In Advances in Cryptology —
Asiacrypt 2000 Proceedings, Lecture Notes in Computer
Science, 1976, 2000.

[5] T.-F. Chen and J.-L. Baer. Reducing Memory Latency via
Non-blocking and Prefetching Caches. In Proceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating System),
volume 27, pages 51–61, New York, NY, 1992. ACM Press.

[6] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuardTM: Protecting pointers from buffer overflow
vulnerabilities. In Proc. of the 12th USENIX Security
Symposium, Aug 2003.

[7] W. Diffie and M. Hellman. Privacy and Authentication: An
Introduction to Cryptography. In Proceedings of the IEEE,
67, 1979.

[8] F. I. P. S. Draft. Advanced Encryption Standard (AES).
National Institute of Standards and Technology, 2001.

[9] M. Gries and A. Romer. Performance Evaluation of Recent
Dram Architectures for Embedded Systems. In TIK Report
Nr. 82, Computing Engineering and Networks Lab (TIK),
Swiss Federal Institute of Technology (ETH) Zurich,
November 1999.

[10] A. Hodjat and I. Verbauwhede. Minimum Area Cost for a
30 to 70 Gbits/s AES Processor. In IEEE Computer
Society Annual Symposium on VLSI, pp. 498-502.

[11] A. Hodjat and I. Verbauwhede. Speed-Area Trade-off for 10
to 100 Gbits/s. In 37th Asilomar Conference on Signals,
Systems, and Computer, Nov. 2003.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. B. J.
Mitchell, and M. Horowitz. Architectual Support For Copy
and Tamper Resistant Software . In Proceedings of the 9th
Symposium on Architectural Support for Programming
Languages and Operating Systems, 2000.

[13] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an
Untrusted Operating System on Trusted Hardware. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 178–192, October, 2003.

[14] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value
Locality and Load Value Prediction. In Proceedings of the
seventh international conference on Architectural support
for programming languages and operating systems, pages
138–147. ACM Press, 1996.

[15] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to
NIST Concerning AES-modes of Operations: CTR-mode
Encryption. In In Symmetric Key Block Cipher Modes of
Operation Workshop, Baltimore, Maryland, US, 2000.

[16] M. McLoone and J. V. McCanny. High Performance
Single-Chip FPGA Rijndael Algorithm Implementations. In
Proceedings of the Third International Workshop on
Cryptographic Hardware and Embedded Systems, pages
65–76. Springer-Verlag, 2001.

[17] B. Rogers, Y. Solihin, and M. Prvulovic. Memory
Predecryption: Hiding the Latency Overhead of Memory
Encryption. Workshop on Architectural Support for
Security and Anti-Virus, 2004.

[18] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

Automatically Characterizing Large Scale Program
Behavior. In Proceedings of the 10th Symposium on
Architectural Support for Programming Languages and
Operating Systems, pages 45–57, Oct. 2002.

[19] W. Shi, H.-H. S. Lee, C. Lu, and M. Ghosh. Towards the
Issues in Architectural Support for Protection of Software
Execution. In Workshop on Architectural support for
Security and Anti-Virus, pages 1–10, 2004.

[20] E. G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Efficient Memory Integrity Verification and
Encryption for Secure Processors. In Proceedings 0f the
36th Annual International Symposium on
Microarchitecture, December, 2003.

[21] E. G. Suh, D. Clarke, M. van Dijk, B. Gassend, and
S.Devadas. AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing . In Proceedings of The Int’l
Conference on Supercomputing, 2003.

[22] S. P. Vanderwiel and D. J. Lilja. Data Prefetch
Mechanisms. ACM Computing Surveys, 32(2):174–199,
2000.

[23] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and
C. C. Weems. Guided Region Prefetching: A Cooperative
Hardware/Software Approach. In Proceedings of the 30th
Annual International Symposium on Computer
Architecture, pages 388–398, June 2003.

[24] J. Yang and R. Gupta. Frequent Value Locality and its
Applications. ACM Transactions on Embedded Computing
Systems, 1(1):79–105, November 2002.

[25] J. Yang, Y. Zhang, and L. Gao. Fast Secure Processor for
Inhibiting Software Piracty and Tampering. In Proceedings
of the 36th International Symposium on Microarchitecture,
December 2003.

[26] X. Zhang and R. Gupta. Hiding Program Slices for Software
Security. In Proceedings of the Internal Conference on
Code Genration and Optimization, pages 325–336, 2003.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE


	Select a link below
	Return to Main Menu
	Return to Previous View


