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To the Editor:
Transcription activator–like (TAL) ef-
fectors of Xanthomonas oryzae pv. oryzae 
(Xoo) contribute to pathogen virulence 
by transcriptionally activating specific 
rice disease-susceptibility (S) genes1, 2. 
TAL effector nucleases (TALENs)—fu-
sion proteins derived from the DNA 
recognition repeats of native or custom-
ized TAL effectors and the DNA cleav-
age domains of FokI3, 4, 5—have been 
used to create site-specific gene mod-
ifications in plant cells6, 7, yeast8, ani-
mals9, 10, 11, 12 and even human plurip-
otent cells13. Here, we exploit TALEN 
technology to edit a specific S gene in 
rice to thwart the virulence strategy of 
X. oryzae and thereby engineer herita-
ble genome modifications for resistance 
to bacterial blight, a devastating disease 
in a crop that feeds half of the world’s 
population.

We targeted the rice bacterial blight 
susceptibility gene Os11N3 (also called 
OsSWEET14) for TALEN-based disrup-
tion. This rice gene encodes a member 
of the SWEET sucrose-efflux transporter 
family and is hijacked by X. oryzae pv. 
oryzae, using its endogenous TAL effec-
tors AvrXa7 or PthXo3, to activate the 
gene and thus divert sugars from the 
plant cell so as to satisfy the pathogen’s 
nutritional needs and enhance its per-
sistence2, 14. The Os11N3 promoter con-
tains an effector-binding element (EBE) 
for AvrXa7, overlapping with another 
EBE for PthXo3 and with the TATA 
box (Figure 1a and Supplementary Fig-
ure 1). We deployed two pairs of de-
signer TALENs (pair 1 and pair 2) inde-
pendently to induce mutations in these 
overlapping EBEs of the Os11N3 pro-
moter and thus to interfere with the vir-
ulence function of AvrXa7 and PthXo3, 
but not the developmental function of 
Os11N3 (Supplementary Figure 1 and 
Supplementary Note). The TALE repet-
itive regions used for nuclease fusions 
included the native AvrXa7 and three 
designer TALE repetitive regions cus-
tom synthesized using a modular 
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Figure 1. High-
efficiency tar-
geted gene ed-
iting using 
TALENs. (a) Over-
lapping elements 
targeted by two 
pairs (1 and 2) of 
designer TALENs 
in the Os11N3 
promoter. (b–
d) Genotypes of 
progeny (T1) of 
primary trans-
genic plants (T0) 
derived from 
TALEN-express-
ing embry-
onic cells from 
three indepen-
dent transforma-
tion experiments 
(Exp.). Each of 
the two alleles 
of an individual 
plant are desig-
nated as being 
wild type (wt) or 
as having a nu-
cleotide inser-
tion (+) or a de-
letion (−) and are 
separated top 
and bottom by 
a dividing line. 
The designation 
“−55/(−7/+3)” 
indicates that 
one allele con-
tains a deletion 
of 55 bp and 
that the other
allele has both a deletion of 7 bp and an insertion of 3 bp. (e) Sequences of Os11N3 mu-
tations induced by the pair 2 TALENs with deletions (dashes) and insertions (red letters). 
TALEN-binding sequences are underlined in wt and the overlapping EBEs are shaded in gray. 
(f,g) Expression of Os11N3 and Os04g19960 induced by AvrXa7 in plants of different gen-
otypes. Quantitative reverse transcription (RT)-PCR was performed with RNA derived from 
treatments of nonpathogenic Xoo strain ME2 and pathogenic ME2(avrXa7). 2ΔΔCt is a mea-
sure of transcript abundance for a selected gene (Os11N3 in f or Os04g19960 in g) relative 
to the abundance of transcripts produced from a constitutively expressed gene (OsTFIIAg5), 
as determined by relative PCR cycle thresholds (Ct). (h) Resistance phenotype displayed by 
two T2 mutant plants compared with the disease susceptibility phenotype of a nontrans-
genic wt rice plant.
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assembly method8. Each designer 
TALEN contained 24 repeat units for 
recognition of a specific set of 24 con-
tiguous nucleotides at the target sites 
(Supplementary Figure 1).

For each pair of TALEN genes, one 
TALEN gene (half of the pair) was un-
der the control of the 35S promoter of 
cauliflower mosaic virus and the other 
gene was driven by the maize ubiqui-
tin 1 promoter, comprising a specific 
TALEN pair in a single plasmid (Sup-
plementary Figure 2). Each plasmid 
also contained a marker gene for hy-
gromycin resistance. These constructs 
were introduced into rice embryonic 
cells using Agrobacterium tumefaciens, 
and individual transformant cells were 
selected, propagated and regenerated 
into whole plants (T0). The Os11N3 
promoter regions from a number of in-
dependent hygromycin-resistant cal-
lus lines and the segregating progeny 
(T1) of self-pollinated T0 plants were 
amplified using the polymerase chain 
reaction (PCR) and sequenced to de-
tect potential sequence alterations. For 
TALEN pair 1 genes, two of five ex-
amined callus lines contained bial-
lelic mutations (Supplementary Fig-
ure 3). Of 23 randomly selected T1 
progeny produced from self-pollina-
tion of 7 independent T0 plants trans-
formed with TALEN pair 1 genes, 
about half (48%) carried mono- or bi-
allelic mutations (including the four 
mutations detected in the two previ-
ously examined callus lines; Figure 
1b). Approximately two-thirds (63%) 
of the randomly selected T1 plants (n 
= 30) generated from self-pollination 
of 66 independent T0 plants from the 
two independent transformation ex-
periments carried mutations that were 
induced by the TALEN pair 2 genes 
(Figure 1c,d). In total, 16 distinct mu-
tations, including 6 that were homo-
zygous, were detected in 53 T1 plants 
from TALEN pair 1 and pair 2. The 
majority of these mutations were small 
deletions that left the TATA box intact, 
with the exception of two deletions in 
heterozygous lines that also contained 
a wild-type allele (Figure 1e and Sup-
plementary Figure 4). Bacterial infec-
tion assays using the leaf-tip clipping 
method on other T1 plants (n = 627) 
generated from TALEN pair 2 (experi-
ment 1) and not previously genotyped 
demonstrated that approximately 48% 
of the treated plants showed resis-
tance to infection by pathogenic Xoo 
as evidenced by the length of leaf le-
sions (1–4 cm for resistance versus 10–
14 cm for susceptibility; Supplemen-
tary Figure 5). DNA sequence analyses 

of 27 such Xoo-resistant T1 plants con-
firmed the presence of homozygous 
monoallelic or heterozygous biallelic 
EBE mutations and revealed 17 ad-
ditional, distinct mutant haplotypes 
(Supplementary Figure 6). All mutant 
plants were morphologically normal 
compared to wild-type plants, indicat-
ing that the developmental function of 
Os11N3 was not disrupted.

Forty plants from the second gen-
eration (T2) of three self-pollinated 
T1 plants were also genotyped by se-
quencing to determine the heritability 
of three TALEN-generated mutations, 
all of which, whether homozygous or 
heterozygous, were passed on to T2 
plants (Supplementary Figure 7).

To determine the effects of TALEN-
directed mutations, we investigated 
whether the pathogenic strain of 
Xoo that is dependent on AvrXa7 or 
PthXo3 for virulence is able to either 
induce the modified Os11N3 gene in 
homozygous T2 plants or cause dis-
ease. The modified Os11N3 gene was 
no longer inducible by AvrXa7 or 
PthXo3 delivered by the pathogenic 
strain of the bacterium (ME2(avrXa7) 
or ME2(pthXo3)) in T2 plants homozy-
gous for either the 9-, 6-, 15- or 4-bp 
deletion (Figure 1f for AvrXa7, Sup-
plementary Figure 8a for PthXo3). 
The loss of induction was spe-
cific to Os11N3, as the induction of 
Os04g19960, a transposon coding 
gene collaterally targeted by AvrXa7, 
was not prevented (Figure 1g). Simi-
larly, the induction of another S gene 
(Os8N3, also known as OsSWEET11) 
by PthXo1 in the T2 mutant plants 
remained unaffected (Supplemen-
tary Figure 8b). These TALEN-modi-
fied T2 plants also showed strong re-
sistance to infection of the AvrXa7- or 
PthXo3-dependent Xoo strains but not 
the PthXo1-dependent pathogenic Xoo 
strain as determined from symptoms 
(Figure 1h for AvrXa7) and by quan-
titative measurement of the lengths of 
leaf lesions in a standard pathogene-
sis assay described in Supplementary 
Methods (Supplementary Figure 9).

We also investigated the possibil-
ity of using genetic segregation to ob-
tain genetically modified rice lack-
ing any selection marker and TALEN 
gene. The PCR assay using primers for 
amplification of the hygromycin resis-
tance gene and for amplification of the 
TALEN genes failed to detect the pres-
ence of either gene in 5 out of 37 T1 
plants that contained the desired ge-
netic modifications in the Os11N3 pro-
moter and that were disease resistant 
(Supplementary Figure 10). Although 
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these data clearly demonstrate the ab-
sence of intact TALEN and hygromy-
cin-resistance genes, further sequenc-
ing of the genomes of several mutants 
and the Kitake parental line will be 
needed to conclusively demonstrate 
that all of the transgene fragments 
have been removed.

The rice Os11N3 gene is induced by 
32 of 40 Xoo strains collected world-
wide (T. Li and B. Yang, unpublished 
data). However, polymorphisms in the 
Os11N3 gene that prevent induction 
by AvrXa7- and/or PthXo3-dependent 
Xoo strains and also confer disease re-
sistance have not been identified in 
rice germplasm. The approaches de-
scribed here for precisely and effi-
ciently editing the disease suscepti-
bility elements in Os11N3 and for the 
subsequent removal of transfer DNA 
(T-DNA) sequences by classic genetics 
likely can be applied directly to elite 
rice varieties to simultaneously or se-
quentially edit multiple susceptibil-
ity genes (for example, Os11N3 and 
Os8N3), leading to resistance to the 
major forms of bacterial blight. Present 
methods using TALEN-based technol-
ogy in rice should be easily modified 
for application to other plant species 
and, thus, hold substantial promise in 
facilitating gene modification–based 
research and crop improvement.
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Materials and Methods 

 

TALEN design and construction. Two pairs of designer TALENs (Pair 1: dTALEN L1 and 

dTALEN R1 and Pair 2: TALEN AvrXa7 and dTALEN R2) were used in the present studies.  

TALEN AvrXa7 was based on a native AvrXa7 TAL effector and contained a truncated 

transcription activation domain fused at its C-terminus with a wild type FokI DNA cleavage 

domain 
1,2

. The other three TALENs employed in these studies were made using previously 

described “modular assembly” methods 
2
.  Such assembly used four different genes encoding 

TAL effector DNA binding domains that, due to specific codons in position 12 and 13 of the 

coding sequence, are capable, respectively, of recognizing either an A, G, C or T residue in the 

DNA sequence of a particular target effector binding element (EBE). Each designer TALEN 

contained a wild type FokI DNA cleavage domain 
1,2

. All TALENs used a complete TAL 

effector N-terminus.  Diagrams showing the structure of each TALEN and the EBE DNA 

sequence to which it matches are shown in Supplementary Figure 1. DNA sequences for the 

open reading frames of all three designer TALENs are provided in Supplementary Note.  

 

Construction of TALEN expression plasmids and rice transformation. The two promoters 

used to express the paired TALEN genes were the maize ubiquitin 1 promoter (ubi1) and the 35S 

promoter of cauliflower mosaic virus (35S) 
3,4

. One of the paired TALEN genes was cloned 

downstream of the 35S promoter at BamHI and SpeI sites in a binary vector and the other under 

the control of the ubi1 promoter was cloned into the BamHI and SacI sites of an intermediate 

vector. The ubi1-TALEN gene expression cassette was excised with HindIII and moved into the 

HindIII site of the binary plasmid containing the 35S-TALEN gene expression cassette. The 

resultant plasmids were mobilized into Agrobacterium tumefaciens strain EHA105 by 

electroporation. Agrobacterium-mediated transformation of the rice cultivar Kitake was 

conducted according to a previously described protocol 
5
. 

 

DNA sequencing analysis of regions in the Os11N3 gene targeted by TALENs. Genomic 

DNA from individual plants was extracted using the CTAB method as described
 6
. Forward 

primer, 5’- TCCCTTAACTAGGACAACTTGGA-3’, and reverse primer, 5’- 

CCGGATCCAGCCATTGCAGCAAGATCTTG-3’, were used to amplify a region of ~ 550 bp 
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with the preselected target sites located in the middle. The PCR products from individual plants 

were sequenced using an internal primer, 5’-CATGGCTGTGATTGATCAGG-3’.  Each 

sequencing chromatogram was manually analyzed for polymorphisms within a trace.     

 

Quantitative RT-PCR analysis of rice gene inducibility. Bacterial inoculums with optical 

density of 1.0 at 600 nm (OD600) were infiltrated into rice leaves by using needle-less syringe as 

described 
7
. The bacterial strains used were Xoo strain PXO99ME2 (hereafter designated as 

ME2, a PXO99 derivative strain lacking TAL effector PthXo1 with concomitant loss of strain 

virulence), ME2(avrXa7), ME2(pthXo3) and ME2(pthXo1), three ME2 transformants containing 

the respective TAL effector genes avrXa7, pthXo3 and pthXo1. Both ME2(avrXa7) and 

ME2(pthXo3) induce Os11N3 and retain virulence, while ME2(pthXo1) retains virulence by 

inducing another S gene (Os8N3) 
7
. Total RNA of the inoculated portion of leaves was extracted 

using TRI reagent from Ambion 24 hours after bacterial inoculation.  RNA concentration and 

quality were determined using an ND-1000 Nanodrop spectrophotometer (Nanodrop 

Technologies). One microgram of RNA from each sample was treated with DNase 1 (Invitrogen) 

followed by cDNA synthesis using the iScript cDNA synthesis kit (Bio-Rad). cDNA derived 

from 25 ng of total RNA was used for detection of gene induction by AvrXa7, PthXo3 and 

PthXo1 using real-time quantitative PCR analyses. PCR was performed on Stratagene’s Mx4000 

multiplex quantitative PCR system using the iQ SYBR Green Supermix kit (Bio-Rad). In 

addition to inducing Os11N3, AvrXa7 also “collaterally” induces another rice gene Os04g19960, 

which encodes a putative retrotransposon protein, but is not associated with disease susceptibility 

in rice.  Gene-specific primers for Os11N3 are 5’-GAGAAGAAGGTAGCTGCATGAGTG-3’ 

and 5’- TCATGGAAGGAACCCTTACAGGTTG-3’, primers for Os04g19960 are 5’- 

AGAAGGCGTAGGCATTCACAT-3’ and 5’- ACATTAACACAGCACACGTCAAC-3’, and 

primers for Os8N3 are 5’-GACTCCATGTCCCCGATCTCC-3’ and 5’-

CACCACCTCGACCTTGTGCA-3’. The rice general transcription factor TFIIAγ5 expression 

was used as an internal control with primers 5’-CTACTCAGCCAATAAATTGATAACTGC-

3’and 5’-CAATTTCTACTACTCATCGTTTAG-3’. The average threshold cycle (Ct) was used 

to determine the fold change of gene expression. The 2
ΔΔCt

 method was used for relative 

quantification 
8
.  
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PCR determination of the presence or absence of T-DNA in genetically modified rice 

plants.  Genomic DNA was extracted as described 
6
 and used for PCR amplification of 

fragments from the Os11N3 gene promoter, hygromycin phosphotransferase (hpt) gene and 

TALEN genes. Primers for the Os11N3 gene were: forward, 5’-

CATGGCTGTGATTGATCAGG-3’ and reverse, 5’- 

CCGGATCCAGCCATTGCAGCAAGATCTTG-3’; primers for the hpt gene were: Hyg-F, 5’- 

CCGCTCGTCTGGCTAAGATC-3’ and 35S-R, 5’- CGCTGAAATCACCAGTCTCTC-3’; and 

primers for the TALEN genes were: FokI-F, 5’-CAGCTAGTGAAATCTGAATTGG-3’ and 

Nos-R, 5’-CATCGCAAGACCGGCAACAGG-3’.    

 

Surveyor nuclease cleavage assay for detection of nucleotide insertions and deletions. 

Genomic DNA was extracted using the CTAB method as described 
6
 from individual callus lines 

and subjected to PCR amplification of the Os11N3 promoter region (~ 550 bp) using the gene-

specific primers (5’- TCCCTTAACTAGGACAACTTGGA-3’ and 5’- 

CCGGATCCAGCCATTGCAGCAAGATCTTG-3’). The Surveyor nuclease (Surveyor mutation 

detection kit, Transgenomic) was used to treat the PCR products following the manufacturer’s 

instruction. The treated DNA was subjected to electrophoresis in a 1.5% agarose gel and 

visualized by staining with ethidium bromide.  

 

Disease resistance assay.  Fully expanded leaves of rice plants were inoculated using leaf tip 

clipping method.  In this previously described procedure
 9
, scissors blades are immersed in 

bacterial suspension (OD600=0.5) of avrXa7-containing strain PXO86, pthXo3-containing strain 

ME2(pthXo3) and pthXo1-containing strain PXO99 immediately prior to clipping each target 

leaf.  Symptoms were scored 12-14 days after inoculation by measuring lesion length.  Plants 

were categorized as resistant (R) if lesion lengths were shorter than 4 cm or susceptible if lesions 

were longer than 8 cm. 
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Supplementary Figure 1.  TALENs and their DNA targets in the promoter of chromosomal 

Os11N3 gene. Four basic modular repeats whose repeat variable di-residue (RVD) (colored 

blocks) recognizing one nucleotide (NT) in the target site are used to assemble the DNA binding 

domain of each designer TALEN. The two pairs of nucleases (Pair 1 and 2) are fusions between 

the DNA cleavage domain of FokI (FokI) and the native (AvrXa7) or customized TAL effector 

(dTALE). The last 40 amino acids at C-terminus of dTALE-L1 and AvrXa7 are truncated to 

avoid the inappropriate induction of Os11N3 by the activation domain. The other two TAL 

effectors (dTALE-R1 and dTALE-R2) contain the complete C-terminus. All four TAL effectors 

contain the complete N-terminus. Os11N3 promoter contains an effector binding element (EBE) 

for AvrXa7 (underlined in black), an EBE for PthXo3 (underlined in red) and the TATA box 

(boxed). Lower letters represent regions wherein two FokI domains dimerize and cause a double 

stranded DNA break. 
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Supplementary Figure 2. Schematic diagram of a two-gene expression cassette in a single 

binary vector designed for Agrobacterium-mediated rice transformation. The expression cassette 

includes a promoter [maize ubiquitin 1 promoter (Ubi1) (red arrow) to drive expression of the 

TALEN-L gene (open box), the cauliflower mosaic virus 35S gene promoter (35S) (red arrow) to 

allow transcription of the TALEN-R gene (open box)] and a gene terminator (Nos-T) (black 

box).   
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Supplementary Figure 3. Analysis of site-specific mutations within the Os11N3 gene promoter 

in T0 callus lines expressing the Pair 1 TALENs. (a) Schematics of the Os11N3 gene promoter 

target site with primers (FP & RP) for PCR amplification of promoter sequence (550 bp) and 

primer (Seq-P) for sequencing the PCR products. (b) Analysis of PCR products derived from 

five individual callus lines using the Surveyor nuclease cleavage assay (see Methods and 

Materials) and showing two out of five calli (#1 and #2) with biallelic mutations.  This assay is 
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designed to detect and cleave “loop-out” regions between hybrids of wild type promoter DNA 

sequences and DNA sequences in promoters containing TALEN-generated nucleotide deletions 

or insertions.  If loop-out sequences are present, cleavage by the single-strand DNA-specific 

Surveyor nuclease should generate two DNA fragments, one in the range of 230 bp and the other 

in the range of 330 bp.  Molecular sizes are indicated in base pairs at the left side of the ethidium 

bromide stained gel image. (c) DNA sequencing chromatograms of three DNA fragments 

derived from wild type (WT) tissue and two callus lines (#1, #2) each containing biallelic 

mutations (i.e., a deletion of 49 bp in one OS11N3 allele and a 8 bp deletion in the other alleles 

of the OS11N23 gene in callus #1; a deletion of 6 bp in one allele in the promoter of OS11N3 in 

callus #2 and a 5 bp deletion in the other allele). 
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Supplementary Figure 4. Sequence of Os11N3 gene mutations in T1 plants induced by the 

Pair 1 TALENs. Deletions and insertions are indicated by dashes and red letters, respectively. 

TALEN-binding sequences are underlined in the wild type (WT) gene sequence. Numbers and 

letters designating each individual mutant (with numbers reflecting the length of nucleotide 

deletions or insertions) are indicated to the right side of the DNA sequence.  
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Supplementary Figure 5. Disease resistance in transgenic rice T1 plants. Lesion lengths caused 

by infection with a pathogenic AvrXa7-dependent Xoo strain were measured 14 days after 

inoculation of 20 T1 mutant plants (1 – 20) generated from TALEN pair 2 and 2 wild type 

Kitake plants (21 – 22). The T1 plants contained either homozygous monoallelic or heterozygous 

biallelic EBE mutations as confirmed by genotyping through sequencing. Leaf lesion lengths of 

1~4 cm indicate disease resistance and lesion lengths of 10 ~14 cm indicate disease 

susceptibility.  Error bars indicate 1 SD.   
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Supplementary Figure 6.  Additional haplotypes detected in T2 plants carrying Os11N3 gene 

mutations produced with Pair 2 TALENs. Deletions and insertions are indicated by dashes and 

red letters, respectively. Numbers and letters designating each individual mutant (with numbers 

reflecting the length of nucleotide deletions or insertions) are indicated to the right side of the 

DNA sequence. TALEN-binding sequences are underlined in wild type (wt). 
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Supplementary Figure 7. Genetic Segregation of forty T2 plants derived from self-pollination 

of three T1 plants associated with the Pair 2 TALENs. Each of the two alleles of an individual 

plant are designated as being wild type (wt) or having a nucleotide deletion (-) and are separated 

top and bottom by a dividing line.  

  

Nature Biotechnology: doi:10.1038/nbt.2199



 

 14

 

 

Supplementary Figure 8.  Expression of Os11N3 (a) and Os8N3 (b), respectively, induced by 

PthXo3- and PthXo1-dependent Xoo strains in T2 plants of different genotypes (indicated below 

each column). Quantitative RT-PCR was performed with RNA derived from treatments of 

nonpathogenic Xoo strain ME2 and pathogenic Xoo strains ME2(pthXo3) and ME2(pthXo1). 

Transcript levels of the rice gene OsTFIIAγ5 were used as a reference for measurements of 

Os11N3 and Os8N3 transcript levels. 
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Supplementary Figure 9.  Severity of disease damage to wild type and transgenic rice plants 

caused by AvrXa7-, PthXo3-, and PthXo1-dependent Xoo strains.  Lengths of lesions in wild 

type plants (CK1), segregating T2 transgenic plants with intact Os11N3 (CK2) and T2 transgenic 

plants homozygous for Os11N3 promoter mutations of 6 bp (-6b), 9 bp (-9a), 15 bp (-15) and 4 

bp (-4d) deletions, respectively, were measured 14 days post inoculation with different TAL 

effector Xoo strains as indicated.  
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Supplementary Figure 10.  Removal of T-DNA sequences containing TALEN genes from 

TALEN-modified rice plants using genetic crossing. (a) Schematic diagrams of the transfer DNA 

(T-DNA) region containing a paired set of TALENs and the Os11N3 gene aligned with the 

paired primer sets P1, P2 and P3 used for specific gene segment detection by PCR amplification. 

LB and RB represent the left and right border sequences for Agrobacterium-mediated gene 

transfer; hpt represents the hygromycin resistance gene. (b) Gel images of PCR products 

obtained with the primer sets of P1, P2 and P3 for hygromycin phosphotransferase gene (hpt), 

TALEN genes and Os11N3 promoter, respectively. Labels below gel images represent: v, binary 

vector DNA; ck+, a positive control of DNA from a transgenic plant containing the T-DNA 

region depicted in (a) and the Os11N3 gene; wt, DNA from a nontransgenic, wild type rice plant; 

number, individual T1 plants selected from genetic crosses to lack the T-DNA region, but retain 

a functional Os11N3 promoter region containing inactivated or deleted AvrXa7 and PthXo3 EBE 

sites.  
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Supplementary Note 

 

Open reading frame sequences of three designer TALENs 

 

1. dTALEN-R1 
ATGGATCCCATTCGTTCGCGCACGCCAAGTCCTGCCCGCGAGCTTCTGCCCGGACCCCAACCGGATAGGG

TTCAGCCGACTGCAGATCGGGGGGGGGCTCCGCCTGCTGGCGGCCCCCTGGATGGCTTGCCCGCTCGGCG

GACGATGTCCCGGACCCGGCTGCCATCTCCCCCTGCGCCCTCGCCTGCGTTCTCGGCGGGCAGCTTCAGC

GATCTGCTCCGTCAGTTCGATCCGTCGCTTCTTGATACATCGCTTCTTGATTCGATGCCTGCCGTCGGCA

CGCCGCATACAGCGGCTGCCCCAGCAGAGTGGGATGAGGTGCAATCGGGTCTGCGTGCAGCCGATGACCC

GCCACCCACCGTGCGTGTCGCTGTCACTGCCGCGCGGCCGCCGCGCGCCAAGCCGGCCCCGCGACGGCGT

GCGGCGCAACCCTCCGACGCTTCGCCGGCCGCGCAGGTGGATCTACGCACGCTCGGCTACAGTCAGCAGC

AGCAAGAGAAGATCAAACCGAAGGTGCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTGGGCCATGG

GTTTACACACGCGCACATCGTTGCGCTCAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTAT

CAGCACATAATCACGGCGTTGCCAGAGGCGACACACGAAGACATCGTTGGCGTCGGCAAACAGTGGTCCG

GCGCACGCGCCCTGGAGGCCTTGCTCACGAAGGCGGGGGAGTTGAGAGGTCCGCCGTTACAGTTGGACAC

AGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGTGCATGCATGGCGCAAT

GCACTGACGGGTGCCCCCCTGAACCTGACCCCGGCACAGGTGGTGGCCATCGCCAGCCACGATGGCGGCA

AGCAGGCGCTGGAGACGGTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCA

GGTGGTGGCCATCGCCAGCAATATTGGCGGCAAGCAGGCCTTGGAGACGGTGCAGCGGCTGTTGCCGGTG

CTGTGCCAGGACCATGGCCTGACCCCGGACCAAGTGGTGGCCATCGCCAACAATAACGGCGGCAAGCAGG

CTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGT

GGCCATCGCCAGCCACGATGGCGGCAAGCAGGCGTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGC

CAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCTTTGG

AGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCAT

CGCCAGCAATATTGGCGGCAAGCAGGCATTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGAC

CATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCCCTGGAGACGG

TACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAG

CAATGGCGGCGGCAAGCAGGCACTGGAAACACTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGC

CTGACCCCGGACCAGGTGGTGGCCATCGCCAGCAATATTGGCGGCAAGCAGGCCTTGGAGACGGTGCAGC

GGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAAGTCGTGGCCATCGCCAGCCACGA

TGGCGGCAAGCAGGCTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACC

CCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCGTTGGAGACGGTACAGCGGCTGT

TGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGG

CAAGCAGGCTTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGAC

CAGGTGGTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCATTGGAGACGGTACAGCGGCTGTTGCCGG

TGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAGCAATATTGGCGGCAAGCA

GGCCCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTC

GTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCactggagaCTGTACAGCGGCTGTTGCCGGTGCTGT

GCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCCTT

GGAGACGGTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGCCCATGGCCTGACCCCGGCCCAAGTGGTGGCC

ATCGCCAGCAATGGCGGCGGCAAGCAGGCTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGG

ACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCGTTGGAGAC

GGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCC

AACAATAACGGCGGCAAGCAGGCTTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATG

GCCTGACCCCGGACCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCATTGGAGACGGTACA

GCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAAT

GGCGGCGGCAAGCAGGCCCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGA

CCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCACTGGAGACGGTACAGCGGCT

GTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGAACCAGGTGGTGGCCATCGCCAGCAATGGCGGC

aAGCAGGCGCTGGAGAGCATTGTTGCCCAGTTATCTCGCCCTGATCCGGCGTTGGCCGCGTTGAcCAACG
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AcCACCTCGTCGCCTTGGCCTGCCTCGGCGGACGTCCTGCCCTGGATGCAGTGAAAAAGGGATTGCCGCA

CGCGCCGGAATTGATCAGAAGAATCAATCGCCGCATTCCCGAACGCACGTCCCATCGCGTTCCCGACCTC

GCGCACGTGGTTCGCGTGCTTGGTTTTTTCCAGAGCCACTCCCACCCAGCGCAAGCATTCGATGACGCCA

TGACGCAGTTCGAGATGAGCAGGCACGGCTTGGTACAGCTCTTTCGCAGAGTGGGCGTCACCGAATTCGA

AGCCCGCTACGGAACGCTCCCCCCAGCCTCGCAGCGTTGGGACCGTATCCTCCAGGCATCAGGGATGAAA

AGGGCCAAACCGTCCCCTACTTCAGCTCAAACACCGGATCAGGCGTCTTTGCATGCAGATTACAAGGACG

ACGACGACAAGAAGGATTACAAGGACGACGACGACAAGAAGGGTCGACCCAGCCCAATGCACGAGGGAGA

TCAGACGCGGGCAAGCAGCCGTAAACGGTCCCGATCGGATCGTGCTGTCACCGGCCCCTCCACACAGCAA

TCTTTCGAGGTGCGCGTTCCCGAACAGCAAGATGCGCTGCATTTGCCCCTCAGCTGGAGGGTAAAACGCC

CGCGTACCAGGATCGGGGGCGGCCTCCCGGATCCTGGTACGCCCATCGCTGCCGACCTGGCAGCGTCCAG

CACCGTGATGTGGGAACAAGATGCGGCCCCCTTCGCAGGGGCAGCGGATGATTTCCCGGCATTCAACGAA

GAGGAGCTCGCATGGTTGATGGAGCTATTGCCTCAGTCAGGCTCAGTCGGAGGGACGATCTCTAGACAGC

TAGTGAAATCTGAATTGGAAGAGAAGAAATCTGAACTTAGACATAAATTGAAATATGTGCCACATGAATA

TATTGAATTGATTGAAATCGCAAGAAATTCAACTCAGGATAGAATCCTTGAAATGAAGGTGATGGAGTTC

TTTATGAAGGTTTATGGTTATCGTGGTAAACATTTGGGTGGATCAAGGAAACCAGACGGAGCAATTTATA

CTGTCGGATCTCCTATTGATTACGGTGTGATCGTTGATACTAAGGCATATTCAGGAGGTTATAATCTTCC

AATTGGTCAAGCAGATGAAATGCAAAGATATGTCGAAGAGAATCAAACAAGAAACAAGCATATCAACCCT

AATGAATGGTGGAAAGTCTATCCATCTTCAGTAACAGAATTTAAGTTCTTGTTTGTGAGTGGTCATTTCA

AAGGAAACTACAAAGCTCAGCTTACAAGATTGAATCATATCACTAATTGTAATGGAGCTGTTCTTAGTGT

AGAAGAGCTTTTGATTGGTGGAGAAATGATTAAAGCTGGTACATTGACACTTGAGGAAGTGAGAAGGAAA

TTTAATAACGGCGAGATAAACTTTTAA 

 

2. dTALEN-L2 
ATGGATCCCATTCGTTCGCGCACGCCAAGTCCTGCCCGCGAGCTTCTGCCCGGACCCCAACCGGATAGGG

TTCAGCCGACTGCAGATCGGGGGGGGGCTCCGCCTGCTGGCGGCCCCCTGGATGGCTTGCCCGCTCGGCG

GACGATGTCCCGGACCCGGCTGCCATCTCCCCCTGCGCCCTCGCCTGCGTTCTCGGCGGGCAGCTTCAGC

GATCTGCTCCGTCAGTTCGATCCGTCGCTTCTTGATACATCGCTTCTTGATTCGATGCCTGCCGTCGGCA

CGCCGCATACAGCGGCTGCCCCAGCAGAGTGGGATGAGGTGCAATCGGGTCTGCGTGCAGCCGATGACCC

GCCACCCACCGTGCGTGTCGCTGTCACTGCCGCGCGGCCGCCGCGCGCCAAGCCGGCCCCGCGACGGCGT

GCGGCGCAACCCTCCGACGCTTCGCCGGCCGCGCAGGTGGATCTACGCACGCTCGGCTACAGTCAGCAGC

AGCAAGAGAAGATCAAACCGAAGGTGCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTGGGCCATGG

GTTTACACACGCGCACATCGTTGCGCTCAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTAT

CAGCACATAATCACGGCGTTGCCAGAGGCGACACACGAAGACATCGTTGGCGTCGGCAAACAGTGGTCCG

GCGCACGCGCCCTGGAGGCCTTGCTCACGAAGGCGGGGGAGTTGAGAGGTCCGCCGTTACAGTTGGACAC

AGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGTGCATGCATCGCGCAAT

GCACTGACGGGTGCCCCCCTGAACCTGACCCCGGCACAGGTGGTGGCCATCGCCAGCCACGATGGCGGCA

AGCAGGCGCTGGAGACGGTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCA

GGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCCTTGGAGACGGTGCAGCGGCTGTTGCCGGTG

CTGTGCCAGGCCCATGGCCTGACCCCGGCCCAAGTGGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGG

CTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCAGGACCAGGTGGT

GGCCATCGCCAGCCACGATGGCGGCAAGCAGGCGTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGC

CAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCTTTGG

AGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCAT

CGCCAGCAATGGCGGCGGCAAGCAGGCATTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGAC

CATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCCCTGGAGACGG

TACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCAGGACCAGGTGGTGGCCATCGCCAG

CCACGATGGCGGCAAGCAGGCACTGGAAACACTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGC

CTGACCCCGGACCAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCCTTGGAGACGGTGCAGC

GGCTGTTGCCGGTGCTGTGCCAGGCCCATGGCCTGACCCCGGCCCAAGTGGTGGCCATCGCCAGCAATGG

CGGCGGCAAGCAGGCTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACC

CCGGACCAGGTCGTGGCCATCGCCAGCAATATTGGCGGCAAGCAGGCGTTGGAGACGGTACAGCGGCTGT
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TGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAACAATAACGGCGG

CAAGCAGGCTTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGGCCATGGCCTGACCCAGGAC

CAGGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCATTGGAGACGGTACAGCGGCTGTTGCCGG

TGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAGCAATATTGGCGGCAAGCA

GGCCCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTG

GTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCACTGGAGACTGTACAGCGGCTGTTGCCGGTGCTGT

GCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCCTT

GGAGACGGTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCC

ATCGCCAGCAATATTGGCGGCAAGCAGGCTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGG

ACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCGTTGGAGAC

GGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCC

AGCAATATTGGCGGCAAGCAGGCTTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATG

GCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCATTGGAGACGGTACA

GCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAGCAAT

ATTGGCGGCAAGCAGGCCCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGA

CCCCGGACCAGGTGGTGGCCATCGCCAGCAATATTGGCGGCAAGCAGGCACTGGAGACGATTGTTGCCCA

GTTATCTCGCCCTGATCCGGCGTTGGCCGCGTTGACCAACGACCACCTCGTCGCCTTGGCCTGCCTCGGC

GGACGTCCTGCCCTGGATGCAGTGAAAAAGGGATTGCCGCACGCGCCGGAATTGATCAGAAGAATCAATC

GCCGCATTCCCGAACGCACGTCCCATCGCGTTCCCGACCTCGCGCACGTGGTTCGCGTGCTTGGTTTTTT

CCAGAGCCACTCCCACCCAGCGCAAGCATTCGATGACGCCATGACGCAGTTCGAGATGAGCAGGCACGGC

TTGGTACAGCTCTTTCGCAGAGTGGGCGTCACCGAATTCGAAGCCCGCTACGGAACGCTCCCCCCAGCCT

CGCAGCGTTGGGACCGTATCCTCCAGGCATCAGGGATGAAAAGGGCCAAACCGTCCCCTACTTCAGCTCA

AACACCGGATCAGGCGTCTTTGCATGCAGATTACAAGGACGACGACGACAAGAAGGATTACAAGGACGAC

GACGACAAGAAGGGTCGACCCAGCCCAATGCACGAGGGAGATCAGACAGGGGCAAGCAGCCGTAAACGGT

CCCGATCGGATCGTGCTGTCACCGGCCCCTCCGCACAGCAATCTTTCGAGGTGCGCGTTCCCGAACAGCG

CGATGCGCTGCATTTGCCCCTCAGCTGGAGGGTAAAACGCCCGCGTACCAGGATCGGGGGCGGCCTCCCG

GATCCTGGTACGCCCATCGCTGCCGACCTGGCAGCGTCCAGCACCGTGATCagatccCAGCTAGTGAAAT

CTGAATTGGAAGAGAAGAAATCTGAACTTAGACATAAATTGAAATATGTGCCACATGAATATATTGAATT

GATTGAAATCGCAAGAAATTCAACTCAGGATAGAATCCTTGAAATGAAGGTGATGGAGTTCTTTATGAAG

GTTTATGGTTATCGTGGTAAACATTTGGGTGGATCAAGGAAACCAGACGGAGCAATTTATACTGTCGGAT

CTCCTATTGATTACGGTGTGATCGTTGATACTAAGGCATATTCAGGAGGTTATAATCTTCCAATTGGTCA

AGCAGATGAAATGCAAAGATATGTCGAAGAGAATCAAACAAGAAACAAGCATATCAACCCTAATGAATGG

TGGAAAGTCTATCCATCTTCAGTAACAGAATTTAAGTTCTTGTTTGTGAGTGGTCATTTCAAAGGAAACT

ACAAAGCTCAGCTTACAAGATTGAATCATATCACTAATTGTAATGGAGCTGTTCTTAGTGTAGAAGAGCT

TTTGATTGGTGGAGAAATGATTAAAGCTGGTACATTGACACTTGAGGAAGTGAGAAGGAAATTTAATAAC

GGTGAGATAAACTTTTAA 

 

3. dTALEN-R2 
ATGGATCCCATTCGTTCGCGCACGCCAAGTCCTGCCCGCGAGCTTCTGCCCGGACCCCAACCGGATAGGG

TTCAGCCGACTGCAGATCGGGGGGGGGCTCCGCCTGCTGGCGGCCCCCTGGATGGCTTGCCCGCTCGGCG

GACGATGTCCCGGACCCGGCTGCCATCTCCCCCTGCGCCCTCGCCTGCGTTCTCGGCGGGCAGCTTCAGC

GATCTGCTCCGTCAGTTCGATCCGTCGCTTCTTGATACATCGCTTCTTGATTCGATGCCTGCCGTCGGCA

CGCCGCATACAGCGGCTGCCCCAGCAGAGTGGGATGAGGTGCAATCGGGTCTGCGTGCAGCCGATGACCC

GCCACCCACCGTGCGTGTCGCTGTCACTGCCGCGCGGCCGCCGCGCGCCAAGCCGGCCCCGCGACGGCGT

GCGGCGCAACCCTCCGACGCTTCGCCGGCCGCGCAGGTGGATCTACGCACGCTCGGCTACAGTCAGCAGC

AGCAAGAGAAGATCAAACCGAAGGTGCGTTCGACAGTGGCGCAGCACCACGAGGCACTGGTGGGCCATGG

GTTTACACACGCGCACATCGTTGCGCTCAGCCAACACCCGGCAGCGTTAGGGACCGTCGCTGTCAAGTAT

CAGCACATAATCACGGCGTTGCCAGAGGCGACACACGAAGACATCGTTGGCGTCGGCAAACAGTGGTCCG

GCGCACGCGCCCTGGAGGCCTTGCTCACGAAGGCGGGGGAGTTGAGAGGTCCGCCGTTACAGTTGGACAC

AGGCCAACTTCTCAAGATTGCAAAACGTGGCGGCGTGACCGCAGTGGAGGCAGTGCATGCATCGCGCAAT

GCACTGACGGGTGCCCCCCTGAACCTGACCCCGGCACAGGTGGTGGCCATCGCCAACAATAACGGCGGCA
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AGCAGGCGCTGGAGACGGTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCAGGACCA

GGTGGTGGCCATCGCCAGCCACGATGGCGGCAAGCAGGCCTTGGAGACGGTGCAGCGGCTGTTGCCGGTG

CTGTGCCAGGCCCATGGCCTGACCCCGGCCCAAGTGGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGG

CTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGT

GGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCGTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGC

CAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCTTTGG

AGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCCAT

CGCCAGCAATATTGGCGGCAAGCAGGCATTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGAC

CATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATATTGGCGGCAAGCAGGCCCTGGAGACGG

TACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAA

CAATAACGGCGGCAAGCAGGCACTGGAAACACTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGC

CTGACCCCGGACCAGGTCGTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCCTTGGAGACGGTGCAGC

GGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAAGTCGTGGCCATCGCCAGCCACGA

TGGCGGCAAGCAGGCTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACC

CCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCGTTGGAGACGGTACAGCGGCTGT

TGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATGGCGGCGG

CAAGCAGGCTTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGAC

CAGGTGGTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCATTGGAGACGGTACAGCGGCTGTTGCCGG

TGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAATATTGGCGGCAAGCA

GGCCCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTC

GTGGCCATCGCCAGCAATGGCGGCGGCAAGCAGGCACTGGAGACTGTACAGCGGCTGTTGCCGGTGCTGT

GCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCCTT

GGAGACGGTGCAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTGGTGGCC

ATCGCCAGCAATATTGGCGGCAAGCAGGCTCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGG

ACCATGGCCTGACCCCGGACCAGGTGGTGGCCATCGCCAACAATAACGGCGGCAAGCAGGCGTTGGAGAC

GGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCAGGACCAGGTGGTGGCCATCGCC

AGCCACGATGGCGGCAAGCAGGCTTTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATG

GCCTGACCCCGGACCAGGTCGTGGCCACCGCCAGCAATGGCGGCGGCAAGCAGGCATTGGAGACGGTACA

GCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGACCCCGGACCAGGTCGTGGCCATCGCCAGCAAT

GGCGGCGGCAAGCAGGCCCTGGAGACGGTACAGCGGCTGTTGCCGGTGCTGTGCCAGGACCATGGCCTGA

CCCCGGACCAGGTCGTGGCCATCGCCAGCAATATTGGCGGCAAGCAGGCACTGGAGACGATTGTTGCCCA

GTTATCTCGCCCTGATCCGGCGTTGGCCGCGTTGACCAACGACCACCTCGTCGCCTTGGCCTGCCTCGGC

GGACGTCCTGCCCTGGATGCAGTGAAAAAGGGATTGCCGCACGCGCCGGAATTGATCAGAAGAATCAATC

GCCGCATTCCCGAACGCACGTCCCATCGCGTTCCCGACCTCGCGCACGTGGTTCGCGTGCTTGGTTTTTT

CCAGAGCCACTCCCACCCAGCGCAAGCATTCGATGACGCCATGACGCAGTTCGAGATGAGCAGGCACGGC

TTGGTACAGCTCTTTCGCAGAGTGGGCGTCACCGAATTCGAAGCCCGCTACGGAACGCTCCCCCCAGCCT

CGCAGCGTTGGGACCGTATCCTCCAGGCATCAGGGATGAAAAGGGCCAAACCGTCCCCTACTTCAGCTCA

AACACCGGATCAGGCGTCTTTGCATGCAGATTACAAGGACGACGACGACAAGAAGGATTACAAGGACGAC

GACGACAAGAAGGGTCGACCCAGCCCAATGCACGAGGGAGATCAGACGCGGGCAAGCAGCCGTAAACGGT

CCCGATCGGATCGTGCTGTCACCGGCCCCTCCACACAGCAATCTTTCGAGGTGCGCGTTCCCGAACAGCA

AGATGCGCTGCATTTGCCCCTCAGCTGGAGGGTAAAACGCCCGCGTACCAGGATCGGGGGCGGCCTCCCG

GATCCTGGTACGCCCATCGCTGCCGACCTGGCAGCGTCCAGCACCGTGATGTGGGAACAAGATGCGGCCC

CCTTCGCAGGGGCAGCGGATGATTTCCCGGCATTCAACGAAGAGGAGCTCGCATGGTTGATGGAGCTATT

GCCTCAGTCAGGCTCAGTCGGAGGGACGATCTCTAGACAGCTAGTGAAATCTGAATTGGAAGAGAAGAAA

TCTGAACTTAGACATAAATTGAAATATGTGCCACATGAATATATTGAATTGATTGAAATCGCAAGAAATT

CAACTCAGGATAGAATCCTTGAAATGAAGGTGATGGAGTTCTTTATGAAGGTTTATGGTTATCGTGGTAA

ACATTTGGGTGGATCAAGGAAACCAGACGGAGCAATTTATACTGTCGGATCTCCTATTGATTACGGTGTG

ATCGTTGATACTAAGGCATATTCAGGAGGTTATAATCTTCCAATTGGTCAAGCAGATGAAATGCAAAGAT

ATGTCGAAGAGAATCAAACAAGAAACAAGCATATCAACCCTAATGAATGGTGGAAAGTCTATCCATCTTC

AGTAACAGAATTTAAGTTCTTGTTTGTGAGTGGTCATTTCAAAGGAAACTACAAAGCTCAGCTTACAAGA

TTGAATCATATCACTAATTGTAATGGAGCTGTTCTTAGTGTAGAAGAGCTTTTGATTGGTGGAGAAATGA

TTAAAGCTGGTACATTGACACTTGAGGAAGTGAGAAGGAAATTTAATAACGGCGAGATAAACTTTTAA 
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