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Dislocation-free high-quality AlGaN/GaN heterostructures have been grown by molecular-beam
epitaxy on semi-insulating bulk GaN substrates. Hall measurements performed in the 300 K–50 mK
range show a low-temperature electron mobility exceeding 60 000 cm2/V s for an electron sheet
density of 2.431012cm22. Magnetotransport experiments performed up to 15 T exhibit well-defined
quantum Hall-effect features. The structures corresponding to the cyclotron and spin splitting were
clearly resolved. From an analysis of the Shubnikov de Hass oscillations and the low-temperature
mobility we found the quantum and transport scattering times to be 0.4 and 8.2 ps, respectively. The
high ratio of the scattering to quantum relaxation time indicates that the main scattering
mechanisms, at low temperatures, are due to long-range potentials, such as Coulomb potentials of
ionized impurities. ©2000 American Institute of Physics.@S0003-6951~00!01042-1#

Since the first demonstration of the existence of a two-
dimensional electron gas~2DEG! at the AlGaN/GaN inter-
face in 1992,1 tremendous progress has been realized2 in the
field of AlGaN/GaN high electron mobility transistors depos-
ited on various substrates by different growth techniques. For
example, Gaskaet al.3 reached a room-temperature mobility
slightly over 2000 cm2/V s (ns51.331012cm22) in an
Al0.2Ga0.8N/GaN structure deposited on 6H–SiC substrate by
low-pressure metalorganic vapor-phase epitaxy. Smorchkova
et al.4 succeeded in obtaining a mobility of 51 700 cm2/V s at
13 K in Al0.09Ga0.91N/GaN structure grown on sapphire by rf
plasma-assisted molecular-beam epitaxy~MBE!, with a
2DEG density of 2.231012cm22. In these devices, a very
large lattice mismatch between the substrate and the active
layer leads to a high density of threading dislocations.5 A
recent theoretical study by Jena, Gossard, and Mishra6

showed that the effect of dislocations on the 2DEG mobility
becomes noticeable for densities above 108– 1010cm22,
which correspond to the values typical for heteroepitaxial
nitride layers.

In this letter, we report on dislocation-free AlGaN/GaN
single heterostructures grown on semi-insulating GaN
single-crystal substrates. We present the evidence of a 2DEG
in such structures and characterize the 2DEG by magne-
totransport experiments—low-field transport, Shubnikov de
Hass, and quantum Hall effect~QHE! in magnetic fields up
to 15 T at temperatures down to 50 mK. These measure-
ments yield a low-temperature two-dimensional~2D! elec-
tron mobility that is one of highest ever reported for GaN-
based heterojunctions.4

GaN single crystals were grown by a self-seeding pro-
cess under high-N2 pressures of 10–20 kbar and at tempera-
tures ranging from 1400 to 1700 °C from an atomic solution
in Ga. Usually, such crystals are highlyn doped and can be
made semi-insulating by adding compensating magnesium
atoms to the Ga solution. The typical dimensions of the bulk
crystals are 83830.1 mm with thec axis perpendicular to
the surface. These crystals were tested to be semi-insulating
with a perfect crystallographic structure.7

Prior to growth, the~0001! Ga face, which was found to
be the best face polarity for a homoepitaxial layer,8 was pre-
pared by mechanical polishing and reactive ion etching in a
Cl21Ar1CH4 plasma. The AlGaN/GaN single heterostruc-
tures were grown by MBE in a Riber system. NH3 was used
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as the nitrogen precursor and the group-III element were pro-
vided by standard solid-source effusion cells. An uninten-
tionally doped GaN layer of about 1mm was grown at
800 °C on a Mg-doped GaN single crystal, followed by a
200-Å-thick AlGaN layer. From photoluminescence
experiments,9 the Al composition was estimated to be around
13%. The high quality of homoepitaxial samples has already
been demonstrated by the small photoluminescence line-
width ~15–20 meV! measured on GaN/AlGaN quantum
wells deposited using the same growth conditions.10

Figure 1 shows the Hall mobilitymH @Fig. 1~a!# and the
Hall carrier densitynH @Fig. 1~b!# obtained from the low-
field-transport measurements using a lithographically defined
Hall bar geometry. For the heterostructure grown on the GaN
single-crystal substrate, the Hall measurements yield a 77 K
mobility of 30 000 cm2/V s and a 1.5 K mobility of 60 100
cm2/V s. For comparison, we also show in Fig. 1 the best
results obtained for the heterostructures grown on sapphire
by Smorchkovaet al.4 and on 6H–SiC by Gaskaet al.3 As it
is seen in Fig. 1, heterostructures grown on GaN and sap-
phire substrates show a strong decrease of the electron con-
centration and an increase of carrier mobility with decreasing
temperature. This effect is weakly pronounced for hetero-
structures with SiC substrates. It is worthwhile to mention
that the previous two samples are characterized by a reduced
dislocation density.

We attribute the dramatic decrease of the Hall density
nH with lowering the temperature from 300 to 100 K, to the
freeze-out of the parallel conduction in the GaN layer. A
relatively high parallel conduction at high temperature might
be related to the reduction of dislocation density. It is well
known that dislocations in GaN act as trapping centers for
free electrons.6 Therefore, for standard structures grown on
sapphire or SiC, the residualn-type conductivity of GaN
layers is often reduced by the dislocations. In our case, be-
cause of the lack of dislocations, the GaN layer has ann-type
conductivity due to the uncompensated residual donors with
a density of the order of 1 – 231017cm23. In the same way,
the reduction of dislocation density in the template layer of
the sample on the sapphire~Ref. 4! leads to visible parallel
conduction effects. This conductivity freezes out at low tem-
peratures.

The longitudinal (Rxx) and transverse (Rxy) magnetore-
sistance experiments were performed from 1.5 K down to 50
mK, using the 15 T static magnetic field of a superconduct-
ing coil. The current through the sample was 96 nA. The
results forRxx and Rxy are presented in Fig. 2. The Shub-
nikov de Hass oscillations~SdHOs! are correlated with the
well-defined QHE plateaus confirming the presence of a
2DEG at the AlGaN/GaN interface. It is worth mentioning
that the SdHOs start at low magnetic field~about 1.8 T!. We
also note that a second period of oscillations, due to the spin
splitting, is clearly resolved.11 From the period of the
SdHOs, we extract the carrier sheet density to be about 2.4
31012cm22, which is in good agreement with the low-field
Hall measurements~see Fig. 1!. This shows that the parallel
conduction is eliminated at low temperatures, probably due
to the freeze-out of the electrons on donors in the GaN chan-
nel. The absence of a positive background superimposed on
the SdHOs also shows that parallel conduction is negligible
at low temperatures.12 The inset in Fig. 2 shows the low-field
part of the SdHOs after normalization by the low-field resis-
tance valueR0. The magnetic-field dependence of the
SdHOs amplitude g0 is described by the standard
formula11,13

FIG. 1. Hall mobility ~a! and electron sheet density~b! vs temperature for
heterostructures deposited on GaN bulk substrates. The inset in~a! shows
the sample structure.

FIG. 2. Longitudinal (Rxx) and transverse (Rxy) magnetoresistance vs mag-
netic field at 50 mK. Shubnikov de Hass oscillations begin at 1.8 T. The
inset showsDR/R05(Rxx2R0)/R0—the low-field part ofRxx after normal-
ization by the zero-field resistance valueR0. The best fit of the SdHOs
amplitude yields the value ofTD53 K.
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DR/R05
4A

sinhA
expS ATD

T D , ~1!

whereA52p2kBT/DE, TD5\/2pkBtq is the Dingle tem-
perature determined by the quantum scattering timetq and
DE5\vc is equal to the cyclotron resonance energy (vc

5eB/m* ), which depends on the effective 2D electron mass
m* 50.2403m0 ~Ref. 14! and on the magnetic fieldB. From
the fit of the SdHOs, we obtainedtD50.4 ps. This time
corresponds to the average time between the scattering event
and is 20 times shorter than the transport scattering timet tr

5mm* /e58.2 ps, which is the average time between scat-
tering events that efficiently changes the carrier momentum
direction. This indicates that at low temperatures the main
scattering mechanisms are due to long-range potentials such
as Coulomb potentials of~i! ionized impurities in the GaN
layer and/or ~ii ! remote scattering by impurities in the
AlGaN barrier. Therefore, we believe that a further improve-
ment of mobility in homoepitaxial structures can be achieved
mainly by lowering the residual doping in the GaN layer and
in the AlGaN barrier.

The comparison of the homoepitaxial sample of this
work and the sample of Ref. 4, grown on a sapphire sub-
strate, allows us to comment on the role of dislocations in the
low-temperature mobility of 2DEG. Although the structure
investigated in this work is dislocation-free, its low-
temperature mobility is only slightly higher than that of the
structure grown on sapphire, which has a dislocation density
of 108 cm22. Both samples also have similar carrier densities
~about 231012cm22!. From these results, we can then draw
the conclusion that for a 2DEG with a density of about 2
31012cm22, a dislocation density of 108 cm22 or less does
not influence the 2DEG carrier mobility. This result has been
confirmed by the calculations of Jena, Gossard, and Mishra,6

who showed that the mobility limit imposed on a 2DEG,
with a carrier density of 231012cm22 and a dislocation den-
sity of 108 cm22, is around 200 000 cm2/V s. This relative
insensitivity of mobility to dislocation scattering can be ex-
plained by the strong screening effect of carriers in a
2DEG.6,15 However, as the calculations of Jena, Gossard,
and Mishra clearly show, the ultimate limit for the low-field
mobility at cryogenic temperatures is affected by the dislo-
cation density, and we expect that with a further reduction of

ionized impurity concentration, dislocation-free samples will
exhibit much higher mobility values.

In conclusion, high-quality AlGaN/GaN heterostructures
have been grown by MBE on Mg-doped GaN single crystals.
The presence of the 2DEG at the interface has been proved
by the observation of the Shubnikov de Hass oscillations and
by the well-defined quantum Hall-effect plateaus. The low-
temperature mobility~60 100 cm2/V s at 1.5 K! has been
measured. Our results show that the homoepitaxial growth
on GaN bulk substrates allows us to obtain high-quality
GaN-based heterostructures for which the main scattering
mechanisms are due to the long-range potentials such as
Coulomb potentials of ionized impurities in the GaN layer
and/or in the AlGaN barrier.
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