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Abstract

Molecular doping—the use of redox-active small molecules as dopants for organic semiconductors—has seen
a surge in research interest driven by emerging applications in sensing, bioelectronics and thermoelectrics.
However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active
character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which
separates the redox and charge compensation steps of the doping process. Here, we study the equilibrium and
kinetics of ion exchange doping in a model system, PBTTT doped with FeCl3 and BMP TFSI, which reaches
conductivities in excess of 1000 S/cm and ion exchange efficiencies above 99%. We demonstrate several factors
which enable such high performance, including the choice of acetonitrile as the doping solvent, which largely
eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3. In this
high ion exchange efficiency regime, we illustrate a simple connection between electrochemical doping and
ion exchange, and show that the performance and stability of highly doped PBTTT is ultimately limited by
intrinsically poor stability at high redox potential.
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Introduction

The simplest, most common approach to doping
in semiconducting polymers, molecular doping[1, 2,
3] (Figure 1a) has several fundamental limitations.
These arise from the requirement that the dopant
molecule must perform two seemingly unrelated roles.
In p-type doping, initially the dopant functions as an
oxidizing agent, nearly always via a reversible elec-
tron transfer reaction, the product of which is then
inserted as an ionized dopant into the film to compen-
sate the positive charge on the polymer. Requiring
a single chemical species to perform both these func-
tions leads to several difficulties:

1. P-type dopants are by definition strong elec-
trophiles, and thus quite reactive.[4, 5, 2] Be-
cause at equilibrium a small population of neu-
tral dopants always exists, both redox states
of the dopant need to be chemically inert.
This puts hard constraints on suitable molecu-
lar dopants.

2. The electron affinity of many dopants is sig-
nificantly reduced when incorporated into an
organic semiconductor[6] making it difficult to
predict whether a given polymer and dopant
molecule will undergo charge-transfer.

3. When the electron transfer step is reversible,
the dopant ion is inherently redox-active; p-type
dopants therefore will almost always have elec-
tronic states in close vicinity to those of the poly-
mer (Figure 1d).[7, 1] In polymers there is grow-
ing evidence that integer charge-transfer is sta-
bilized by the segregation of dopant ions to the
sidechain region, where π-orbital overlap with
the polymer is minimized.[8, 9, 10] In contrast,
when the dopant does π-stack with the polymer,
fractional charge-transfer complex (CTC) forma-
tion is observed.[11] Therefore, fractional CTCs
are likely to form unless forbidden by symme-
try or spatial separation. The bond-like char-
acter of fractional CTCs should generally make
them energetically favored over ion pairs. The
latter may therefore often be metastable, and
fractional CTC formation likely forms a univer-
sal degradation mechanism.[12]

4. Typically most doping-induced charge carriers
are strongly bound in integer CTCs, with only
a small portion of charge carriers contributing

to transport.[13, 14, 15, 16] The binding en-
ergy of these states in principle can be con-
trolled by ionic size,[13, 17, 2] packing,[16] or
disorder;[15, 18] however the small library of
dopant molecules available limits optimization.

Because of these issues, many polymers still remain
difficult or impossible to dope to useful carrier densi-
ties and/or conductivities, and material stability re-
mains generally poor.

There is no a priori reason why the two steps
in Figure 1a—charge-transfer and charge compen-
sation—must be performed by the same chemi-
cal species. To illustrate this point, consider the
other common doping method, electrochemical dop-
ing (Figure 1b). Here, an electrode performs the
charge-transfer step, while the compensating ion orig-
inates from an electrolyte solution and is drawn into
the film to maintain charge neutrality. Although
the necessity of coating the film on a working elec-
trode limits its applicability, electrochemical dop-
ing has one major advantage over molecular dop-
ing: the ion inserted into the film can be chosen
from a huge library of commercially available salts.
These ions are are typically closed-shell species with
wide electrochemical windows,[19] i.e. the ion re-
duction and oxidation potentials are typically sep-
arated from the redox potentials of the polymer (i.e.
the oxidation potential for p-type polymers) by sev-
eral volts. This property implies that charge-transfer
from the ion back to the polymer is extremely unfa-
vorable, and that ionization efficiency in electrochem-
ically doped films are effectively 100%. For the same
reason, significant hybridization cannot occur, thus
fractional CTC formation is inhibited. These two
factors suggest that using closed-shell electochemi-
cally inert counter-ions should improve the stability
of doped films. Just as critically, the wide range of ion
sizes and shapes available also potentially allow for
direct tuning of Coulombic trapping [13] and struc-
tural disorder effects when the ions are incorporated
into the polymer.
Yamashita et al. recently proposed a hybrid ion-

exchange doping method (Figure 1c)[20] that involves
adding a concentrated electrolyte to a molecular dop-
ing solution. After the initial charge-transfer step,
the dopant ion-exchanges with an electrolyte anion.
If the exchange process is efficient, only the elec-
trolyte counter-ion remains in the film, effectively
giving a composition identical to that obtained by
electrochemical doping. Thus, ion-exchange forms a
bridge between molecular and electrochemical dop-
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Figure 1: Doping mechanism. a) Molecular doping from an orthogonal solvent. b) Electrochemical doping.
c) Ion-exchange doping. d) Reaction scheme for p-type molecular doping with ion-exchange. Representative
electron configurations for each state is shown above/below; reorganization effects are neglected for clarity.
e) Structures of the polymers studied in this work

ing, (kex equilibrium in Figure 1d) and combines
the benefits of both techniques. Although ion-
exchange has previously been applied to doped or-
ganic semiconductors,[21, 22, 23] the power of the
technique was not demonstrated prior to the break-
through by Yamashita et al. Their work convincingly
demonstrated that ion-exchange can dramatically im-
prove device stability and reach higher charge densi-
ties than typically achieved by molecular dopants.

The work of Yamashita in Ref. 20 provides a clear
demonstration of the potential of ion exchange dop-
ing, but it also leaves open some key questions that
need to be better understood to allow a full opti-
misation of the process and achieve higher electri-
cal conductivities than what has been demonstrated
with conventional charge transfer doping processes.
One such question is the choice of the electrolyte sol-
vent and the ionic liquid cation. Yamashita observed

a strong dependence of the achievable conductivity
on the ionic liquid cation. This is puzzling as the
cation should in principle not be involved in the pro-
cess (Figure 1c). This limited understanding has so
far prevented an optimisation of the process, and the
highest conductivities reported in Ref. 20 for the
PBTTT model system were only 600 S/cm, which
are significantly below the highest conductivities re-
ported in molecularly doped PBTTT[24, 25]. In the
present work we aim to understand in more detail the
key processes that govern ion exchange doping. In
particular, we propose a framework that allows relat-
ing ion exchange doping to electrochemical doping for
which a large body of literature exists already. The
insight gained has allowed us to optimize the process
and we report here for the first time high electrical
conductivties in excess of 1000 S/cm in ion-exchanged
samples of PBTTT.
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Results

Theory of ion-exchange

Ion-exchange processes have been studied for well
over a century, and the theoretical basis for ion-
exchange is well understood.[26] Assuming both ions
are monovalent, the exchange equilibrium can be de-
scribed by the molar selectivity coefficient,

kex =
C−

A,fC
−

D,s

C−

A,sC
−

D,f

(1)

where Cz
i,x is the molar concentration of species i

(dopant, D; electrolyte anion, A), in phase x (solvent,
s; film, f), with charge indicated by superscript. We
define the ion-exchange efficiency as the mole frac-
tion of exchanged counter-ions divided by the total
dopant density: xA = C−

A,f/N
+. Substituting this

into Equation 1 and rearranging gives the following
expression

xA = 1− xD =
kexC

−

A,s

C−

D,s + kexC
−

A,s

(2)

This is the ion-exchange isotherm. It describes the
efficiency of the ion-exchange process at equilibrium
in terms of the concentration of each ion in solution
and the selectivity coefficient. Interestingly, when
C−

D,s = 1, Equation 2 is equivalent to the Langmuir
isotherm, which was previously found to describe the
charge-transfer equilibrium, kct, in P3HT:F4TCNQ
films.[27, 2, 28, 29] (Supporting Information Section
1).
We can see the impact of changing the electrolyte

concentration more clearly using the identity ∆G0
ex =

−kT log(kex) and separating the selectivity coefficient
into two terms grouped by phase,

ln

(

C−

A,f

C−

D,f

)

= ln

(

C−

A,s

C−

D,s

)

−
∆G0

ex

kT
(3)

The first term of the right hand side of Equation 3
describes the concentration-dependent entropy con-
tribution resulting from ion-exchange, while the sec-
ond term describes the ionic selectivity of the poly-
mer. When

∣

∣∆G0
ex

∣

∣ ≤ kT , corresponding to kex ∼ 1,
the film does not show a strong preference for one
ion versus the other. In this situation, the concen-
tration of each ion can be controlled by varying the
concentration ratio of electrolyte to dopant ions in so-
lution. To achieve efficient ion-exchange, ∆G0

ex must
be either negative, indicating the polymer prefers the

electrolyte ion, or weakly positive such that the se-
lectivity can be overcome via the entropic term.

Exchange efficiency in PBTTT / FeCl3
/ BMP-TFSI

Our improved ion-exchange process follows a stan-
dard sequential solution doping process[27] using ace-
tonitrile (AN) as the doping solvent, with the addi-
tion of a large excess of electrolyte. AN is an ideal
solvent for ion-exchange doping for the same reasons
as it is an ideal solvent for electrochemistry: it has an
extremely wide electrochemical window (>6 V) and
a high dielectric constant (ǫr = 38.8), which allows
us to use very high electrolyte concentrations.[30] As
predicted by Equation 3 and shown experimentally
below, high electrolyte concentrations are critical to
achieving efficient ion-exchange. We use BMP TFSI
as a model ion-exchange electrolyte because it is com-
mercially available with low water content and very
high purity. The TFSI ion itself also has several prop-
erties that make it well suited as a dopant ion—it is
hydrophobic, has a wide electrochemical window, and
is weakly interacting with most cations.[31]

Figure 2a shows UV-vis-NIR spectra of our model
ion-exchange doping system, consisting of PBTTT
thin films sequentially doped with a FeCl3 / acetoni-
trile solution (1 mM) containing varying BMP TFSI
electrolyte concentrations (1 µM to 1 M). Molecular
structures are given in Figure 2c. In all spectra, we
observe complete bleaching of the polymer π − π ab-
sorbance between 2 and 3 eV and the appearance of
strong P1 and P2 polaron bands in the IR (<1 eV
and 1.5 eV, respectively), consistent with a very high
doping level. The two peaks visible in the UV at 3.2
and 3.9 eV are due to the presence of FeCl−4 anions.
A spectrum of FeCl−4 in AN (dotted line, see Sup-
porting Information Section 2 for details) is shown
for comparison; the peaks are shifted slightly due to
solvatochromism.

As the BMP TFSI electrolyte concentration is in-
creased, we see a reduction in the FeCl−4 absorption
due to ion-exchange along with a conductivity in-
crease of 20% (Figure 2b, blue squares), eventually
reaching values in excess of 1000 S/cm. We can ex-
tract the residual FeCl−4 concentration by fitting the
UV portion of the absorption spectra (Supporting In-
formation Section 3). From these fits, we obtain a
carrier density of 5.8±0.5×1020 cm−3 for FeCl3 doped
films, corresponding to molar concentration of about
1 dopant per 1.5 PBTTT monomers. The increase
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Figure 2: Ion-exchange equilibrium. a) UV-vis-NIR spectra of PBTTT films ion-exchange doped (100
sec.) with fixed 1 mM FeCl3 concentration and varying BMP TFSI concentration. Undoped PBTTT (dashed
line) and FeCl−4 (dotted line) are shown for reference. b) Conductivity (blue squares) and residual FeCl−4
concentration (yellow circles), obtained by fitting the absorption features from the films in (a). Solid line is
a fit to the ion-exchange isotherm (Equation 2). c) Molecular structures of PBTTT, BMP TFSI, and FeCl3.

in P1 band intensity suggests carrier densities in ion-
exchange doped films are higher still, although pre-
cise quantification of carrier density in PBTTT:TFSI
is non-trivial. A quantitative analysis of the doping
level in these films will be the focus of a separate
work.

The yellow circles in Figure 2b show the residual
FeCl−4 concentration plotted vs. BMP-TFSI concen-
tration in the doping solution, with FeCl3 solution
concentration fixed at 1 mM. Equation 2 allows us
to fit these data (yellow line; shaded regions indicate
95% confidence interval). Using C−

D,s = 0.75 mM

(Supporing Information Section 2.2), we obtain ∆G0
ex

= +29.3 meV, indicating the polymer is weakly se-
lective for FeCl−4 . This value is roughly kT, therefore
ion-exchange should be under entropic control when
the electrolyte concentration is a few times higher
than the FeCl3 concentration.

Because the carrier density increases with increas-
ing electrolyte concentration, using the FeCl−4 con-
centrations we can only calculate a lower bound on
the exchange efficiency. At a 100-fold molar excess
of electrolyte the exchange efficiency is at least 98%,
while at a 1000-fold excess it surpasses 99%, although
both of these values may be limited by our fitting rou-
tine, which is not able to accurately determine FeCl−4
concentrations below about 1019 cm−3. To further
validate our optical measurements, we used XPS to
determine the elemental Fe, Cl, and F compositions of
PBTTT films before doping and after FeCl3 (1 mM)
or BMP-TFSI / FeCl3 (100/1 mM) doping (Support-
ing Information Figure S5). These XPS data are fully
consistent with our UV spectral fitting results, and
confirm that FeCl−4 to TFSI− ion-exchange is highly
efficient.
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Importance of doping solvent choice

The high carrier density and exchange efficiency
achieved here derive primarily from the choice of ace-
tonitrile (AN) as the doping solvent, as opposed to
n-butyl acetate used in previous works.[20, 32] These
improvements stem from AN’s high dielectric con-
stant, which increases electrolyte dissociation, and a
dramatic increase in the reduction potential of Fe3+

ions in AN, which enables us to reach high carrier
densities.

Figure 3a (yellow line) shows a spectrum of an
anhydrous 1 mM FeCl3 / acetonitrile (AN) solu-
tion identical to those used in the majority of our
ion exchange doping experiments. This spectrum
closely matches that of the FeCl−4 anion[33, 34] in-
dicating that in solution, a considerable fraction of
FeCl3 exists as FeCl−4 . Since AN is aprotic and has
an electrochemical window[35] extending well beyond
the reduction potential of FeCl3[36] these anionic
species cannot be the product of a redox reaction be-
tween FeCl3 and the solvent. Instead, as described
previously[37, 38] FeCl3 disproportionates in anhy-
drous AN, resulting in an equilibrium between sev-
eral ligand deficient cationic species and the anionic
[FeCl4]

− complex; complete disproportionation corre-
sponds to 4FeCl3 −−→ Fe3++3 [FeCl4]

−. Addition of
excess chloride ions (Figure 3a, purple line) converts
all iron in solution to to FeCl−4 .[38] The magnitude
of the observed increase in FeCl−4 absorption after
the addition of excess chloride indicates that FeCl3
almost completely dissociates to Fe3+ and FeCl−4 in
AN (see further discussion in Supporting Information
Section 2.2).

Cyclic voltammetry measurements of FeCl3 solu-
tions in previous works have reported a rather low
reduction potential, causing some confusion.[39] The
observation that FeCl3 dissociates to Fe3+ allows us
to clear up these misconceptions. As a general rule,
the reduction potential of iron(iii) should should tend
to increase as more chloride ligands are removed, be-
cause the Cl− ions donate electron density to the
metal center upon complexation.[40] From the re-
ported Fe3+ −−⇀↽−− Fe2+ redox potential in aqueous
solution, 0.77 V vs. NHE,[41] we estimate a redox
potential of about 0.15 V vs. Fc/Fc+, corresponding
to about -5.2 eV vs vacuum, assuming the NHE abso-
lute electrode potential is -4.44 eV.[42, 43] This would
suggest that in aqueous solutions, FeCl3 is similar in
strength to F4TCNQ.

However, in anhydrous acetonitrile the Fe3+ −−⇀↽−−
Fe2+ redox couple was reported to be dramatically

stronger: a value of 1.57 V vs. AgNO3 for 2 mM
Fe3+ in anhydrous AN was reported by Kratochivil
et al.[36] Assuming Fc/Fc+ = 0.1 V vs. Ag/Ag+

in AN[44] this corresponds to a redox potential of
1.47 V vs. Fc/Fc+, suggesting FeCl3 in AN is sig-
nificantly stronger than even CN6-CP, the strongest
organic molecular dopant reported to date.[45] The
reason for the strong solvent dependence of the FeCl3
redox potential is complex, but likely derives from
a combination of factors, including a larger crystal
field splitting in AN vs water that stabilizes the Fe2+

state, and the intermediate dielectric constant of AN,
which destabilizes the Fe3+ state relative to water,
but is still high enough to permit strong dissociation
of FeCl3.[36] The addition of small water impurities
to FeCl3 in AN was reported to lower the redox po-
tential considerably, even in the presence of acid to
prevent coordination by hydroxide ions.[36] This ob-
servation is consistent with our CV measurements of
FeCl3 solutions which showed E1/2 = 0.8 ± 0.08 V,
slightly higher than CN6-CP (Supporting Informa-
tion Section 2). These findings indicate that water
does not simply reduce the concentration of Fe3+, for
which the Nernst equation predicts a much weaker
effect (59 mV/decade), but instead homogeneously
decreases the redox strength of the solution without
strongly affecting the concentration. To achieve high
carrier densities, it is therefore critical that these so-
lutions are prepared under dry conditions and used
promptly, as AN is strongly hygroscopic.

The high dielectric constant of AN also
enhances ion exchange efficiency. Previous
implementations[20] of ion exchange doping used a
relatively non-polar doping solvent, n-butyl acetate
(nBA, ǫr = 5). In low dielectric solvents, Coulomb
interactions between electrolyte cations and anions
are ≫ kT , resulting in an effective free anion
concentration that is considerably lower than the
electrolyte concentration. In Yamashita et al, this
effect manifested as an exchange efficiency that
depended strongly on the electrolyte cation size.[20]

In a polar solvent such as AN (ǫr = 38), the
Coulomb interaction is dramatically weaker, and the
electrolyte ions should be nearly fully dissociated
at the high concentration used for ion exchange.[46]
Under these conditions, the electrolyte cation is
simply a spectator and plays no role in the dop-
ing process. Figure 3b shows UV-vis-NIR spec-
tra of PBTTT films ion-exchange doped with sev-
eral different cation:TFSI electrolytes (100:1 mM
electrolyte:FeCl3, AN). We observe similarly high
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ion-exchange efficiency to within error with all cations
(Figure 3c), in contrast with the results of Yamashita
et al.[20] A very slightly lower doping level and elec-
trical conductivity (Figure 3c) is observed in Li TFSI
presumably due to its higher water content (specified
as 1%) which reduces the redox potential of Fe3+,
as discussed previously. However for all cations, the
conductivities obtained here are significantly greater
than the value of about 600 S/cm obtained in Ref.
20.

Kinetics of ion exchange doping

In the theory of ion exchange given in the preced-
ing sections, we assume the system is at equilibrium.
Therefore, it is critical to understand the kinetics of
both the charge transfer and ion exchange processes
to ensure our measurements are performed on sam-
ples which have fully equilibrated. Figure 4 shows
UV-vis-NIR and FTIR spectroscopy, along with con-
ductivity and GIWAXS data for PBTTT films ion
exchange doped for varying times using our standard
ion exchange process (100/1 mM BMP TFSI / FeCl3,
AN).
UV-vis-NIR spectra (Figure 4a) show a continuous

bleaching of the polymer π − π∗ band, with nearly
complete bleaching at 10 seconds and further slow
bleaching continuing up to 60 seconds. The P1 band

(<1 eV) increases continuously over the entire time
period, while the P2 band (1.5 eV) peaks at 6 sec-
onds and then slowly decreases with extended dop-
ing times. The decrease in P2 at high doping lev-
els is consistent with previous reports in OECT de-
vices at high doping levels in PBTTT, where this de-
crease was assigned to bipolaron formation.[47] How-
ever, the bipolaron band is generally understood to
appear at a wavelength intermediate between P1 and
P2,[48] while no such band is observed here.

The FTIR spectra (Figure 4b) likewise show no
evidence of bipolaron formation. At short doping
times (≤3 s) the P1 band is centered at higher energy
(∼ 0.3 eV) with a weak shoulder below 0.2 eV; these
two features correspond to intra-chain and inter-chain
transitions, respectively.[49] At longer doping times,
above 10 seconds, we observe a red shift in the P1
band, which is eventually dominated by the low en-
ergy, inter-chain feature at long doping times (i.e.
high carrier densities). The continuous redshift and
increase in P1 band intensity is consistent with in-
creasing polaron delocalization at high carrier den-
sity; we observe no signatures which can be attributed
to bipolarons. It is plausible that the reduction in P2
band intensity could presumably arise from a weaken-
ing of the oscillator strength of this transition due to
changes in polymer structure or doping level; similar
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Figure 4: Kinetics of ion exchange doping Doping solutions consisted of 100 /1 mM BMP TFSI /
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effects were recently described by Spano and cowork-
ers for the P1 band.[49]. However a more detailed
theoretical interpretation of these results will be re-
quired.

In both sets of spectroscopic data, there is clear
change in behavior occurring at about 6 seconds—the
P2 intensity reaches a maximum at 6 seconds, while
the P1 intensity increases dramatically and strongly
redshifts. This is correlated with transitions observed
in the conductivity, FeCl−4 concentration, and GI-
WAXS structural data (Figure 4c). At short dop-
ing times, below 3 seconds, the lamellar stacking dis-
tance remains about 21 Å nearly the same as un-
doped PBTTT (20.2 Å) and much smaller than ob-
served in highly doped PBTTT:TFSI (26.5 Å) or
PBTTT:FeCl4 (24.1 Å). This short stacking distance,
along with the sizable charge carrier density visible
in the UV-vis spectrum, implies preferential doping
of grain boundaries or crystalline defect sites. The
FeCl−4 concentration reaches a peak at 3 seconds, in-
dicating that in this regime the exchange efficiency

is quite low and that FeCl−4 ions penetrate the film
more quickly, presumably due to their smaller size.

However, above 6 seconds the concentration of
FeCl−4 in the film drops dramatically, indicating that
the rate of TFSI ion insertion becomes much faster
than FeCl−4 . The persistently low FeCl−4 concentra-
tion in this regime, even as the doping level continues
to increase, implies two things. First, ion exchange
has clearly become much more efficient than at earlier
times, and thus the equilibrium ∆Gex obtained pre-
viously appears to be more positive at early stages
of the doping process. Second, the sharp drop in
FeCl−4 concentration implies that the ion exchange
equilibrum is established more quickly than the redox
process, and therefore that the overall doping rate is
limited by the redox step.

The observed change in behavior at 6 seconds
appears to be driven by a sudden expansion in
the lamellar stacking distance, which increases from
about 21 to 26.5 Å between 3 and 10 seconds (Figure
4c). The rapidity of this change is suggestive of a
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structural phase transition in which the intercalation
of ions into the lamella generates voids in neighbor-
ing sites, greatly increasing the rate of ion intercala-
tion. An illustration of this mechanism is shown in
Figure 4d. Similar behavior in an OECT device was
recently observed by Bischak et al.[50] This nucle-
ated ion-intercalation behavior can be understood as
resulting from an interaction between the energetic
cost of distorting the polymer crystal to incorporate
an ion and the polymer redox potential. After an
initial ion intercalates, the redox potential of adja-
cent sites decreases, because the lamella nearby are
already partially “unzipped.” We can see further ev-
idence for this phase transition in the broadening of
the lamellar stacking peaks observed in the 6 sec-
ond GIWAXS linecuts (Supporting Information Fig-
ure S12), consistent with heterogeneous FeCl−4 and
TFSI dominated domains. The polymer π-stacking
behavior also shows a sharp drop in paracrystallinity
at 6 seconds doping time, consistent with a sudden
increase in doping within crystalline domains. This
effect is due to backbone planarization driven by po-
laron delocalization, visible as the redshift of the
FTIR spectra discussed previously.

Reducing the doping solution concentration while
maintaining a fixed BMP TFSI / FeCl3 ratio and
100 s doping time (Supporting Information Section
5) likewise shows a drop in exchange efficiency. This
further indicates that the observed low exchange ef-
ficiency prior to lamellar expansion is due to an in-
crease in ∆Gex, rather than slow ion exchange kinet-
ics. In contrast, the ion exchange kinetics of P3HT
(Supporting Information Section 6), which is under-
stood to have disordered side chains in contrast with
the highly interdigitated side chains of PBTTT,[51]
shows no evidence of a phase transition, reinforcing
our understanding of the connection between crys-
talline order and ∆Gex.

Together, these results give a clear insight into
the microscopic mechanism of ion exchange doping
in PBTTT revealing a clear doping level dependence
of exchange efficiency. These findings suggest that
in the ideal regime where electrolyte association does
not limit the ion exchange efficiency, ∆G0

ex is pri-
marily controlled by the energetics of distorting the
polymer crystal to incorporate the ion.

Comparison with electrochemical dop-
ing

When the electrolyte concentration is sufficiently
high that the electrolyte ion insertion dominates (i.e.,
the ion-exchange efficiency is high), the overall ion-
exchange reaction is simply an ion insertion reaction
coupled with a redox reaction between the oxidizing
agent and polymer,

P0
f +As

− +Ds
0 ktot

−−⇀↽−− [Pf
+ Af

−] +D−

s

For clarity, we can decompose this reaction into
two half-cell reactions,

P0
f +As

− −−⇀↽−− [Pf
+ Af

−] + e− −E0
P

Ds
0 + e− −−⇀↽−− Ds

− E0
D

The first reaction corresponds exactly to electro-
chemical doping with an applied potential E0

P , while
the second reaction is the solution-state reduction
potential E0

D of the dopant molecule measured by
e.g. cyclic voltammetry (CV). At equilibrium, E0

D −

E0
P = 0; therefore, the doping level generated by

ion-exchange corresponds precisely to that prepared
by electrochemical doping equilibrium with an ap-
plied voltage equal to the reduction potential of the
dopant. For further discussion, see Supporting Infor-
mation Section 1.3. In this sense, we expect that any
strong oxidizing agent should be capable of doping
polymer films, and that the achievable carrier den-
sity and conductivity should depend only on the ox-
idizer’s reduction potential, so long as the exchange
efficiency remains high.

Here, we compare 12 different dopants with reduc-
tion potentials from -0.25 to 1 V vs. Fc/Fc+, shown
in Figure 5a. UV-vis-NIR spectra (Supporting In-
formation Figure S10) indicate that ion-exchange ef-
ficiency remains high across all the oxidizing agents
studied here. Figure 5c shows the electrical conduc-
tivity of the films in 5b plotted against the reduc-
tion potential of each dopant (see CV measurements
in Supporting Information Section 2.1). For com-
parison, we also show the conductivity of a PBTTT
electrochemical transistor gated using the same elec-
trolyte (100 mM BMP TFSI) used for ion-exchange.
We observe good qualitative agreement between the
electrochemical device and our ion-exchange data,
consistent with our analysis above.

Electrodes typically behave as completely innocent
oxidizing agents, meaning that they participate in
outer-shell electron-transfer reactions only.[52] How-
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Figure 5: Characterizing dopant strength. a) Chemical structures of dopants used in this study. b)
Plot of conductivity vs. dopant reduction potential (vs Fc/Fc+), for ion-exchange doped PBTTT films
and a PBTTT OECT. Both ion-exchange and OECT devices use a 100 mM BMP-TFSI / AN electrolyte.
Dopant concentration and exposure time was 1 mM and 100 sec, respectively. Vertical dashed line shows the
oxidation onset for PBTTT (corresponding to the HOMO level edge) measured by CV. c) Recovered π− π∗

absorbance after chemically dedoping films in (b), normalized by each film’s as cast π−π∗ absorbance; inset
shows the normalized dedoped spectra. The dotted line labelled “undoped” indicates the increase in π − π∗

band intensity observed when an undoped film is treated with the same dedoping solution; this increase is
due to removal of doping impurities.[4] § indicates the dopant displayed limited solubility in AN (<1 mM).
d) Conductivity vs. redox potential for OECT devices gated for varying gate hold times at each data point;
inset shows the maximum conductivity reached as a function of hold time.

ever, chemical redox agents, products of chemical re-
dox reactions, or the electrolyte itself may partici-
pate in other types of reactions with the polymer,
such as proton transfer, substitution or elimination
reactions. In general, we would expect these types
of reactions to degrade the functional properties of
the polymer by introducing disorder. In this sense,
the quantitative mismatch between the OECT and
ion-exchange data suggests that conductivity is lim-
ited by both chemical degradation by dopants and by

intrinsic polymer instability.

To quantify such non-innocent behavior, we col-
lected UV-vis spectra of each sample before doping
and after dedoping with a diethylamine/acetone so-
lution, which was previously shown to quantitatively
dedope P3HT:F4TCNQ films.[4] Assuming the films
are initially undoped and the oxidizing agent is com-
pletely innocent, the π − π∗ band intensity after de-
doping should recover to the same value as measured
before doping. A decrease in recovered π − π∗ ab-
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sorbance therefore is a signature of irreversible side
reactions.

Figure 5d shows the recovered π−π∗ absorbance for
each sample. Within a given oxidizing strength range,
there is a strong correlation between higher conduc-
tivity and higher π−π∗ recovery, for instance compar-
ing Mo(tfd-COCF3)3 and Mo(tfd)3, Cu(OTf)2 and
CAN, or CN6-CP and FeCl3, indicative of varying
degrees of non-innocent oxidation reactions. Further-
more, we observe a clear reduction in π−π∗ band re-
covery with increasing oxidizing agent strength, sug-
gestive of an intrinsic polymer instability at high re-
dox potentials.

We see direct evidence for this intrinsic polymer
degradation in the OECT data (Figure 5d). During
the OECT measurement, the device must be held at
each gate voltage for a period before measurement
to allow for formation of the electrochemical double
layer and diffusion of electrolyte anions into the bulk
of the polymer film. In the absence of degradation
reactions, we would expect to see a monotonic in-
crease in conductivity with increasing gate hold time.
However, our measurements show that conductivity
reaches a peak at 100 seconds hold time (Figure 5d,
inset) with a strong decline in conductivity and in-
crease in hysteresis at longer hold times. This reac-
tivity must originate from the polymer itself, as the
electrolyte itself is stable against reduction potentials
exceeding 2 volts vs. Fc/Fc+. Because this degrada-
tion is cumulative—i.e. the conductivity at high po-
tentials is limited by the degradation built up during
the scan through lower potentials—the conductivity
in our OECT devices is lower than achievable via ion-
exchange.

At very high doping levels there is therefore a
trade-off between the time required to inject the com-
pensating ions and the timescale of degradation re-
actions. In our optimized ion-exchange process using
FeCl3, device conductivity is stable for doping times
from 60 to 300 seconds (Figure 4c). Therefore, degra-
dation seems to be relatively slow on the timescale
required to reach doping equilibrium, although the
plateau in conductivity could still result from a com-
petition between further carrier density increases and
a reduction in mobility due to degradation.

Our measurements of doped film stability in nitro-
gen, air, and under thermal stress (Supporting In-
formation Section XX) echo the above findings. Al-
though ion exchange does improve the stability of
doped films, we observe significant degradation even
at temperatures well below those at which TFSI-

based ionic liquids typically decompose. The intrinsic
instability of highly doped PBTTT observed here is
consistent with our observation of only moderate im-
provement in environmental stability. Our findings
indicate that ion exchange provides a clear path for-
ward in engineering highly doped and stable polymer
films, but that the identification of intrinisic poly-
mer degradation mechanisms under electrochemical
stress, or in the presence of environmental impuri-
ties like water, are critical next steps in engineering
highly conductive and stable polymer films.

Conclusions

We have demonstrated that ion-exchange doping with
FeCl3 can generate highly ordered polymer films with
extremely high doping levels. We find that the pro-
cess is most efficient in highly polar solvents with
large electrochemical window, such as acetonitrile, in
which the ionic liquid cation is a mere spectator ion,
and that the ion exchange efficiency can be controlled
entropically simply by adjusting the electrolyte con-
centration, even in situations where the free energy
for ion exchange is weakly positive. We have also
shown that the ion exchange process can essentially
be understood as analogous to electrochemical dop-
ing wherein the redox potential of the dopant plays
the role of the applied electrical voltage. This im-
proved understanding reported in our work has al-
lowed the optimization of the achievable electrical
conductivity of ion-exchange doped PBTTT films,
for which we have reported conductivities in excess
of 1000 S/cm. It also paves the way for fundamen-
tal studies of charge transport in ion-exchange doped
conjugated polymers, which make use of the broad
choice of the size and shape of the ionic liquid an-
ions that are now available to tune the electrostatic
interactions between the mobile polarons on the poly-
mer and the counterions. Ion exchange doping is an
important approach that is likely to become widely
used to control the electrical properties of conjugated
polymers.

Methods

Materials

PBTTT (poly(2,5-bis(3-alkylthiophen-2-
yl)thieno(3,2-b)thiophene); Mw = XX kDa, PDI
= XX) was synthesized as described previously.[53]
P3HT (poly(3-hexylthiophene-2,5-diyl); 99.0% RR,
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Mw = 44 kDa, PDI 2.1) was purchased from TCI.
Ion-exchange salts Li-TFSI (>99%, <1% water),
Na-TFSI (>97%), BMP-TFSI (>98.5%, <0.04%
water), and TBA-TFSI (>99%) were purchased
from Sigma Aldrich. Dopants PMA (hydrated, ACS
reagent), Fc-PF6 (>97%), Cu(OTf)2 (>98%), FeCl3
(anhydrous, >99.99% trace metals basis), OA, and
CAN (>99.99% trace metals basis) were purchased
from Sigma Aldrich. F4TCNQ (>98%) was obtained
from TCI. TBA CN6-CP, F6TCNNQ, Mo(tfd)3,
Mo(tfd-COCF3)3, and CN6-CP were synthesized
as described previously[54, 55, 56, 57, 58, 45].
Anhydrous acetonitrile (Romil Hi-Dry, <20 ppm
water) was used to prepare all doping solutions,
while anhydrous dichlorobenzene and chlorobenzene
(Romil Hi-Dry, <20 ppm water) were used for
polymer solution preparation; further details are
given below. Acetone and diethylamine for dedoping
experiments were obtained from Romil and Sigma
Aldrich, respectively. All materials were used as
received.

Solution Preparation

Solutions of PBTTT were prepared in 1,2-
dichlorobenzene (DCB) at a concentration of
10 mg/mL and heated at 80◦ C overnight before
use. Stock electrolyte solutions (1M in AN) were
prepared before use and stored in the glovebox until
needed; dopant solutions (10 mM) were prepared
immediately before use. All polymer and doping
solution preparation, including weighing reagents,
was performed in an inert atmosphere (<1 ppm
H2O, O2 during solution preparation; <10 ppm
H2O, O2 during weighing).

Sample Preparation

Glass substrates (Corning Eagle XG) for conductiv-
ity and UV-vis measurements were cut into 1 cm
squares, and 1 mm electrical contacts (Cr/Au, 5/25
nm) were deposited in each corner via thermal evap-
oration through a shadow mask. OECT and Hall
bar samples were prepared on the same substrates
using double-layer liftoff photolithography. Hall bar
samples used contact thicknesses identical to conduc-
tivity samples; OECT devices used thicker contacts
(Cr/Au, 5/200 nm) to ensure a small series resis-
tance (see OECT details below). Samples for GI-
WAXS measurement were prepared on Si (native ox-
ide) and cleaned using the same procedure. FTIR

samples were coated onto double side polished un-
doped Si, also cleaned using the above procedure.
Substrates were cleaned by sequential sonication in
2% Decon 90/DI water, DI water, acetone, and iso-
propanol, then dried with nitrogen flow and exposed
to oxygen plasma (300 watts, 10 minutes) before use.
PBTTT films were spin coated from 80◦ C solu-

tions using preheated glass pipettes onto 80◦ C sub-
strates. Samples were spun at 1500 rpm until dry (60
seconds) and subsequently annealed in N2 at 180◦ C
for 20 minutes, then slowly cooled to room tempera-
ture by switching off the hotplate.
Ion-exchange doping solutions were prepared im-

mediately before use due to the limited stability
of many dopants in the presence of dilute water
impurities. To obtain a standard 100:1 mM elec-
trolyte:dopant concentration, electrolyte stock solu-
tions (1 M) and oxidizer stock solutions (10 mM) were
mixed with acetonitrile at 1:1:8 ratio, respectively.
Samples were sequentially doped with 150 uL doping
solution per cm2 substrate area, waiting a variable
delay period, then spinning off the excess solution
at 8000 rpm. While spinning, samples were washed
with 1 mL acetonitrile to remove excess electrolyte
and dopant from the surface.

Conductivity Measurements

Conductivity was measured in van der Pauw
configuration.[59, 60] Measurements were performed
using an Agilent 4155B sourcemeter under nitro-
gen atmosphere (<20ppm O2). Four measurements
were performed per sample by measuring a 2-point
I-V hysteresis sweep (-0.1 to 0.1 V) between each
pair of adjacent electrodes, while simultaneously
monitoring the voltage at the remaining two elec-
trodes. The resulting 4 point resistance data was
checked for hysteresis, current reversal, and reci-
procity (V12

V34

= V34

V12

) to a tolerance of 3%, in line with
NIST recommendations.[61] Uncertainties are dom-
inated by thickness uncertainty; contact size effects
contribute <1% to the relative error.[59, 60] Thick-
ness measurements were performed using a Bruker
Dektak XT. Conductivity values are calculated using
the undoped film thickness to prevent thickness vari-
ations from creating apparent differences in charge
transport properties between samples.

OECT Measurements

OECT devices were measured in a two point geom-
etry. After spin coating the polymer onto substrates
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with pre-patterned electrodes, the polymer layer was
removed to define the device active area. Device
length was 4000 µm; widths varied between devices
and were measured via surface profilimetry after mea-
surement (650 to 1200 µm, std. dev. <50 µm within
each device). Thick electrodes (5/200 nm Ti/Au)
were used to reduce the total series resistance to 65
ohms; the minimum device resistance measured was
1600 ohms.

PDMS spacers (3 mm thick) were prepared with
Sylgard 184 10:1 w/w base to crosslinker ratio and
baked at 60C for 1.5 hours in an oven. The spacers
were patterned to expose the active area, then im-
mersed in acetonitrile overnight to remove any resid-
ual crosslinker. To form the OECT, a silver quasi-
reference electrode identical to those used in our CV
measurements (Ag oxidized by O2 plasma 300 W, 1
min) was pierced through the side of a spacer, then
placed on top of the device substrate and filled with
electrolyte (100 mM BMP TFSI in AN) under nitro-
gen atmosphere (<1 ppm H2O, O2). The electrolyte
well was sealed with a Pt sheet acting as the gate
electrode, and clamped together between two acrylic
sheets. The resulting assembly remained airtight for
over 24 hours.

After sealing the device, measurements were per-
formed in air using an Agilent 4155B sourcemeter.
Source drain I-V measurements used a voltage range
from -0.1 to 0.1 V. Gate voltage was swept from 0
to 1.3 V and back in 0.1 V increments. Before the
I-V measurement at each gate voltage, the device was
held with the gate on and 0 V source-drain voltage
for a hold time (varying between 60 and 300 seconds;
see Figure 5d). The hold time was fixed for each gate
voltage sweep; new devices were used for each dif-
ferent hold time measurement. The potential of the
silver reference was measured during each I-V mea-
surement, which was converted to V vs. Fc/Fc+ us-
ing a separate CV measurement.

Spectroscopy

UV-vis-NIR spectra were collected on a Shimadzu
UV-3600i dual beam spectrometer, using a 3 nm
slit width and 2 nm data interval. Substrate back-
ground spectra were collected separately. IR (<0.75
eV) and UV (>3.02 eV) regions were smoothed us-
ing a Savitzky-Golay filter;[62] the filter window was
50 points in the IR and 10 points in the UV. FTIR
spectra (SI) were collected on a Bruker Vertex 70V
using a DLaTGS detector.

GIWAXS Characterization

Grazing-incidence Wide-angle X-ray Scattering (GI-
WAXS) measurements were performed at Beamline
8-ID-E at the Advanced Photon Source (APS) at Ar-
gonne National Laboratory. Samples were irradiated
with a 10.9 keV X-ray at an incidence angle 0.13◦

for 2 summed exposures of 2.5 second (5 s of expo-
sure in total), and scattered X-rays were recorded by
a Pilatus 1 M detector located 228.16 mm from the
sample. The collected images were then processed
by using the GIXSGUI software.[63] The background
was subtracted by fitting the curves to an exponential
decay, and peaks were fitted to Gaussian functions.
Peak widths and positions were used to calculate the
π−π paracrystallinity assuming the coherence length
is dominated by paracrystalline disorder, as previ-
ously suggested by Rivnay et al:[64]

g =
1

2π

√

∆qdhkl (4)

where ∆q is the diffraction peak full width at half
maximum, and dhkl is the interplanar distance.
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molecular doping in organic semiconductors. Ad-
vanced Materials, page 1703063, 2017.
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