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We compute the gravitational wave energy Erad radiated in head-on collisions of equal-mass,

nonspinning black holes in up to (D ¼ 8)-dimensional asymptotically flat spacetimes for boost velocities

v up to about 90% of the speed of light. We identify two main regimes: weak radiation at velocities up to

about 40% of the speed of light, and exponential growth of Erad with v at larger velocities. Extrapolation to

the speed of light predicts a limit of 12.9% (10.1, 7.7, 5.5, 4.5)% of the total mass that is lost in gravitational

waves in D ¼ 4 (5, 6, 7, 8) spacetime dimensions. In agreement with perturbative calculations, we observe

that the radiation is minimal for small but finite velocities, rather than for collisions starting from rest. Our

computations support the identification of regimes with super-Planckian curvature outside the black-hole

horizons reported by Okawa, Nakao, and Shibata [Phys. Rev. D 83, 121501(R) (2011)].
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I. INTRODUCTION

The study of general relativity (GR) in more than four

spacetime dimensions has many motivations: in the search

for a theory of quantum gravity, often investigated in the

context of string theory; in the study of the gauge/gravity

duality relating higher-dimensional GR to lower-dimensional

conformal field theories; and in the insights provided by the

interesting behavior of GR in the limit that D tends to ∞ to

name but three.

One particular application of interest of higher-

dimensional GR is in the context of TeV gravity scenarios,

proposed to explain the hierarchy problem between the

electroweak scale and Planck scale. In such theories

there exist large extra dimensions of size OðmmÞ into

which gravity can leak, tuning down the Planck scale

to Oð1Þ TeV [1–3]. It has been proposed that in such

scenarios, trans-Planckian particle collisions could result in

black-hole (BH) formation in events observed in cosmic

rays, or at high-energy particle colliders such as the LHC

[4–6]. From a gravitational perspective, it is proposed

that the collision of two highly boosted BHs should

approximate such a collision.

InD ¼ 4 spacetime dimensions the problem of colliding

BHs, and the study of the radiated energy, has been

extensively studied, with the advent of numerical relativity

providing the opportunity to fully study the nonlinear

behavior at the moment of the BH merger. Prior to

numerical approaches, well-known results of Hawking

[7] and Penrose [8], detailed in [9,10], estimated the upper

bound on radiation from head-on collisions to be 29% of

the total Arnowitt-Deser-Misner (ADM) mass [11] of the

system, followed later by the perturbative results of D’Eath

and Payne considering the case of colliding Aichelburg-

Sexl shock waves, providing an estimate of 16.4% in the

limit that two colliding black holes were boosted to the

speed of light [9,12–14]. Similar calculations have been

performed in higher dimensions, which find that the

radiated energy in gravitational waves (GWs) as a function

ofD should vary as 1

2
−

1

D
[15–18]. See also [10] for bounds

regarding the radiated energy in BH formation by particle

collisions in higher dimensions. Early numerical results by

Anninos et al. inD ¼ 4 [19] considering head-on collisions

from rest have since been followed by an exploration of

high-energy BH collisions; probing the radiated energy for

head-on collisions for equal [20] and unequal mass [21],

with results independently verified in [22], finding that

approximately 13% of the ADM mass is lost in GW

emission. Further to this, grazing collisions and collisions

of spinning BHs were studied in [23–25] with the grazing

collisions exhibiting zoom-whirl behavior [26,27] and

resulting in near extremal Kerr BHs radiating approxi-

mately 50% of the ADM mass of the spacetime. The study

of the collision of spinning black holes provided evidence
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for the so-called matter-does-not-matter conjecture, that in

the limit of high boosts, as kinetic energy dominates, the

internal structure of the colliding objects, such as their

spins, ceases to affect the outcome of the collision,

supported also by simulations of boosted collisions of

fluid balls and boson stars [28–30].

To more accurately model the high-energy interactions

of TeV gravity scenarios, it is necessary to explore such

boosted BH collisions in more than four spacetime

dimensions. Since the breakthrough in numerical relativity

]31–33 ], it has been possible to use numerical techniques to

explore a variety of questions about fundamental physics

[34,35]. In particular, the study of higher-dimensional

spacetimes with numerical relativity has been very fruitful,

allowing the investigation of the stability of black objects

[36–40], as well as simulations of the collisions of black

holes from rest [41,42] and with initial momentum [43–45].

The work of Okawa et al. [45] in particular has raised the

interesting proposal that in grazing collisions in higher

dimensions, super-Planckian curvature can be formed in

regions outside of an event horizon.

In this paper we report on head-on, boosted collisions of

nonspinning, Schwarzschild-Tangherlini BHs in spacetime

dimensions D ¼ 4;…; 8, and investigate the energy radi-

ated in the emission of gravitational waves. We also study

regions of high curvature that appear to form outside of a

common horizon. In Sec. II we introduce the computational

framework used to perform the simulations of these

collisions. In Sec. III A we present the results from tests

of our numerical code, followed by the results of our

simulations in Sec. III B. We present our conclusions in

Sec. IV and the calculations that provide our boosted BH

initial data in the Appendix. We use units where the speed

of light and the Planck constant are c ¼ ℏ ¼ 1.

II. COMPUTATIONAL FRAMEWORK

The simulations reported below have been performed

with the LEAN code [46,47] which employs the Baumgarte-

Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK)

[48–50] formulation of the Einstein equations and the

moving puncture approach for modeling BHs [32,33].

LEAN is based on the CACTUS computational toolkit

[51,52] and uses mesh refinement provided by CARPET

[53,54]. In this work we focus on higher-dimensional

general relativity and consider asymptotically flat,

D-dimensional spacetimes with SOðD − 3Þ isometry,

i.e., rotational symmetry in all but three spatial dimen-

sions. This class of spacetimes includes, among other

configurations, the head-on collision of nonspinning BHs,

which are the main subject of our study.

For spacetimes with this symmetry, there are different

approaches to dimensionally reduce the problem to an

effectively three-dimensional computational domain where

a few extra field variables encode all information about the

extra dimensions [36,55–59]; see also the review [34]. Here

we use an approach sometimes referred to as the modified

cartoon method which represents a generalization of the

cartoon technique developed for the modeling of axisym-

metric spacetimes in 3þ 1 codes in Ref. [60]. The specific

set of equations and variables we use are those detailed

in [61].

The physical analysis of our simulations relies on the

computation of the GW energy emitted during the colli-

sions and the properties of the remnant BH formed therein.

We extract the GW energy using the numerical implemen-

tation of Ref. [62] which is based on the projections of the

Weyl tensor [63] analogous to the Newman-Penrose scalars

commonly employed in four-dimensional BH simulations.

For the diagnostics of the remnant BHs, we compute the

apparent horizon (AH) using the higher-dimensional AH

finder of Ref. [44] which is based on the techniques

developed in Refs. [64,65].

In previous studies of boosted BH binaries in four or

more spacetime dimensions, we have used conformally flat

initial data of Bowen-York [66] type which are analytic

solutions of the momentum constraints and where the

Hamiltonian constraint reduces to a differential equation

for the conformal factor that is conveniently solved in the

so-called puncture approach [67,68]. This approach gen-

eralizes in a natural way to higher dimensions [43,69]

but, in either four or more dimensions, these data contain

spurious or “junk” gravitational radiation that rapidly

increases with the initial boost and leads to large numerical

uncertainties above v≳ 0.7; cf. Fig. 3 in [20]. More

recently, Healy et al. [22] achieved a reduction of the

spurious GW content by using a nonflat conformal metric

with appropriate attenuation functions, reducing the overall

error budget in high-energy collisions in four dimensions.

Here we use a relatively simple construction of initial

data following the approach of [45], which we find to result

in negligible spurious radiation over the entire parameter

range explored. These data consist of the superposition of

boosted Tangherlini [70] BHs in isotropic coordinates. This

ingredient is the main change in our present study com-

pared to our previous work and is described in more detail

in the Appendix.

III. RESULTS

In the limit of a single nonboosted BH, our initial data

reduce to the Tangherlini metric in isotropic coordinates

(A4), described by one free parameter μ that determines the

ADM mass M of the spacetime and the Schwarzschild

radius RS of the BH according to [71] [see also Eq. (A2)]

M ¼ ðD − 2ÞΩD−2

16πG
μ; RD−3

S ¼ μ: ð1Þ

Here ΩD−2 denotes the area of the D − 2 unit sphere. The

superposition of N such BHs initially at rest represents the

analog of Brill-Lindquist [72] initial data whose ADM
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mass is, in the limit of large separations, the sum of the

individual BH masses.

Here we focus on head-on collisions of two equal-mass,

nonspinning BHs, A and B, characterized by three param-

eters: the initial position x ¼ �x0, the number D of

spacetime dimensions, and the initial velocity v ≔ vB ¼
−vA in the center-of-mass frame. The boost enters the total

mass of the system in the form of a Lorentz factor γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

and we accordingly determine the ADM mass

of a binary spacetime from Eq. (1) with the substitution

μ ¼ γðμA þ μBÞ. In the remainder of this work, we measure

energy in units of the ADM mass, and length and time in

units of the Schwarzschild radius associated with the rest

mass of the BH system, i.e., RS ¼ ðμA þ μBÞ1=ðD−3Þ.
For our set of BH binaries, we fix x0=RS ¼ 10, vary the

number of dimensions from D ¼ 5 to D ¼ 8 and consider

initial boost velocities up to a D-dependent maximal

velocity, vmax ¼ 0.91ð0.85; 0.8; 0.7Þ in D ¼ 5ð6; 7; 8Þ.
The limitations in the velocity range arise from achieving

numerically stable evolutions of the increasingly steep

gradients of the metric fields encountered at larger D.
For our simulations we have used a grid setup (in units

of RS)

fð288; 144; 96; 64Þ × ð5; 2.5; 1.25; 0.625Þ; h ¼ 1=96g

using the notation of Sec. II E in [46]. In the following we

first discuss code tests to calibrate numerical uncertainties

and validate the suitability of our initial data. Next, we

present and discuss the results obtained from our set of

simulations.

A. Code tests

The initial data constructed according to the procedure of

the Appendix only satisfy the Einstein constraints if

assuming one of the following limits: (i) large initial

separation x0 → ∞, (ii) vanishing velocity v → 0, or

(iii) ultrarelativistic velocities v → 1 (where we recover

the Aichelburg-Sexl metric [73] and the gravitational field

of an individual “hole” is nonvanishing only on a plane

orthogonal to the direction of motion). An additional

mitigating factor arises from the relatively fast falloff of

the metric in higher dimensions. Nevertheless, it is imper-

ative to verify that constraint violations do not adversely

affect our results beyond the level of accuracy inherent to

the numerical time evolution of the Einstein equations. This

numerical error is estimated below as about 2.5%.

We have verified the consistency of our initial data

through the following three tests. First, we compute a

numerical estimate Mnum for the ADM mass of the binary

initial data from the metric components [see, e.g., Eq. (134)

in [34] ]. This value is compared with the sum

M ¼ γ
ðD − 2ÞΩD−2

16πG
ðμA þ μBÞ;

which gives the total mass of two BHs with Lorentz factor γ

in the large-separation limit. The normalized difference

ðM −MnumÞ=M is displayed as black × symbols in Fig. 1

for our set of simulations. The excellent agreement (to

within 10−4 or better) demonstrates consistency of the

initial data with the mass energy of a boosted BH binary.

The second test addresses the energy balance throughout

the entire time evolution. Assuming that the spacetime

settles down to a stationary vacuum BH at late times,

the ADM mass M has to be equal to the sum of the

postmerger remnant BH mass MAH and the energy Erad

lost in gravitational radiation. The fractional deviation

ðM − Erad −MAHÞ=M from energy conservation is shown

as the redþ symbols in Fig. 1 and demonstrates that energy

is conserved in our simulations below the percent level. The

accuracy of this test is limited by the discretization error of

the horizon mass determined in [44] to be about 0.5% for

the resolution employed here.

For the third consistency test, we have checked the con-

vergence of the Hamiltonian constraint [see, e.g., Eq. (54)

in [34] ] for the specific configurationD ¼ 8, v ¼ 0.6. This

choice has been motivated by the fact that we generally

found it most difficult to achieve stable and accurate

simulations for the case of moderate to high velocities in

D ¼ 8 dimensions; this is likely due to the increasingly

steep gradients in the metric variables as the number of

dimensions increases. In order to monitor the behavior of

the constraints, we have additionally evolved this configu-

ration with a grid resolution h ¼ RS=64. Figure 2 displays

the violations of the Hamiltonian constraint along the

collision axis at times t ¼ 9.6RS (the infall phase before
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FIG. 1. The normalized difference between the analytic and

numerical ADM mass, jM −Mnumj=M, as obtained from the

initial data of the Appendix forD ¼ 5, 6, 7 and 8 and the different

initial velocities is shown as black × symbols. The redþ symbols

likewise denote deviations in the expected energy balance

between the total ADM mass M, the horizon mass MAH of

the merger remnant BH and the radiated GW energy,

i.e., jM − Erad −MAHj=M.
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merger) and t ¼ 80RS (in the postmerger ringdown phase).

The high-resolution results have been amplified by a factor

Q3 with Q ¼ 96=64 and the resulting agreement of the

curves thus obtained indicates convergence at about third

order, which is in agreement with the use of fourth- and

second-order ingredients in the discretization [46]. The loss

of convergence at a level of about 10−13 is due to the

roundoff error of the double precision variables employed

in the code. We observe the same behavior for the

momentum constraint, which results in a figure very similar

to Fig. 2, also showing convergence at ≈ third order.

In order to estimate the discretization error of our results,

we have also studied the convergence of the energy Erad

radiated from this configuration in GWs. We have com-

plemented the above simulations with a third run at

resolution h ¼ RS=48; unlike the constraints, we do not

know the continuum limit of Erad and, hence, need this

extra run. The GW energy Erad is shown in Fig. 3. The

differences in Erad indicate convergence between third and

fourth order, and we estimate the uncertainty due to

discretization using the more conservative third-order

Richardson extrapolation. This yields a numerical uncer-

tainty of 1.5% for the high resolution (h ¼ RS=96). Note
that the results of Fig. 3 contain the spurious gravitational

radiation of the initial data, but this content is so small that

it is not perceptible in the plots, about 10−7M for this

configuration. Even though its contribution can be larger,

especially in D ¼ 5, we have found the spurious GW

content to be orders of magnitude below the discretization

error in all configurations. This is in marked contrast to the

major role of the junk radiation in the error budget of our

evolutions of conformally flat data (see, e.g., [20]) and

represents a major benefit of the superposed BH initial data.

We have analyzed two further sources of numerical

uncertainties. First, the extraction of the gravitational

radiation at finite radius incurs an error which we estimate

through extrapolation to infinity using a series expansion in

1=r; cf. Sec. II in [74]. We find this error to be about 1% for

D ¼ 5 and significantly lower for D > 5. We attribute the

small magnitude of this error once more to the rapid falloff

of the metric fields in higher dimensions, which implies an

approximately flat background metric at smaller radii than

in four spacetime dimensions. Finally, we have varied the

initial position of the BHs and find that the value x0 ¼
10RS is sufficiently large that a further increase of x0 leads
to no significant changes in the results. In summary, we

estimate the relative numerical uncertainty of our results as

about 2.5%.

B. Numerical results and comparison

with analytic calculations

The first main result of our work is displayed in Fig. 4,

which shows the energy radiated in GWs from a binary
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FIG. 2. The Hamiltonian constraint along the collision axis for

a binary with v ¼ 0.6 in D ¼ 8 dimensions. Note that only the

range x ≥ 0 is shown, as the second BH and the range x < 0 are

incorporated through reflection symmetry across the origin. The

times t ¼ 9.6RS and t ¼ 80RS correspond to the infall and

postmerger stages of the collision. The high-resolution results

(red dashed curves) have been amplified by a factor Q3,

Q ¼ 96=64, to approximately match the low-resolution results,

indicating convergence at about third order. The loss of con-

vergence at ∼10−13 is due to roundoff error.
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FIG. 3. The energy released in gravitational radiation in the

collision of a BH binary starting with v ¼ 0.6 in D ¼ 8

dimensions. (Upper panel) The results obtained for the different

resolutions and the prediction obtained from third-order Richard-

son extrapolation. (Lower panel) The differences between the

individual simulations. The high versus medium resolution

differences have been amplified by factors Q3 ¼ 1.947 and Q4 ¼
2.692 expected for third- and fourth-order convergence. The

results indicate convergence in between and we estimate the

uncertainty using the more conservative third-order extrapolation

to the continuum limit.
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with initial boost velocity v in D spacetime dimensions.

The data have been complemented with those obtained in

Ref. [20] for collisions in D ¼ 4 dimensions.

For all valuesD, two regimes are distinct in the figure. At

velocities v≲ 0.4, the radiated energy shows mild variation

around the rest-mass limit Eradðv ¼ 0Þ whereas for v ≳ 0.4

the energy grows approximately exponentially with v; note
the logarithmic scale on the vertical axis. Contrary to what

might be expected intuitively, the lowest radiation efficiency

for a given D is not always realized in the rest-mass limit.

ForD ≥ 6, the functionEradðvÞ exhibits a minimum at finite

v ≈ 0.25. This behavior has in fact already been noticed in

point-particle calculations by Berti et al. [75]. In their Fig. 1,

the energy radiated in collisions starting from rest exceeds

that for mild boost velocities for D ≥ 6; note that, contrary

to our Fig. 4, their horizontal axis denotes the number of

dimensions while different symbols mark the velocity. For

D ¼ 11, their rest-mass case produces even more radiation

than the ultrarelativistic limit. Our dataset does not allow a

clear verification of whether this unexpected phenomenon

persists in the comparable mass limit, but applying fits to

our numerical data confirms that the radiative efficiency in

the ultrarelativistic limit decreases for larger D.
For our fits, we have considered only data at v ≥ 0.4,

where we observe an approximately linear growth of

logErad with v. We therefore apply for each value of D
a regression of the form

logErad ¼ a0 þ a1v: ð2Þ

It is straightforward to translate the resulting coefficients

into the following notation, where the coefficient in front

represents the limit Eradðv → 1Þ,

Erad ¼ ð0.129� 0.03Þ × 10ð3.12�0.05Þðv−1Þ in D ¼ 4;

Erad ¼ ð0.101� 0.010Þ × 10ð2.88�0.03Þðv−1Þ in D ¼ 5;

Erad ¼ ð0.077� 0.008Þ × 10ð3.05�0.03Þðv−1Þ in D ¼ 6;

Erad ¼ ð0.055� 0.005Þ × 10ð3.28�0.03Þðv−1Þ in D ¼ 7;

Erad ¼ ð0.045� 0.008Þ × 10ð2.88�0.05Þðv−1Þ in D ¼ 8:

ð3Þ

The minor deviation of the result forD ¼ 4 in this list from

the ultrarelativistic limit reported in [20] is due to the

different functional relations employed in the fits.

It has been noted in Ref. [42] that the overall reduction

of the radiated energy with increasing D bears a quali-

tative resemblance to the decreasing surface area of the D-

dimensional unit sphere, AD−2 ¼ 2πðD−1Þ=2=Γ½ðD − 1Þ=2�.
TheD dependence of the radiation efficiency, however, will

also be affected by the increasingly steep strong-field

gradients in larger D. These would be expected to result

in a more violent interaction, but also imply that this

interaction occurs increasingly close to merger such that

more of the strong-field dynamics are captured inside the

common apparent horizon and cannot radiate to infinity.

The net impact of these competing effects is not obvious,

but our numerical results demonstrate dominance of those

effects reducing Erad.

We next investigate whether our data confirm the

intriguing observation by Okawa et al. [45] that high-

energy BH collisions in higher dimensions may form

regions of super-Planckian curvature that are not hidden

inside an event horizon. For this analysis, Okawa et al.

compute the Kretschmann scalar K2 ≔ RABCDRABCD

(where A; B;… ¼ 0;…; D − 1) and normalize the result

with the corresponding value obtained on the horizon of a

BH with a mass equal to the Planck mass. Their Fig. 2

displays the Kretschmann scalar thus normalized, and

identifies a region of super-Planckian curvature around

the origin and outside the BH’s apparent horizons.

We have explored this phenomenon for our head-on

collision with v ¼ 0.85 in D ¼ 6 dimensions. Some care is

required in the comparison, however, because we use the

convention of [71] and write the Einstein equations as

GAB ¼ 8πGTAB for all values of D, which mildly differs

from the convention of [45]. For our choice, the mass of a

Tangherlini BH with mass parameter μ is given by Eq. (1).

We regard a BH as in the Planckian regime if its Compton

wavelength 1=Mp (recall that we set ℏ ¼ c ¼ 1) is equal to

its horizon radius, i.e.,

1

MD−3
p

¼! rD−3

S ¼ μ ¼ 16πGMp

ðD − 2ÞΩD−2

⇒ MD−2
p ¼ ðD − 2ÞΩD−2

16πG
: ð4Þ
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FIG. 4. The energy Erad radiated in gravitational waves from the

head-on collision of two equal-mass nonspinning BHs with initial

velocity v in D spacetime dimensions. The fits have been

computed from data with v ≥ 0.4 assuming a functional relation

logErad ¼ a0 þ a1v. The results have been rewritten to facilitate

easy reading of the limit Eradðv → 1Þ.
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For D ¼ 6, we thus obtain for the Planck mass

M4
p ¼ 2π=ð3GÞ. The Kretschmann scalar on the horizon

of a Tangherlini BH in D ¼ 6 dimensions is

K2 ¼ 240μ2

r10
: ð5Þ

In this expression we first substitute for μ in terms of the

BH mass through Eq. (1), and then insert for M the Planck

mass Mp obtained from Eq. (4). The result gives the

Kretschmann scalar on the horizon of a BH with massMp as

K2
p ¼ 180π

G
: ð6Þ

Following Ref. [45] we have computed the normalized

K=Kp and show in Fig. 5 the result in the xy plane; we recall

that this plane is orthogonal to the z direction, i.e., the

quasiradial direction associated with our rotational isometry

[61]. The apparent horizon is displayed in the figure with

light blue, dashed curves and contains the regions of highest

curvature. Shortly before we first find a common apparent

horizon, however, two regions of significant curvature K >

Kp have formed above and below the collision axis (left

panel in Fig. 5). This region is eventually enclosed inside the

common apparent horizon that we first observe at t ¼
13.3RS in the right panel. Our evidence for regions of

super-Planckian curvature is less strong than that presented

in [45] because our failure to find an apparent horizon at

t ¼ 12.8RS in the left panel of Fig. 5 does not prove that an

apparent horizon does not exist. The simulation presented in

[45], in contrast, represents a scattering configuration, which

demonstrates more clearly that a common horizon is not

present at the time of super-Planckian curvature. Nonethe-

less, our results support their observations, and indicate that

super-Planckian curvature outside a cloaking horizon may

also form in head-on collisions of BHs and in D > 5.

Theoretically, there is no reason why super-Planckian

curvature outside a BH horizon cannot occur in D ¼ 4,

but we are not aware of a case where this has been observed.

IV. CONCLUSIONS

In this study we have modeled head-on collisions of

nonspinning, equal-mass BH binaries with boost velocities

up to vmax ¼ 0.91 (0.85, 0.8, 0.7) in D ¼ 5 (6, 7, 8)

spacetime dimensions. By using initial data constructed

from superposed Lorentz boosted Tangherlini BH solutions

in isotropic coordinates, we have managed to significantly

reduce the amount of spurious gravitational radiation as

compared with conformally flat initial data of the Bowen-

York type. We have verified the suitability of these initial

data by confirming conservation of the total mass energy

and convergence of the Einstein constraints (Figs. 1 and 2).

We estimate the relative numerical error of our results to be

about 2.5% (Fig. 3, Sec. III A). By also including previous

results obtained for boosted head-on collisions in D ¼ 4

dimensions [20], our main findings are summarized as

follows.

(a) Independent of the number of spacetime dimensions,

we identify two distinct regimes: For initial boosts

v≲ 0.4, the radiated GW energy only mildly deviates

from the limit of collisions starting from rest. For

v≳ 0.4, the radiated energy grows approximately

exponentially with the velocity parameter v (Fig. 4).

FIG. 5. The normalized Kretschmann scalar K=Kp at times t ¼ 12.8RS (left panel) and t ¼ 13.3RS (right panel) in the collision of a

binary with v ¼ 0.85 in D ¼ 6 dimensions. The light-blue lines show the apparent horizon. At t ¼ 12.8RS two regions where K > 1

form, one above and one below the collision axis, indicating that super-Planckian curvature may become visible outside the BH horizon.

At t ¼ 13.3 a common horizon has formed and engulfed this region.
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(b) In agreement with point-particle calculations [75], we

find that forD ≥ 6, the radiated energy as a function of

initial velocity reaches a local minimum for mild but

finite boosts v ≈ 0.25 (Fig. 4).

(c) By extrapolating the numerical results to the ultra-

relativistic limit v → 1, we find that head-on collisions

of equal-mass, nonspinning BHs radiate 12.9%, 10.1%,

7.7%, 5.5%, 4.5% of the total energy in the center-of-

mass frame, respectively, in D ¼ 4, 5, 6, 7, 8 dimen-

sions; see Eq. (3).

(d) By computing the Kretschmann curvature scalar for

head-on collisions in D ¼ 6 dimensions with initial

boost v ¼ 0.85, we identify regions with super-

Planckian curvature outside the apparent horizon,

supporting previous numerical results [45] which

show “visible” regions of super-Planckian curvature

in grazing BH collisions in D ¼ 5.

Our results for the radiated energy demonstrate that high-

energy collisions of BHs can radiate considerable amounts

of energy even in higher dimensions. On the other hand, the

values we find are significantly lower than the remarkable

Erad=M ¼ 1

2
−

1

D
formula derived from first-order perturba-

tive calculations of shock-wave collisions [17,18]. In

D ¼ 4, the inclusion of second-order terms in the pertur-

bative calculations has lowered the radiation estimate from

E
ð1Þ
rad ¼ 25% to E

ð2Þ
rad ¼ 16.4% [12,14]. First steps have been

taken to extend the D > 4 case to second order [18]. It will

be interesting to see if estimates of the total radiated energy

will lead to a similar reduction and, thus, close the gap

between numerical relativity and shock-wave calculations.

Our numerical results suggest that relatively simple BH

production scenarios based on cross sections derived from

the (higher-dimensional) Schwarzschild radius [5,76]

would require only mild modifications by a factor close

to unity in order to account for energy loss through

gravitational radiation.

Results in D ¼ 4 have shown that grazing collisions

may emit gravitational waves more efficiently than the

head-on limit; to compute whether this also holds in higher

dimensions is one of the main questions to be addressed in

future work. A further extension of our work may consider

boosted collisions of BHs in higher-dimensional Lovelock

gravity following the BH solutions and formalism of

Refs. [77–79]. Such a program, however, might require

more investigation to ensure availability of a well-posed

initial-value formulation [80,81].
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APPENDIX: INITIAL DATA FOR BOOSTED

BLACK-HOLE BINARIES

In this section we need a wider set of indices to

distinguish between spacetime and spatial, as well as

between on- and off-domain spatial indices. More specifi-

cally, we use capital early (middle) latin indices to cover all

spacetime (spatial) dimensions. Lowercase middle latin

indices cover the three spatial directions inside our com-

putational domain, and early latin indices the extra dimen-

sions outside the computational domain. Greek indices

include time and the on-domain directions. For D space-

time dimensions, our indices therefore have the following

ranges:

A;B;… ¼ 0;…; D − 1; I; J;… ¼ 1;…; D − 1;

i; j;… ¼ 1; 2; 3; a; b;… ¼ 4;…; D − 1;

α; β;… ¼ 0; 1; 2; 3: ðA1Þ

Our starting point is the Tangherlini metric that describes

a D-dimensional, spherically symmetric BH with mass

parameter μ in radial gauge and polar slicing,

ds2 ¼ −

�

1−
μ

RD−3

�

dt2 þ
�

1−
μ

RD−3

�

−1

dR2 þR2dω2

D−2
;

ðA2Þ

where dω2

D−2
denotes the line element of the D − 2 sphere.

The metric in isotropic coordinates is obtained by trans-

forming the radial coordinate according to

R ¼ r

�

1þ μ

4rD−3

�

2

D−3

; ðA3Þ

which leads to the metric

ds2 ¼ −Ω2
Ψ

−2dt2 þ Ψ
4

D−3ðdr2 þ r2dω2

D−2
Þ

¼ −Ω2
Ψ

−2dt2 þ Ψ
4

D−3½ðdx1Þ2 þ � � � þ ðdxD−1Þ2�;

Ω ¼ 1 −
μ

4rD−3
; Ψ ¼ 1þ μ

4rD−3
; ðA4Þ

HIGH-ENERGY COLLISION OF BLACK HOLES IN HIGHER … PHYS. REV. D 100, 104046 (2019)

104046-7



where x1;…; xD−1 are standard Cartesian coordinates

with r2 ¼ ðx1Þ2 þ � � � þ ðxD−1Þ2.
In the ADM formalism [11,82], the spacetime metric is

written in terms of the lapse function α, the shift vector βI

and the spatial metric γIJ according to

gAB ¼
�

−α2 þ βMβ
M βJ

βI γIJ

�

¼

0

B

@

−α2 þ βmβ
m βj 0

βi γij 0

0 0 γwwδab

1

C

A
; ðA5Þ

where the first expression is general, and the second

accounts for the simplifications due to SOðD − 3Þ isom-

etry. For the inverse metric we likewise have

gAB ¼
�

−α−2 α−2βJ

α−2βI γIJ − α−2βIβJ

�

¼

0

B

@

α−2 α−2βj 0

α−2βi γij − α−2βiβj 0

0 0 γwwδab

1

C

A
: ðA6Þ

Here w is not an index: γww and γww ¼ 1=γww merely

denote the single extra variable for the metric and inverse

metric needed to describe the geometry in the extra

dimensions. We also note that γij is the inverse of γij,

and γIJ the inverse of γIJ.

By equating Eqs. (A5) and (A6) with the Cartesian

metric of Eq. (A4), we obtain the components for the lapse,

shift and spatial metric

α ¼ ΩΨ
−1; βi ¼ βa ¼ 0;

γij ¼ Ψ
4

D−3δij; γia ¼ 0;

γab ¼ γwwδab; γww ¼ Ψ
4

D−3: ðA7Þ

The extrinsic curvature has a more complicated relation to

the metric and also involves derivatives. We use the sign

convention where

KIJ ¼ −
1

2α
ð∂0γIJ − βM∂MγIJ − γMJ∂Iβ

M − γIM∂Jβ
MÞ:

ðA8Þ

Applied to the Tangherlini metric (A4), however, one

directly finds that KIJ ¼ 0, because the metric is time

independent and has zero shift vector.

The next step in our initial data construction consists of

applying a Lorentz boost to the Tangherlini metric in

Cartesian coordinates. For this purpose we consider an

observer O in the rest frame of the BH, and a second

observer Õwho moves with velocity −vI relative toO. The

transformation between the two frames is given by

xÃ ¼ Λ
Ã
Ex

E þ xÃ
0
⇔ xE ¼ Λ

E
ÃðxÃ − xÃ

0
Þ; ðA9Þ

where

Λ
Ã
E ¼

�

Λ
α̃
ϵ 0

0 δãe

�

¼

0

B

B

@

γ γvj 0

γvi δij þ ðγ − 1Þ v
ivj
jv⃗j2 0

0 0 δãe

1

C

C

A

; ðA10Þ

and its inverse Λ
E
Ã is obtained from the same expression

by simply inverting the sign of the velocity vi. Note that

boosts in the extra dimensions are excluded here in order

to preserve the SOðD − 3Þ isometry. Without loss of

generality, we will from now on set the constant offset

xÃ
0
to zero, which merely implies synchronization of the

two observers’ clocks when they meet.

The metric components and their derivatives in the two

frames O and Õ are related by

gÃB̃ ¼ Λ
E
ÃΛ

F
B̃gEF; ðA11Þ

∂C̃gÃB̃ ¼ Λ
G
C̃Λ

E
ÃΛ

F
B̃∂GgEF: ðA12Þ

For the eventual calculation, it is convenient to consider

separately in these relations the spacetime components

inside our computational domain and those corresponding

to the off-domain directions xa. This leads to the following

transformation rules for the metric, its inverse and its partial

derivatives,

gα̃ β̃ ¼ Λ
μ
α̃Λ

ν
β̃gμν; gã b̃ ¼ δã b̃gww;

gα̃ β̃ ¼ Λ
α̃
μΛ

β̃
νg

μν; gã b̃ ¼ δã b̃gww;

∂ γ̃gα̃ β̃ ¼ Λ
λ
γ̃Λ

μ
α̃Λ

ν
β̃∂λgμν; ∂ γ̃gã b̃ ¼ Λ

λ
γ̃δã b̃∂λgww;

ðA13Þ

with all other components and derivatives being manifestly

zero. The ADM variables in the boosted frame Õ can then

be read off from these expressions through the relations

(A5), (A6) and (A8), which hold in exactly the same form

in the new coordinates xα̃. This gives us

α̃ ¼ ð−g0̃ 0̃Þ−1=2; βĩ ¼ g
0̃ ĩ; γ ĩ j̃ ¼ gĩ j̃;

γã b̃ ¼ γw̃ w̃δã b̃; γw̃ w̃ ¼ gw̃ w̃ ¼ gww;

K ĩ j̃ ¼
−1

2α̃
ð∂

0̃
γ ĩ j̃ − βm̃∂m̃γ ĩ j̃ − γm̃ j̃∂ ĩβ

m̃ − γ ĩ m̃∂ j̃β
m̃Þ;

Kã b̃ ¼ Kw̃ w̃δã b̃;

Kw̃ w̃ ¼ −1

2α̃

�

∂
0̃
γw̃ w̃ − βm̃∂m̃γw̃ w̃ − 2γw̃ w̃

βz̃

z̃

�

: ðA14Þ
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Note that we have put a tilde on the index free lapse

function α̃ to distinguish it from the lapse α in the rest frame

O, and that we have used in the last line the relation [61]

∂aβ
c ¼ βz

z
δa

c; ðA15Þ

valid for SOðD − 3Þ isometry.

This transformation allows us to compute the initial

data for a single boosted BH. For binary data, we com-

pute such a solution for two BHs A and B with opposite

boost velocities vi
B
¼ −vi

A
and initially located at posi-

tions xi
A
¼ −xi

B
, which gives us the center-of-mass

frame for equal-mass BHs. Following [83], we construct

superposed binary data from the two individual solutions

according to

γ ĩ j̃ ¼ γA
ĩ j̃
þ γB

ĩ j̃
− δĩ j̃;

K̂ ĩ
j̃ ¼ K ĩ

j̃
A þ K ĩ

j̃
B;

K ĩ j̃ ¼
1

2
ðγ ĩ m̃K̂m̃

j̃ þ γj̃ m̃K̂
m̃
ĩÞ: ðA16Þ

Instead of superposing the lapse and shift vector in an

analogous way, we initialize the lapse in terms of the

conformal factor of the BSSNOK formulation, α̃ ¼ ffiffiffi

χ̃
p

,

χ̃ ¼ ðdet γ ĩ j̃Þ−1=ðD−1Þ, and set the initial shift to zero, βĩ ¼ 0.
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