ARTICLE TYPE

Supplementary Material (ESI) for *Energy & Environmental Science* This journal is © Royal Society of Chemistry 2010

Supporting information

High Efficiency Nanocomposite Sorbents for CO₂ Capture based on Amine-functionalized Mesoporous Capsules

⁵ Genggeng Qi, ^a Yanbing Wang, ^a Luis Estevez, ^a Xiaonan Duan, ^a Nkechi Anako, ^b Ah-Hyung Alissa Park, ^b Wen Li, ^c Christopher W. Jones ^c and Emmanuel P. Giannelis^{*a}

¹⁰ **Fig. S1** Breakthrough plots of the sorbents for CO_2 capture at 75 °C under a pre-humidified test gas (10% CO_2 balanced with Ar). (a) MC400/10PEI%83 = 74 mg, gas flow rate = 20.22 ml min⁻¹. (b) MC400/10TEPA%83 = 68 mg, gas flow rate = 20.98 ml min⁻¹.

I

5

www.rsc.org/xxxxxx | XXXXXXXX

Supplementary Material (ESI) for *Energy & Environmental Science* This journal is © Royal Society of Chemistry 2010

Fig. S2 Sorbents based on various supports with different amine loadings. (a) MC400/10PEI%83; (b) MCM-41PEI%83 (c) SBA-15PEI%83; (d) SiO_2 -400PEI%83.

ARTICLE TYPE

www.rsc.org/xxxxxx | XXXXXXXX

Supplementary Material (ESI) for *Energy & Environmental Science* This journal is © Royal Society of Chemistry 2010

Fig. S3 Nitrogen adsorption-desorption isotherms of mesoporous silica capsule MC400/10 and PEI impregnated sorbent MC400/10PEI%75.

ARTICLE TYPE

www.rsc.org/xxxxxx | XXXXXXXX

Supplementary Material (ESI) for Energy & Environmental Science This journal is © Royal Society of Chemistry 2010

Fig. S4 Viscosity difference of polyethylenimine before (a) and after CO₂ capture (b). A viscous thin film was observed when the CO₂ gas flowed over the amine in the vials at 75 °C. After CO₂ capture, the four vials ⁵ were cooled down to room temperature and inverted for 10 s.