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In order to utilize the full potential of solar cells fabricated on n-type silicon, it is necessary to
achieve an excellent passivation on B-doped emitters. Experimental studies on test structures and
theoretical considerations have shown that a negatively charged dielectric layer would be ideally
suited for this purpose. Thus, in this work the negative-charge dielectric Al2O3 was applied as
surface passivation layer on high-efficiency n-type silicon solar cells. With this front surface
passivation layer, a confirmed conversion efficiency of 23.2% was achieved. For the open-circuit
voltage Voc of 703.6 mV, the upper limit for the emitter saturation current density J0e, including the
metalized area, has been evaluated to be 29 fA /cm2. This clearly shows that an excellent passivation
of highly doped p-type c-Si can be obtained at the device level by applying Al2O3. © 2008
American Institute of Physics. �DOI: 10.1063/1.2945287�

n-type silicon has an enormous potential for widescale
application in the photovoltaics industry. Its relative toler-
ance to common impurities �e.g. Fe�1 potentially results in
higher minority carrier diffusion lengths compared to p-type
c-Si substrates with a similar impurity concentration. Fur-
thermore n-type c-Si does not suffer from the boron-oxygen
related light-induced degradation �LID�, which is known to
cause the LID for c-Si solar cells based on p-type Czochral-
ski c-Si.2

In order to benefit from these advantages of the c-Si bulk
material, a technology for adequate passivation of the
B-doped emitters is essential. However, at the device level
the excellent passivation quality as achieved for highly
doped n-type emitters has not been realized so far for highly
B-doped p-type c-Si. SiO2, the most effective passivation for
highly doped n-type surfaces,3 does not show the same per-
formance on highly B-doped surfaces.4–7 The high boron
solubility8 combined with the presence of a small fixed posi-
tive charge density9 contribute to this gap in performance.
a-SiNx :H, the second standard passivation layer for
n+-doped surfaces, does not passivate highly doped p-type
surfaces effectively due to the high concentration of built-in
positive charges.6,10,11 Nevertheless, Chen et al. have shown
a-SiNx :H passivation on highly doped p-type surfaces with
J0e values below 10 fA /cm2 for sheet resistivities above
100 � /sq.12 However, no n-type cells have been fabricated
using this approach which would demonstrate the potential
of this technology at the device level. Alternative passivation
layers under investigation for highly doped p-type surfaces
are a-Si:H and a-SiCx :H. With a-Si:H J0e values below
30 fA /cm2 have been reached for sheet resistivities above
100 � /sq.6,13 a-SiCx :H shows only poor passivation proper-
ties so far, with J0e�400 fA /cm2 on highly doped p-type
surfaces �Rsheet=100 � /sq�.14 Apart from SiO2, all other lay-
ers, especially those rich in Si, show a considerable absorp-
tion for photons with a wavelength �600 nm which is unde-
sirable for the application as antireflection coating.

For passivation of highly doped p-type c-Si, a dielectric
containing a fixed negative-charge density without any ab-
sorption in the visible part of the solar spectrum would be
ideal. One dielectric layer meeting these specifications is the
negative-charge dielectric Al2O3, which can be fabricated in
a low temperature process.

Hoex et al. measured emitter saturation currents below
10 fA /cm2 on highly doped p-type c-Si surfaces of unmet-
alized lifetime samples coated with Al2O3 synthesized by
atomic layer deposition �ALD�.15 The high density of fixed
negative charges �up to �1013 cm−2� within this layer pro-
vides an effective field effect passivation on highly p-type
doped surfaces.16 The excellent passivation of lightly doped
p-type c-Si by Al2O3 has already been demonstrated at the
rear of a diffused emitter p-type c-Si solar cell.17 In this
paper, it will be proven that the excellent surface passivation
of highly doped p-type c-Si by Al2O3 can be accomplished at
the device level by achieving very high energy conversion
efficiencies.

The effect of built-in charges on the passivation quality
for highly doped p- and n-type surfaces is shown in Fig. 1.
For this experiment, symmetrical p+ /n / p+ and n+ / p /n+ life-
time samples �1 � cm n- or p-type c-Si� were passivated by
a 105 nm thick thermal SiO2 and subsequently a charge den-
sity in the range between −4 and 4�1012 cm−2 was applied
on both sides of the samples by means of corona charging.9

The quasi-steady-state photoconductance �QSSPC� method18

is used to measure effective lifetime �eff. The implied Voc
was extracted from the QSSPC data as proposed by Sinton:19

implied Voc =
kT

q

��n + Ndop��n

ni
2 , �1�

where �n is the excess carrier density, k the Boltzmann con-
stant, T the temperature, q the elementary charge, Ndop the
bulk doping concentration, and ni the intrinsic carrier density.

The observed detrimental effect of positive charge on the
passivation of highly doped p-type surfaces can be explained
by the surface depletion of the majority carriers �i.e., the
holes� induced by these positive charges. The surface deple-a�Electronic mail: jan.benick@ise.fraunhofer.de.
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tion enhances the minority carrier �i.e., the electron� concen-
tration at the surface, leading to an enhanced surface recom-
bination. The opposite effect occurs when a negative-charge
density is applied. In this case, an accumulation layer is in-
duced, providing an effective field effect passivation at the
p-type surface. By applying a negative-charge density of
−4�1012 cm−2, the implied Voc is increased from below
650 mV �without surface charging� to approximately
690 mV. An analogous effect, but with opposite polarities,
can be observed for highly n-type doped surfaces.

In order to investigate the excellent level of surface pas-
sivation of highly doped p-type c-Si surfaces by Al2O3 at the
device level, n-type passivated emitter with rear locally
diffused3 �PERL� solar cells �as shown in Fig. 2� were fab-
ricated on �100� 1 � cm, FZ, n-type c-Si wafers with a thick-
ness of 250 �m. These cells �A=4 cm2� feature a front sur-
face with inverted pyramids and evaporated Al /Ti /Pd /Ag
front contacts which are thickened by electroplating. The
rear surface exhibits a local P diffusion �Rsheet�20 � /sq�
and is covered with a 100 nm thick thermally grown SiO2
and a 2 �m thick aluminum layer. BBr3 diffusion at 890 °C

followed by a drive-in oxidation at 1050 °C result in a ho-
mogeneous B emitter with a sheet resistance of 140 � /sq
�6�1018 cm−3 surface doping concentration, 1.5 �m depth�.
This front side B emitter is passivated by a stack consisting
of a 30 nm Al2O3 film followed by a 40 nm thick SiNx. The
deposition of the Al2O3 was performed by plasma-assisted
ALD �on an Oxford Instruments FlexAL™ setup� at a tem-
perature of 200 °C.16 The plasma-assisted chemical vapor
deposition SiNx was deposited at 400 °C �SINA XS, Roth &
Rau AG�.

The one-sun parameters of the PERL solar cells featur-
ing the Al2O3 front side passivation are summarized in Table
I. The best cell exhibits a Voc of 703.6 mV, a Jsc of
41.2 mA /cm2, and a FF of 80.2% resulting in an indepen-
dently certified solar cell efficiency of 23.2% �aperture area
measurement�. The exceptional high values for Voc, despite
the lack of a two-step emitter, prove the outstanding ability
of Al2O3 for the passivation of highly doped p-type surfaces
in the solar cell devices.

To gain a deeper insight into the front surface passiva-
tion, an upper limit of the emitter saturation current J0e can
be determined from the open-circuit voltage Voc and the satu-
ration current density J0=J0b+J0e by employing the one-
diode equation:

Voc =
kT

q
ln	 Jsc

J0b + J0e
+ 1
 . �2�

The Voc is determined by the saturation current densities of
both the emitter J0e and the base J0b. Thus, to obtain an upper
limit for J0e, a reasonable J0b has to be derived. The satura-
tion density of the base, which also includes recombination
in the bulk and at the rear side, can be calculated by

J0b =
qni

2Dp

LND
·

Srear,eff cosh�W/L� + Dp/L sinh�W/L�
Dp/L cosh�W/L� + Srear,eff sinh�W/L�

. �3�

The effective surface recombination velocity �SRV� of a
point contacted rear is given by20

Srear,eff =
Dp

W
� p

2W��f
arctan	2W

p
��

f

 − exp	−

W

p



+
Dp

fWScont
−1

+
Spass

1 − f
, �4�

where Dp=11.6 cm2 /s is the hole diffusion coefficient, W
=250 �m the wafer thickness, p=135 �m the contact pitch,
f =5% the metallization fraction, and Scont and Spass the SRVs
of the metalized and the passivated sections of the rear side,
respectively. Scont has been calculated by numerical modeling
in PC1D �Ref. 21� on an idealized cell structure with intrin-
sic bulk lifetime, assuming Sfront=0 cm /s. A strong P back
surface field is present beneath the contacts. In this case, Scont
is independent of the actual SRV of the metal-Si interface,

TABLE I. Results of n-type PERL solar cells passivated by Al2O3

�AM1.5G, 100 mW /cm2, 25 °C�.

Voc

�mV�
jsc

�mA /cm2�
FF
�%�

	
�%�

Average �28 cells� 696.9
5.6 40.9
0.3 78.8
1.8 22.5
0.7
Best 703.6 41.2 80.2 23.2a

aIndependently confirmed by Fraunhofer ISE CalLab.

FIG. 1. �Color online� The effect of surface charge density on surface pas-
sivation quality. Both the B and P emitters have comparable sheet resistiv-
ities of approximately 140 � /sq with surface doping concentrations of 6
�1018 cm−3 for the B and 8�1018 cm−3 for the P emitter. Both emitters are
passivated by a 105 nm thick thermal SiO2.

FIG. 2. �Color online� PERL solar cell structure on n-type silicon. Note that
this structure has a homogeneous emitter in contrast to the two-step emitter
in the original PERL structure.
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leading to Scont�55 cm /s. Applying Eqs. �2� and �3�, the
upper limit for the total dark emitter saturation currents
J0e,total are 45 fA /cm2 for Spass=0 cm /s �J0b=10 fA /cm2�
and 29 fA /cm2 for a more realistic but still very good Spass
=5 cm /s �J0b=25 fA /cm2�, including the recombination in
the contacted and passivated areas of the emitter. To estimate
the impact of the contacted area on J0e,total, using PC1D and
a Scont of 106 cm /s, we have calculated the dark saturation
current in the contacted region, J0e,cont, to be 1800 fA /cm2.
This results in an area-weighted dark saturation current for
this region, fcont�J0e,cont, of 20.3 fA /cm2 �contacted area
fcont=1.1%�. The area-weighted value for the passivated re-
gion has been calculated, �1− fcont��J0e,pass=9.9 fA /cm2,
using the J0e value of �10 fA /cm2 extracted by Hoex et al.
on nonmetalized lifetime test structures with a comparable B
emitter.15 This leads to a J0e,total of 30.2 fA /cm2 which is in
good agreement to our previous calculation of 29 fA /cm2. A
Voc of 702 mV agreeing very well with the measured Voc of
the cells has been obtained, taking into account a J0b of
25 fA /cm2 �Spass=5 cm /s� from Eq. �3�. This calculation
shows that about 66% of the recombination in the emitter is
due to the contacted area.

The high internal quantum efficiency �IQE� in Fig. 3 also
shows the effective front side passivation. These very high
IQE values of �100% in the 300–600 nm range clearly
demonstrate that the negative-charge dielectric Al2O3 is an
excellent front surface passivation layer on B-doped emit-
ters. Not only an excellent passivation quality has been
reached on highly p-doped c-Si by Al2O3 resulting in a Voc
of 703.6 mV but moreover no additional detrimental effects
such as optical absorption or inversion channel shunting are
present, which would result in a poor performance at the
device level.

In summary, an exceptionally high conversion efficiency
of 23.2% for an n-type PERL solar cell with a front side
B-doped emitter has been reported in this work. To date the
highest reported efficiencies on n-type material were 22.7%
�681 mV� on a backside-contact solar cell22 and also 22.7%
�702 mV� on a rear emitter PERT solar cell.23 This study
demonstrates the excellent performance of our n-type solar
cells and the superior passivation of highly B-doped surfaces
by the negative-charge dielectric Al2O3. The passivation of
highly doped p-type c-Si has been obtained at the device
level achieving the required technology for high-efficiency
diffused emitter solar cells on n-type c-Si.
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FIG. 3. �Color online� EQE, IQE, and reflection of an Al2O3-passivated
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