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Abstract

High-energy factorization in QCD is investigated beyond leading order and its relationship to
the factorization theorem of mass singularities is established to any collinear accuracy. Flavour
non-singlet observables are shown to be regular at small x order by order in perturbation theory.
In the singlet sector, we derive the relevant master equations for the space-like evolution of gluons
and quarks. Their solution enables us to sum next-to-leading corrections to the small-x behaviour
of quark anomalous dimensions and deep inelastic scattering coefficient functions. We present
results in both MS and DIS factorization schemes.

1. Introduction

Hadronic processes at large transferred momentum p, are accurately investigated by
using perturbative QCD. The comparison between theoretical predictions and jet physics
data from high-energy colliders has enhanced our confidence in perturbative QCD up
to the 10% accuracy level [1]. The reason for this success is that not only the non-
perturbative (higher-twist) contributions vanish as powers of A/p;, in the hard-scattering
regime p, > A (A being the QCD scale), but mainly the fact that logarithmic correc-
tions to the naive parton model (i.e. lowest-order perturbative QCD) are systematically
computable and, in most cases, known as a power series expansion in the ‘small’ (due
to asymptotic freedom) running coupling as(p?) ~ (Bo In p?/A%) L.
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Precise quantitative tests of QCD and searches for new physics at present and future
hadron colliders are nonetheless carried out at an increasingly large centre-of-mass
energy /S, thus opening up a new kinematic region characterized by small values of
the ratio x = p?/S (S>> p?). In this small-x regime, our capability to make perturbative
QCD predictions decreases. The reason is twofold. First, the parton densities f(x, p?)
of the incoming hadrons (which are necessary as inputs in any perturbative calculation)
are poorly known at very small values of x. Second, the perturbative expansion is slowly
(or badly) convergent because of the presence of logarithmic corrections of the type
a’( p,z) In"™ x: higher powers of as( p,2) associated with multiple hard-jet production can
indeed be compensated by large enhancing factors In(S/p?). Note that this second point
also affects the first one. In the case that a reliable set of small-x parton densities can
be extracted from a single experiment, we should be able to predict accurately their
perturbative evolution with p2.

The discussion above makes clear that our understanding of QCD in the small-
x regime has still to be improved. In particular, on the theoretical side, it is highly
desirable to keep under control and to evaluate reliably the QCD component which can
be computed perturbatively. This can be done by combining the customary perturbative
approach to hard-scattering processes with an improved perturbative expansion which
systematically sums classes (leading, next-to-leading, and so on) of small-x logarithmic
contributions to all orders in «aj.

At present, the QCD multiparton matrix elements have been computed to double loga-
rithmic accuracy in the small-x region [2]-[6]. They can be used to study the structure
of hadronic final states in small-x processes, thus predicting some new distinctive fea-
tures [3]-[5] such as the increase of particle (jet) multiplicity and the suppression of
large rapidity gaps. Only some phenomenological investigations have been carried out
[7], and more detailed analyses are needed. In this paper we do not consider the issue
of the structure of the final states but rather concentrate on the evaluation of higher-order
corrections for total cross sections.

The leading high-energy contributions to total cross sections are single-logarithmic
terms (aslnx)" (higher powers of Inx cancel in this case) due to multiple gluon
exchanges in the f-channel. In the case of hard processes which are directly coupled
to gluons in the naive parton model, these leading logarithmic contributions can be re-
summed to all orders in perturbation theory by using the high-energy or k -factorization
theorem [8]-[10]. The basic idea [8] is to replace the collinear (or parton pole) fac-
torization by gluon Regge pole factorization.

Considering, for instance, the simplest small-x process initiated by hard-gluon inter-
actions at the Born level, namely the heavy-flavour photoproduction process

y(p1) + h(p) — Q(p3) + O(ps) + X, (1.1)

one can write the total cross section in the following factorized form [8]

1
am? o(x, M?) =/d2k/dz—z o(x/2, K2 /M?, ag(MY)) F(z,k) . (1.2)



S. Catani, F. Hautmann/Nuclear Physics B 427 (1994) 475-524 477

Here the heavy flavour mass M (M > A) defines the hard scale of the process and
x=4M?/S (S~2p;-p> M?).

In Eq. (1.2) & is the basic high-energy hard cross section for the subprocess y +
g(k) — QQ, computed to the lowest order in as as a function of the transverse
momentum k of the incoming off-shell (essentially transverse k ~ zp + k, , k? ~ —k?)
gluon g(k). On the other hand, F(z,k) is the unintegrated gluon density of the incoming
hadron 2(p) and is related to the customary gluon density f,(x, M 2) via k_ -integration

MZ
xfo(x, M%) N/dzk F(x,k) . (1.3)
0

Therefore the k-dependent factorization in Eq. (1.2) reduces to the leading-order
collinear factorization [11] for S > M? > kﬁ_. However it holds also for § > kﬁ_ ~
M?, thus controlling all the logarithmically-enhanced terms (aslnx)” associated with
hard-gluon radiation in the final state.

The resummation of the leading In x contributions follows from noticing that the hard
cross section & is well-behaved at high energy (i.e. 0 (x, k2 /Mz, ag) ~ x modulo In x-
terms, for x — 0). Therefore the large perturbative corrections (asInx)” in the cross
section (1.2) are generated precisely by the k -integration from the ones in the gluon
density F (x,k), as given by the Balitskii-Fadin-Kuraev-Lipatov (BFKL) equation [12]

1
Flxk) ~ e x (k2)~4 (1.4)

A=4Cs E m2. (1.5)
w

Inserting Eq. (1.4) into Eq. (1.2), one obtains the following perturbative result for the
total cross section at very high energy [8]

AMPo(x, M) ~ x~* (M®)? h(1/2), (1.6)
1 Tak (N fdax
0 0

The main features of Eqs. (1.6), (1.7), derived from the k-factorization formula
(1.2), are the following. The total cross section increases at high energy with a universal
(process-independent) power behaviour $*, A being the intercept of the perturbative
QCD pomeron in Eq. (1.5). This result is the consequence of the very steep behaviour
(1.4) of the gluon density! at small x and large k. The normalization of the total
cross section instead depends on the process and the process-dependent factor A(1/2)
derives from the detailed and calculable transverse-momentum dynamics of the hard
subprocess.

I Note, however, that if the gluon density has a non-perturbative component steeper than the perturbative
one, the former dominates over the latter at high energy.
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The resummation of the leading-order contributions at high energy is a crude (al-
though mandatory) approximation. This is true from both the theoretical (the perturba-
tive QCD pomeron violates unitarity to leading order) and phenomenological (terms of
relative order a;g are systematically neglected) sides. The evaluation of subleading con-
tributions is therefore relevant (i) to include corrections necessary to restore unitarity at
asymptotic energies and (ii) to estimate the accuracy and set the limits of applicability
of the leading-order formalism.

Unitarization effects have been extensively studied in Refs. [13]-[16]. Although a
systematic calculational approach based on first principles is still missing, the likely
conclusion emerging from these studies is that the full restoration of unitarity can be
achieved only after the inclusion of higher-twist corrections.

As regards the leading-twist contributions to hard-scattering processes, a calculational
program of high-energy logarithms based on Regge behaviour is being pursued by Fadin
and Lipatov [17], and the evaluation of the two-loop correction to the BFKL kernel
now seems feasible.

In this paper we follow a different approach towards the computation of subleading
corrections at high energy. We show how the k| -factorization theorem can be extended
beyond leading order in a consistent way with all-order (leading-twist) collinear fac-
torization. This allows us to set up a systematic logarithmic expansion both for hard
coefficient functions and parton anomalous dimensions. Moreover, once these quantities
have been computed to a certain logarithmic accuracy, they can unambiguously be sup-
plemented with non-logarithmic (finite-x) contributions exactly calculable to any fixed
order in perturbation theory. Note, also, that a further advantage of this approach is that
the effects of the running coupling can be included exactly (at least in principle), thus
avoiding the infrared instabilities encountered in phenomenological attempts [13,18,19]
to extend the BFKL equation beyond leading order. Obviously, with the present attitude,
we abandon any demand to predict the absolute behaviour of the cross sections at very
high energies (very small x) because higher-twist corrections are systematically ne-
glected. However, since logarithmic scaling violations are systematically under control,
we think that such an approach can be useful in making quantitative phenomenological
predictions at high (but finite) energies and large transferred momenta [20].

The outline of the paper is as follows. In Section 2 we first recall the general frame-
work of leading-twist collinear factorization. Then, on the basis of power counting
arguments, we show how the high-energy factorization of Ref. [8] can be extended
beyond leading order and consistently matched with all-order collinear factorization,
in terms of resummed anomalous dimensions and coefficient functions. In Section 3
we start our calculational program in dimensional regularization by deriving the master
equation for the high-energy behaviour of the gluon forward scattering amplitudes and
computing the ensuing anomalous dimensions and normalization factor in the (modi-
fied) minimal subtraction scheme. The analogous calculation for the quark channel is
performed in Section 4. Here, we obtain an algebraic equation for the quark anomalous
dimensions to next-to-leading logarithmic accuracy as(asInx)”, and present its explicit
solution up to the six-loop order. In Section 5 we turn our attention to the calcula-
tion of the coefficient functions for deep inelastic lepton-hadron scattering. We compute
both the longitudinal and transverse coefficient functions by resumming the logarithmic
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contributions as(agsInx)". We also consider the all-order generalization of the DIS fac-
torization scheme and obtain explicit resummed expressions for the corresponding quark
anomalous dimensions with next-to-leading logarithmic accuracy. Section 6 is devoted
to summarizing our main results, and may also serve as a guide for the reader mostly
interested in extracting perturbative QCD results for phenomenological applications. The
definition of singlet and non-singlet parton densities and a few mathematical details are
left to Appendices A to C.

Some of the results derived in this paper have already been presented in Refs. [21,22].

2. QCD factorizations

This section is devoted to setting up the formal basis of the high-energy factorization.
We start in Subsection 2.1 by introducing the factorization theorem of collinear singular-
ities and defining the parton densities and coefficient functions. Then in Subsection 2.2
we recall the proof of this factorization theorem to leading-twist order in the context of
dimensional regularization. This formal apparatus is used in Subsection 2.3 to develop
a simple power counting at high energy and to show how high-energy factorization
can be carried out consistently with all-order collinear factorization. The high-energy
factorization formulae are k| -dependent and can be considered as the generalization of
collinear factorization in terms of unintegrated parton densities and off-shell coefficient
functions. Alternatively, high-energy factorization can be compared with Regge factor-
ization [23]. The gluon Green functions and the two-gluon irreducible kernels entering
as building blocks in the high-energy factorization discussed in Subsection 2.3 are the
analogue of the reggeon trajectory and its residue. However, this analogy has to be taken
with caution since it does not properly account for the issue of factorization of collinear
singularities. Finally, in Subsection 2.4, we show how the high-energy factorization leads
to resummed anomalous dimensions and coefficient functions.

2.1. Hard processes and parton densities

The factorization theorem of collinear (mass) singularities [24,25,11] states that, in a
general hard collision (i.e. a scattering process involving a large transferred momentum
< p,2 >= 0? > A?) of incoming hadrons, all long-distance (non-perturbative) effects
can be factorized into universal (process-independent) parton densities thus leading to
a perturbatively calculable dependence on the hard scattering scale Q2.

Considering, for the sake of simplicity, the case of a single incoming hadron (like the
heavy-flavour photoproduction process (1.1) or deep inelastic lepton-hadron scattering),
one can write the dimensionless cross section F(x, Q%) ~ Q%0 (x, Q%) as follows (x =

Q°/5)

1
P20 =Y [ dz Cala/zias(ud). /i) fulz i) @D
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Here C, are the process-dependent coefficient functions, f, are the parton densities
(a=¢qi,qi,8 i=1,...,Ns, Ny being the number of flavours) of the incoming hadron
and pZ is an arbitrary factorization scale such that u% >> A2. The observable F is
independent of uZ. Correspondingly the u2-dependence of C, on the r.h.s. of Eq. (2.1)
is exactly cancelled by that of f,. Moreover, both the ag-dependence of the coefficient
functions and the scale dependence of the parton densities are computable as a power
series expansion in ag. In particular, the parton densities fulfil the renormalization group
evolution equations

1
d fa(x, u*) / dz 2 2
——— = —_P ) ) s .
dln o2 2; ~ Pa(as(?),2) fo(x/2 1) (2.2)
X
where P, (as,z) are generalized Altarelli-Parisi splitting functions which are com-
putable in QCD perturbation theory:

Pulas,x) =Y (;—;)"p;;—w(x) . (2.3)

n=1

The corresponding expansion for the coefficient function is

Calx3 5,0/ u?) = (as)” C,S")(x)+Z(;’—;)"C§"’(x;Q2/u2)] .
n=1

where the integer power p depends on the process.
The x-dependence of the factorization formula (2.1) and of the evolution equations
(2.2) can be diagonalized by introducing the N-moments of the cross section

1

Fa(Q) = / dx XV 1F (x,0%) 2.5)
0

and the analogous moments of any other function of x. It is also convenient to define
the rescaled parton densities f,

Fa(x, ) = xfa(x, p?) (2.6)
and the anomalous dimension matrix y n '

1

Yabn(as) = /dx xN Pay(as, x) = Papns1(as) . 2.n
0
In the N-moment space, Eqgs. (2.1), (2.2) respectively read as follows
Fn(Q%) =) Can(as(u}), Q*/up) fan(uf) (2.8)
a

! Qur definition differs from the standard one in which yy = Py.
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F 2
ﬂ%(/g_) = zb:'}'ab,N(aS(,u'z)) Fon(u?y. (2.9)

Eq. (2.1) is correct apart from terms vanishing as inverse powers of Q2 at high Q?
(higher-twist corrections). In this regime, a consistent perturbative use of the collinear
factorization formula (2.1) requires the knowledge of {P{’,C{®} (leading order),
{P,CD} (next-to-leading order) and so on. Therefore, QCD predictions for the
cross section are usually obtained by computing in fixed-order perturbation theory both
the splitting functions and the coefficient functions. The splitting functions up to two-
loop accuracy have been known for a long time [25]-[28]. Next-to-leading order
coefficient functions have been computed for most processes [29], and, in the cases
of deep inelastic lepton-hadron scattering (DIS) [30] and Drell-Yan process [31], the
next-to-next-to-leading terms C}2) are also known.

As discussed in Section 1, higher-order contributions to the cross section and, hence,
to splitting and coefficient functions are logarithmically enhanced at small x. More
precisely, in the small-x limit we have?

Py V(x) ~ % "' x+ 00" 2 0], (2.10)

CM(x) ~I" Tx+0O0n"2x) . (2.11)

This small-x behaviour corresponds, in N-moment space, to singularities for N — 0 in
the form

o0

Yabn(@s) = [(%)k A + ag (%/f)kB;{;) +.. ] , (2.12)
k=1

e k
Can(as, Q*/u?) = o Cj, [1 +3(5) D@ ud
k=1

+ as (%S)kEf,")(Q2/u2) + } . (2.13)

These singularities may spoil the convergence of the perturbative expansions (2.3)
and (2.4) at small x (high energy). Nonetheless one can consider an improved per-
turbative expansion obtained by resumming the leading (ALY, DY), next-to-leading
(BY,EP), etc., coefficients in the high-energy regime. Once these coefficients are
known, they can be combined [32] with Eqgs. (2.3) and (2.4) (after subtracting the
resummed logarithmic terms in order to avoid double counting), to obtain a prediction
throughout the region of x where asln(1/x) <1 (or ag/N < 1), which is much larger
than the domain as1In(1/x) < 1 where the as-perturbative expansions (2.3), (2.4) are
applicable.

2 According to our definition, the lowest-order coefficient function C® is normalized in such a way that
C© (x) ~ x, modulo In x corrections, at small x.
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As outlined in Section 1 and discussed in detail in Ref. [8] (see also Section 5), the
k -factorization formula (1.2) allows one to resum the leading high-energy contribu-
tions (aslnx)” ((as/N)") both for the anomalous dimensions and for the coefficient
function. By comparing Eqgs. (1.2) and (2.1) and considering the relation (1.3) be-
tween unintegrated and full parton densities, we see that the k -factorization is, in a
sense, more general than the collinear factorization in Eq. (2.1). The latter is recovered
after the transverse momentum integration in the former. This relationship can be made
explicit in a simple way to leading order [8]. However, beyond leading order, a careful
analysis of the low-k integration region in (1.2) is needed in order to disentangle
non-perturbative and higher-twist effects from the perturbative ones.

This issue can be investigated from a formal viewpoint by considering cross sections
at parton level instead of hadronic cross sections. In the partonic cross section, the
non-perturbative contributions show up in terms of collinear divergences. Once these
divergences are properly regularized, they can be factorized and subtracted by a pro-
cedure of renormalization of the bare parton densities. This procedure can be carried
out to any collinear accuracy, although the ensuing anomalous dimensions and coeffi-
cient functions are no longer separately regularization/factorization scheme independent
beyond one-loop level.

The point we want to address in the following is that the k, -factorization can be con-
sistently implemented beyond leading order without spoiling the all-order factorization
of collinear singularities. In particular, the resummation of next-to-leading contributions
at high energy can be performed by properly taking care of the factorization scheme
dependence of the splitting and coefficient functions. To this end, let us first recall the
formal basis of collinear factorization.

2.2. Collinear factorization

In order to present a formal derivation of the factorization theorem of collinear
singularities, we follow the technique developed by Curci, Furmanski and Petronzio
[25]. The dimensionless cross section F(x,Q?) in Eq. (2.1) is first expressed in terms
of partonic cross sections and parton distributions in the form? (Fig. 1)

F=FOC...p) FO,.. ) +IFQC. 5pip) FO0prpa.. ) +...1,
(2.14)

where, in the limiting case of on-shell partons (p? = 0), the first term on the r.h.s. picks
out the leading-twist contribution we are interested in. Nonetheless, the partonic cross
section F© is collinear divergent in the on-shell limit, so that both F(® and f(® have
to be regarded as properly regularized ‘bare’ quantities.

We use the standard procedure of dimensional regularization, in which the bare cross
section F(® is evaluated in n = 4 + 2 & space-time dimensions, considering (n — 2) he-
licity states for gluons and 2 helicity states for quarks. The corresponding dimensional-

3 Here and in the following we use a symbolic notation in which the product C = AB of two kemels A and
B understands the integration over the intermediate momenta (or the corresponding product in N-moment
space) and the sum over the intermediate parton species and their spin and colour indices.
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=y

Fig. 1. Factorization of the physical cross section F in terms of partonic cross sections (F(@, F{”, ...) and

parton distributions ( F©, A%, ...). In the case of on-shell partons (p? = 0), the first term on the rh.s. and
those in parenthesis represent respectively the leading- and higher-twist contributions.

Fig. 2. Expansion of the partonic cross section F* in two-particle irreducible (2PI) kernels.

regularization scale is denoted by u. Once F® has been renormalized (using, for
instance, the MS renormalization scheme), collinear singularities are automatically reg-
ularized and show up as single poles in 1/e. The factorization theorem allows one to
subtract these poles from F(® and factorize them (to all orders in as) into process-
independent transition functions I, according to

FO=cr, (2.15)

where the coefficient function C is finite for € — 0. Using the transition functions I" to
define the ‘physical’ parton densities f

F=TfO (2.16)

one then recovers the factorization formula (2.8) by performing the limit ¢ — 0.

The factorization procedure leading to Eq. (2.15) is simplified if we evaluate the
gauge-invariant partonic cross section F(® in a physical gauge. Denoting by p* =
P(1,0,1) the incoming parton momentum (Fig. 2), we introduce the following Sudakov
parametrization for any other momentum &

4k pr
Z

k= zp* + kY + -~
t 2p-p

k’i =(Osk’0) y ﬁ# =P(1,0,_1) N (2.17)
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and we choose the axial gauge p - A = 0, where the sum over the gluon helicities is
given by the polarization tensor

k*p” + pHK

ar (k) = —g™ + -
Pk

(2.18)
Then we consider the expansion of F( in terms of kernels C(® and K® which are
two-particle irreducible (2PI) in the z-channel:

FO=cO(1 4+ kO 4 xOg® 4  )y=c®g®, (2.19)

1

0 - (0) (0) () = ___
GV =14K"+K"K to =1%o

(2.20)
In the axial gauge in which we are working, the 2PI amplitudes are free from mass
singularities [33]. Therefore all the collinear divergences originate from the integrations
over the momenta coming out from the kernels K© and connecting them to each other
in the (process-independent) bare Green function G(9). The factorization formula (2.15)
can now be realized by introducing a suitable projection operator P¢ which decouples
C©® and G in the spin indices and extracts the singular part of the d"k integrals (i.e.
poles in &) thus decoupling C® and G also in momentum space.

For each kernel, one can write the decomposition K(® = (1 — Pc)K©® 4 PcKO,
where all the singularities are due to the second term on the r.h.s. Applying this procedure
in an iterative way, one obtains

g(O) =GgT (2.21)
where all the e-poles have been subtracted from the ‘renormalized’ Green function G:

1

G=1" T=PK® =1+(1-P)KO+(1=Pc) KO (1 -P)KD1+...,
(2.22)
and associated with the transition function I’
F=l—ﬁK—)=l+(PcK)+(’PcK)(’PcK)+... , (2.23)
K=K9g. (2.24)
The coefficient function C in Eq. (2.15) is thus identified with
c=c9g. (2.25)

In order to show the consistency of collinear and k -factorization (see Section 2.3),
we have to recall the form of the projection operator Pc [25]. Let us denote its action
on helicity and momentum space respectively by PS” and PS?, so that Pc = PLRPY.
If A and B are two kernels connected by a parton of momentum k (Fig. 3), the action
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>

A A A
o B w v
) >y «KJ K —> KRS
K N kg™
@ B b B # B B
(a) ({b)

Fig. 3. Action of the collinear projector Pc on the spin indices of two kernels A and B in the cases of an
intermediate (a) quark and (b) gluon state.

on the helicity space is

1 b
() p _ var | — .. .
APY B=A(... k) s (2’6),,,,;, (zp.k)aBBaﬂ‘._(k,. ), (2.26)
when the connecting parton is a quark and
s d/l:,V, k ,
AP B=A( ..,k)m#/y/——(—) (—g")Bu,. (k,...), (2.27)

-2

when the connecting parton is a gluon. The operator PC(E) sets k* = zp* on the left-hand
side (A), performs the dk?d"~%k integration up to the factorization scale u% on the
right-hand side (B), and extracts the ensuing poles in &.

Note from Egs. (2.26), (2.27) that Pé” acts on the left by performing the aver-
age over the parton helicities in n-dimensions. Note also that Pés) is not (at least in
principle) unambiguously defined. The factorization of Egs. (2.15), (2.21) in terms of
collinear-finite and divergent (for ¢ — 0) contributions can still be achieved if PC(")
extracts not only the e-poles but also any finite contribution for € — 0. This leads
to the factorization-scheme dependence of both anomalous dimensions and coefficient
functions. The factorization scheme is completely specified once Pés) has been uniquely
defined. Equivalently, one can specify the explicit (and finite) e-dependence of the
transition functions I'. One of the most commonly used scheme is the modified minimal
subtraction (MS) scheme, in which the transition functions have the form [25)

as(pup/u?)°Se
2 a\e 1 da
Tapn(as(us/u?)®, &) = { Pyexp - — (@) : (2.28)

0 ab

In this equation we have reintroduced the explicit dependence on the parton labels and
N-moment indices. The symbol P, denotes, as usual, the path-ordered integration of
the anomalous dimension matrix ¥, y. Note the presence of the e-finite factor S, =
exp{—e[¥(1) +1nd4m]} (¥(z) is the Euler y-function), which characterizes the MS-
scheme. The only formal simplification we have used in Eq. (2.28) is that we have
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Fig. 4. Expansion in two-gluon irreducible (2GI) kernels at high energy for (a) the partonic cross section
F® and (b) the (singlet) quark Green functions Gga. Gga-

considered the case of a fixed coupling constant as. As shown in the following, this
simplification is sufficient for the purposes of the present paper.

2.3. Power counting and factorization at high energy

The expansion in 2PI kernels introduced in the previous subsection is particularly
useful to discuss the high-energy behaviour. High-energy (or small-x) logarithmic con-
tributions are indeed generated by multiple gluon exchanges in the t-channel. Therefore
we are led to consider kernels which are two-gluon irreducible (2GI).

For the parton cross section F{*) (a = g;,§i,g), we single out the part which is
2GI by selecting the first (starting from above in Fig. 4a) two-gluon intermediate
state. Considering the small-N limit in N-moment space, the 2GI kernel behaves as
a§ (1+ ags +...), where the first term corresponds to the tree-approximation and the
remaining terms stand for corrections which are subleading at high energy. The large
perturbative contributions (as/N)* are thus generated precisely by k-integration from
the ones in the gluon Green functions g;;’) (a = qi, §;» g). In particular, since flavour
non-singlet parton cross sections (Appendix A) get no contribution from pure-gluon
intermediate states, we can immediately conclude that non-singlet anomalous dimensions
and coefficient functions are regular for N — 0 order by order in as.

A decomposition similar to that for F{? can be performed also for the (flavour
singlet) quark Green function (Fig. 4b). Since the 2GI kernel behaves in this case as
as (1 + ag+...), we see that the quark anomalous dimensions contribute to next-to-
leading terms as(as/N)¥ in the high-energy limit.
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Note that the expansion in 2GI kernels is more general than that in 2PI kernels.
The 2GI kernels in Fig. 4a and Fig. 4b can still be expanded respectively as (C{® +
Y beg COKD + . ) and (KD + 3., KDKD 4 ...). However, only the tree-

ca
level approximations for C{®’ and K,(,g) (b # g) contribute to leading order in ag/N. A
similar simplification does not occur for the gluon Green function g;},’) because the gluon
kernels K{’ contain terms of the type (as/N)* to any order kX (modulo dynamical
cancellations) in ag.

The expansion in 2GI kernels described so far allows one a simple power counting
at high energy. The next step towards high-energy factorization consists of decoupling
the 2GI kernels and the gluon Green functions with ags/N fixed. This factorization is
conceptually different from the collinear one, where, roughly speaking, one expands in
as (or &) with ag/e fixed. In particular, we cannot perform the collinear limit k2 — 0 to
any fixed order in ag, because small-x contributions (as/N )¥ are associated with any
value of k£ [8]. On the other side, we do not want to spoil the collinear factorization,
so that the high-energy factorization has to be valid for any value of £ (i.e., in any
number of space-time dimensions). We are going to show that the & -factorization
procedure introduced in Ref. [8] can be carried out consistently with all-order collinear
factorization.

The high-energy limit of the product Agg&fg), A, being the 2GI kernel involved in the
decomposition of Fig. 4, was discussed in detail in [8]. Considering the decomposition
of A, in Lorentz-invariant amplitudes, it was shown that the leading high-energy behavior
can be extracted via k) -factorization, i.e. by inserting into the two-gluon intermediate
state a k| -dependent projection operator Py as follows

c#g

AgGD =APu GO +... . (2.29)

As in the case of the collinear projector P¢ in Section 2.2, we introduce the notation
Pu = P QP where PS and PY denote respectively the action of the high-energy
projector Py on helicity and momentum space. P,(IS) acts as follows

’ kJ_ w k R4
K2
whilst Py? sets k# = zp* + k% on the left-hand side (A,) and integrates the right-hand
side (G{Y) over the invariant mass k? at fixed k1. Note that the k-dependence is
left unaffected by Py and, in particular, the 2GI kernel A, has to be evaluated with an

incoming off-shell (essentially transverse k2 = —k?) gluon.

Equation (2.29) generalizes the &k, -factorization formula (1.2) to n =4 + 2 & space-
time dimensions. The key point, however, is not just the formal resemblance between
Egs. (2.29), (2.30) and (1.2), but rather the fact that Py selects the correct high-energy
behaviour in any number of dimensions. We mean that, for instance, in performing the
approximation (2.29), we are not neglecting any contribution of order (as/N)*-& with
respect to the four-dimensional case. This statement is a consequence of the fact that
Py is a ‘true’ projection operator:

AP G =AY (=) GQ* (k,p) (2.30)

P2 =Py, (2.31)
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K | v

Fig. 5. Quark-antiquark contribution to the lowest-order absorptive part A, of the scattering amplitude
Yge—v§

and fulfils the property
Py2Pc (Pu=TPc iff ky =0). (2.32)

Egs. (2.31) and (2.32) are self-evident for the momentum space components Py, PS*)
and follows from the simple relations ( <>4 denotes the average over the n—3 azimuthal
angles in the transverse momentum space)

Kk

(_g,u.v) =1, <

Kk koo a7 (k =zp)
7 i e
k K

n—2 ’

(2.33)

for the spin components Py, P,

Eq. (2.32) guarantees the consistency between high-energy factorization and collinear
factorization. Due to Eq. (2.32) we can first perform the high-energy approximation in
Eq. (2.29) and then proceed to the all-order factorization of collinear singularities by
applying iteratively the collinear projector Pc, as described in Section 2.2.

2.4. Resummation at high energy

In order to describe how in practice this procedure works and leads to the high-
energy resummation, let us consider the case involving a 2GI kernel which is collinear
safe. In particular, we refer to the heavy-flavour photoproduction process (1.1) already
introduced in Section 1. The corresponding 2GI kernel A, to lowest order in ag is
given in Fig. 5: the dashed line denotes the incoming on-shell photon and the full lines
correspond to the heavy-flavour pair produced in the final state. Considering the case of
an incoming-gluon partonic state and using the high-energy approximation in Eq. (2.29),
we immediately obtain the factorized formula (1.2) (in n = 4+ 2 & dimensions), which
we can rewrite in the N-moment space as follows

M7 oy (%) = [ P (8 [MP as (M2 2)
CFO (ks as, pm,6) Fme) . (234)
Here & ~ Ay, (k) K4k /K2, SO is the bare gluon distribution and, according to the

action of the high-energy projector Py, we have introduced the kj-dependent gluon
Green function
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di?
FOU(z,k; as, u, &) =/W (—8wG Q" (k,p)) . (2.35)

Eq. (2.34) has to be regarded as the bare (and collinear regularized) version of the
factorization formula (1.2), in the sense that it still contains collinear poles in & which,
according to Eq. (2.21), can be factorized in the form

FP (s as,pne) = P Ry, s ) Togn(as(ih /)50
(2.36)
where the MS-scheme gluon transition function is given by*
ass.
Fgen(as, &) =exp é / ‘{Ta Yeen (@) . (2.37)
0

The function Ry in Eq. (2.36) has no &-poles order by order in ag, and cannot depend
on the dimensional regularization scale w in the limit & — 0. Moreover, since the Lh.s.
of Eq. (2.36) is independent of the factorization scale wr, the only k-dependence of
Ry allowed by dimensional arguments, for & =0, is the following

Ry(k, pur, as; u, e =0) = Ry(as) (K*/u2)ven(as) (2.38)

The reduced cross section & in Eq. (2.34) is collinear safe because it corresponds
to a 2PI kernel of the type C‘® in Eq. (2.19). Therefore, after using the transition
function Ty x in (2.36) to ‘renormalize’ the bare gluon density f(* as in Eq. (2.16),
we can safely perform the € — 0 limit in Eq. (2.34) and obtain

4M? on(M?) = Cn(as, M2/ p%) Fon(p2), (2.39)

Cn(as, M?/u%) = hy(ygn(as)) Ry(as) (M?/u%)Yen@s) (2.40)

where the process-dependent part Ay of the coefficient function Cy is given by the
following k| -transform of the hard cross section &

o0

aw?® (k2N
hv(iv) =y | — — on(k*/M*, as,e=0) . (2.41)
k M
0

The result in Eq. (2.40) gives the resummed expression (including the dependence on
the factorization scale ,u,%) for the coefficient function Cy to the leading order (as/N) k,
provided the gluon anomalous dimensions 7y, 5 and the process-independent function
Ry are known to the same accuracy. A similar result was first derived in Ref. [8]. The
only difference with respect to [8] is that Eq. (2.40) takes into account the explicit
dependence on the process-independent but factorization-scheme dependent function Ry.

4 We limit ourselves to the case of a fixed coupling constant as. In fact, the running coupling effects lead to
subleading contributions as(as/N)* and can thus be neglected in the present leading-logarithmic analysis.
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This point is essential for precise phenomenological predictions at finite energies, when
one has to combine the resummed coefficient function (2.40) with fixed-order non-
logarithmic contributions computed in a well defined factorization scheme of collinear
singularities. Moreover this issue is relevant to extending the high-energy resummation
to subleading orders, where a corresponding scheme dependence of the anomalous
dimensions comes into play (see, for instance, Section 5).

Note, however, that the presence of the process independent factor Ry in Eq. (2.40)
is no longer relevant (at least, to leading order) if one limits oneself to considering only
ratios of cross sections. In this case Ry and the factorization scale dependence cancel
in the ratio, thus leading to an absolute prediction in terms of hard scales and Ay (y)
functions of the type in Eq. (2.41) [8].

The high-energy contributions (as/N y* are embodied in Egs. (2.29), (2.34) through
the k, -integration of the gluon Green function g§2>. As discussed in [8] and recalled
in Section 1, in the case of four space-time dimensions the resummation of the leading
terms (as/N)* in the gluon density (anomalous dimensions) is accomplished by the
BFKL equation [12]. The analogous master equation in n = 4 42 & dimensions, which
is necessary to compute both the anomalous dimensions and the function Ry, is derived
and discussed in the following section.

3. The gluon Green functions

The leading high-energy behaviour of the gluon Green functions gég)(k,p) and
gég)(k, p) can be easily derived by generalizing the soft-gluon insertion technique in
Refs. [3,5,34] to the case of n dimensions. In the present paper we do not repeat all
the detailed calculations described in [3,34], but we simply sketch the main steps and
properties which are necessary for the n-dimensional generalization.

The starting observation is that the high-energy contributions (as /N)k to the gluon
Green function are produced by radiation of soft gluons, that is real and virtual gluons
carrying a very small fraction x of the longitudinal momentum p of the incoming
parton. Therefore, in the soft-gluon approach, the matrix element M‘**1(k,p), con-
tributing to G to the (k4 1)—loop order, is obtained from M* by the insertion of
an additional (real or virtual) soft gluon with momentum g. Using the soft approxima-
tion for vertices and propagators, this insertion can in turn be factorized, leading to the
recurrence relation

IMED (e, p)[* = g {TMP (k+ .91 IR (@12 MP (k+ g, p)
— [MP (&, )1 LIS (1> MP (k,p)} (3.1)

The explicit expressions for the real and virtual soft-gluon currents Js((f;t) and Js(o‘;t)
can be found in Refs. [3,34]. The point we want to emphasize here is that they do not
explicitly depend on the number n of space-time dimensions in which the soft-gluon
factorization is carried out. As a matter of fact, the n-dependence of the matrix element
MDD can only be due to the spin structure of the vertices (the scalar propagators
i/(g* +ie) are the same in any number of dimensions). It turns out that a single
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(essentially eikonal) helicity flow dominates to leading-logarithmic accuracy in the
high-energy limit. Thus, the relevant QCD matrix elements are the same as for n = 4
and the only difference comes from the n-dimensional phase space over which Eq. (3.1)
has to be integrated.

Using the recurrence relation (3.1), performing the sum over the number k of loops
and following exactly the same steps as in Refs. [3,34], one obtains an integral equation
for the gluon Green function G(®. More precisely, considering the gluon density in
Eq. (2.35), one finds (&s = C4 a5/m, C, = N, being the number of colours)

a d2t2e 1
FN (ks as, p,8) = 83 (k) + —2 (—2—7—,#7‘18 o) {fp(zo)(k - q; as, @, )
k- (k—
- AP kas e | (32)

Some comments are in order. In the case of n = 4 dimensions (¢ = 0), after
azimuthal average over q, Eq. (3.2) reproduces the BFKL equation { 12,35]. Moreover,
the integrand (not the phase space) of the homogeneous term in Eq. (3.2) is exactly
the same as for the BFKL equation. As discussed above, this is a straightforward
consequence of the dynamical dominance of a single gluon polarization to the present
accuracy. Note, however, an essential difference with respect to the BFKL equation: the
full kernel of Eq. (3.2) is not scale invariant. Indeed, scale invariance is broken by
the dimensional regularization procedure and the eigenfunctions of the kernel are no
longer simple powers (k?)?. From a physical viewpoint this means that whilst small
and large transverse momentum regions contribute equally to the BFKL equation, they
are now weighted asymmetrically. The breaking of scale invariance in Eq. (3.2) allows
one to regularize the collinear singularities in terms of e-poles. Once these poles have
been factorized and subtracted, as in Egs. (2.36), (2.38), one can perform the € — 0
limit and recover scale invariance at the expenses of an additional dependence on the
factorization scale as dictated by the leading-twist behaviour of the parton densities
(cross sections).

A further consequence of the lack of scale invariance in the kernel of the gluon Green
function is that no simple technique is available to diagonalize the integral equation
(3.2). However, it is possible (see Appendix B) to solve it as a formal power series in
as with e-dependent coefficients. The result reads as follows

f}ﬁ/())(k; W, s, €) = 5(2+29)(k)

I'(l1+¢&) <~ [as e¥ () K2\ ° k
+_(7Tk2)1+s ; I:W Ssm (E) :| cr(e) , (3.3)

where we have explicitly introduced the MS-scheme factor S, = exp[—e (¥(1) +
In47) ], and the coefficients ¢, are defined by the recurrence relation

c(e)=1, crn(e) =cle) k(e) (k>1), (3.4)

with (I'(z) is the Euler I'-function)
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1F2(1+s) [ T(1+2e)T(ke)T(1 —ke)
eT(14+2e) IT((1+k)e)T(14+(1-k)e)

Ii(e) = —r(1+e)r(1—e)] .

(3.5)

The gluon Green function (3.3) is formally a distribution acting on the transverse-
momentum space in n—2 = 2+2¢ dimensions. Following the procedure of factorization
of collinear singularities described in Section 2.2, one can extract from F, 12{0) the tran-
sition function T'ge y as in Eq. (2.36), thus leading to a ‘renormalized’ gluon density
which, for finite &, is a very cumbersome k -distribution. Therefore, it is more con-
venient to introduce the gluon Green function G integrated up to the factorization
scale u% = Q?:

Gy (as (Q*/u?)°, &) = / 2k FO (ks as, . 8) ©(Q — k) . (3.6)

Note that G does not depend on as e Q%/u® independently, but only on the product
as(Q?/u?)e. Performing the k, -integration of Eq. (3.3) we find

(0) 2,2 — [as eV o:\° 1
6utas @iy =1+3 [y (%) | fae- @7
k=1

Introducing explicitly the parton indices, the collinear factorization in Eq. (2.21) reads
G;(g),)N = Y, Gea N, n. However, from the power counting in Section 2.3, we know
that the quark anomalous dimensions g, n (and hence the corresponding transition

functions Ty, n) are subleading at high energy. Therefore, to leading order in (as/N )k,
we can write

GO\ (as(Q/1u2)* ) = Gy n(as(Q*/1)°,8) Teg n(as(Q?/u?)*6) . (3.8)
where T'ge v is given by Eq. (2.37), in terms of the gluon anomalous dimension yg, n.
By comparing Egs. (3.7) and (3.8), one can compute Yg, ny and the ‘renormalized’

Green function Ggg, y for any value of &. Moreover, from Egs. (3.6) e (2.36) it follows
that the function Ry in Eq. (2.38) is related to the € — 0 limit of Ggg n

Ry(as) = G n(as(Q?/p?)%,€) om0 - (3.9)

The recurrence factor I,(¢) behaves like 1/g for & — 0. Therefore, in agreement
with Egs. (2.37) and (3.8), the power series expansion (3.7) has at most a single
g-pole for any power of as. More precisely, for € — 0 we have

I(g) ~ é(1+0(s3)) (e—>0), (3.10)

and correspondingly
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YN 2
G(O)N(as(Q2/,u )%, €) ‘1+Z {1 as m <Q > } l ( + O ))

las . e?D  /9%\°
=P [E_Ssr(1+s) pe
as 1 rag 4
(1+0 o ( ) : 11
(ro((3)) ;) en
Comparing Egs. (3.8) and (3.11), we see that the slow departure of I;(g) from its

leading-pole approximation I;(g) ~ 1/ke gives rise to subleading collinear corrections,
for both 7y, xy and Ry, which are of relative order a3 in the high-energy regime:

ygg,~=%5 [HO((%)B)] , RN—1+O((‘1’5)3) . (3.12)

Terms of relative order a5 and @2 are present in the various Feynman diagrams

contributing to the gluon Green function but they cancel in the sum. This cancellation,
which is automnatically embodied in the master equation (3.2), does no longer occur in
higher perturbative orders. The resummed expressions for ., y and Ry to the leading
accuracy (as/N)" are derived in Appendix B. The results are the following.

The dominant contribution yy(as) to the gluon anomalous dimensions

Yeen = ¥n(as) + O(as(as/N)*) (3.13)

is obtained by solving the implicit equation (Fig. 6)

Ql

1= W (yn(as)) . (3.14)

where the characteristic function y(7y) is expressed in terms of the Euler ¢-function

X)) =2(1) —(y) —¢p(l—y) == |1+ Zz {(2k+1) y““} (3.15)

k=1

and J(n) is the Riemann ¢-function. The solution of Eq. (3.14) in power series of the
coupling constant gives! (£(3) ~ 1.202, £(5) ~ 1.037):

wias) =3 (53) = % e () + 200 (%) 0 (%))
n=1

! The explicit values of the coefficients gn, up to n = 14, can be found in Ref. [5].
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Fig. 6. The BFKL characteristic function y(vy) for 0 < y < 1. yy is the BFKL anomalous dimension.

The function Ry(ag) is given by

I'(1 —vyw) x(ywn) }%

(L +yn) [=yv X' (¥a)]

() —¢'(1—7y)
x(y)

Ry(as) =

YN
-exp Yy ¥ (1) +/dy 14 , (3.17)
0

where y and y’ are the characteristic function in Eq. (3.15) and its first derivative,
respectively. The ag-dependence of the rh.s. in Eq. (3.17) is implicit in that of the
gluon anomalous dimension yy = yny(as). The first perturbative terms are ({(4) =
20%(2)/5 ~ 1.082):

3 5

Rutas) =1+ 523 (%) = 200y (2) + o5y () +o((%)6) .

Some comments are in order.

The result in Egs. (3.13), (3.14) for the gluon anomalous dimension is exactly
the celebrated BFKL anomalous dimension [12]. In the present paper this result has
been derived by consistently carrying out the procedure of factorization of the collinear
singularities in dimensional regularization. However it is worth noting that the same ex-
pression for the anomalous dimension can be obtained by using alternative and less
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sophisticated regularization prescriptions of the collinear singularities (for instance,
considering Eq. (3.2) directly in n = 4 dimensions and regularizing it by keeping
the incoming gluon slightly off-shell, via the replacement 6® (k) — &(k? — u2)/mr
in the inhomogeneous term [34,35]). The reason for this has to be traced back to
the property of the kernel in the master equation (3.2) of being collinear regular for
€ — 0: the collinear divergences in the solution of Eq. (3.2) originate only from the
fact that the inhomogeneous term is not sufficiently smooth for k — 0. As a result,
in the small-N limit, the gluon anomalous dimensions to leading accuracy (as/N)"
are regularization/factorization scheme independent (and related via Eq. (3.14) to the
eigenvalues y(y) of the BFKL kernel) within a wide class of schemes. This class in-
cludes all the schemes which do not introduce pathologically singular terms of the type
a’§ /N*¥tP (p > 1) in the perturbative calculation at high energy 2, or, more precisely,
which do not violate the high-energy power counting discussed in Section 2.3.

The BFKL anomalous dimension in Eqgs. (3.14), (3.16) departs rather slowly from
its one-loop contribution. However for very small values of x, corresponding to sizeable
values of @s/N ~ O(1), vy increases quite fast and for as/N = (4 In2)~! reaches
the saturation value y = 1/2 at which x(y) has a minimum (Fig. 6). For still larger
values of &g/N there are two complex conjugate branches of yy, coming from the
pinching with the symmetrical solution of Eq. (3.14) at ¥ = 1 — yy. Therefore the
resummation of the singular terms (ags/N)* builds up a stronger singularity at N =
A=4asIn2 ~2.65a5 [12]. As discussed in Section 1, this branch point singularity
(known as the perturbative QCD pomeron) is responsible for the steep behaviour x~*
of the gluon density fg(x, u?), generated by the perturbative QCD evolution at high
scale u2.

The function Ry(as) in Eq. (3.17), on the other hand, depends on the factorization
scheme more than the gluon anomalous dimensions. For instance, going from the MS-
scheme result (3.17) to the MS scheme (in this scheme the transition function Ige is
obtained by setting S; = 1 on the rh.s. of Eq. (2.37)), Ry(as) has to be multiplied
by the factor exp [—yn(as) (¢(1) + Ind#)]. This scheme dependence of Ry(as)
has to be compensated in physical observables by subleading contributions of order
as(as/N)* in the anomalous dimensions.

Since Ry(as) is related to the & — O limit of the renormalized gluon Green function
Gge.v (see Eq. (3.9)), it can be regarded as the normalization factor of the perturbative
QCD pomeron. Note, in particular, that Ry(ag) is singular at the saturation value
¥ = 1/2 of the BFKL anomalous dimension yy(as):

1
1 z
Ry(ars) ~ const. (_—) (v — 1/2) . (3.19)
N 1 —2yn(as) w /

This behaviour is related to the branch point singularity of the BFKL anomalous dimen-
sion at N =4 &s1In2 and signals the ultimate failure of the leading-twist approach to the
mass singularity factorization and the onset of the multi-Regge factorization at extreme
energies (see Ref. [8] for a more detailed discussion of this issue).

2 This feature of the gluon anomalous dimensions was first pointed out by T. Jaroszewicz [36].
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We have so far considered the leading high-energy behaviour of the gluon Green
function g<°> In order to complete our discussion on the gluon channel, we conclude

this section by examining the Green function Gg; (9 with an incoming quark or antiquark.

Let us denote by F{® the k) -dependent Green function defined by replacing G{’
by G on the rhs. of Eq. (2.35). The corresponding master equation to ]eading
accuracy (as/N)* is the following

Cr as 1 1 asg d2+2':q 1
K as, ue) = £ I as [ 4774
w(k as, 1,e) Ci N Crp® a2 TN GrE g

. {]:q,N(k —q;as, M, 8)

k- (k—
= (—k(—_—q)iz) FOk; a5, p.8) }. (320)

Comparing Egs. (3.20) and (3.2), we see that 7.3, and F4” fulfil the same integral
equation, apart from a different inhomogeneous term In particular, it is straightforward
to check that the solution of Eq. (3.20) can be expressed in terms of the pure-gluon
Green function F, [%0) as follows

FR K as, u,8) = = [f<°>(k as, u,8) — 87 (K)] . (3.21)

The k, -integrated Green function G’ is thus given by

Gean(as(Q®/u®)*.e) = / Pk Fi (ks as, p.e) O(Q — k)

c
= E.i. [CPn(as(Q*/u*),e) —1] . (3.22)

The result (3.22) allows us to compute the anomalous dimensions vy, » by per-
forming simple algebraic manipulations. We have first to factorize from G(O)N the
collinear singularities according to Eq. (2.21). Introducing explicitly the parton 1nd1ces
G( ) E Gga, NTaq, N, and using the fact that the quark transition functions I'y, are
subleadmg at high energy, we obtain:

GOy (as(Q*/u2)*,6) = Gy n(as(Q2/u)%,8) Tgq n(as(Q*/17)°,8)
+ Ggq, n(as(Q*/u?)*, ) . (3.23)

Inserting Eqs. (3.23) and (3.8) into Eq. (3.22) we get the identity

Ca [Ggp n(as,€) Tgq n(as,€) + Ggg n(as,e)]
=Cr [Ggg,N(aSvS) Fgg,N(aSvS) -1], (3.24)

which we can rewrite in the following form
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1
,&) —Cr (G &) —1)] ————
[Ca G, n(as, ) r (Ggg n{as,€) )] )

=CF [Tge n(as, &) ~ 1] —CaTyy n(as, &) . (3.25)

We now notice that, order by order in perturbation theory, the renormalized Green
functions G, are regular for € — O whilst the transition functions I, are series of
poles. Therefore the only solution to Eq. (3.25) is

C
Gy n(as, €) =C—Z [Gee n(as, ) — 1] , (3.26)

C
Ty n(as, €) =C—j [Tee n(as, &) — 11 . (3.27)

In particular, since to leading accuracy (as/N)* we have

as S,
1 da
Fua(ase) =3 [ 52 (@) +Yeen (@) Tn(@)] | (3.28)
0
as
1 da
Fgg,N(aS98) =1+ g/';')’gg,N(a) Iﬂgg,N(a,‘"J) , (3.29)
0

from Eq. (3.27) we obtain:
Cr k
'qu,N(aS) = C_A ')’gg,N(a’S) + O(as(as/N) )

C
= C—j yn(as) + O(as(as/N)*) , (3.30)

yn(as) being the BFKL anomalous dimension. We see that the coefficients of the
leading terms (as/N)* in YN (a =gq,g) are equal, apart from an overall factor
given by the ratio of the colour charges of the initial-state parton a.

4. The quark Green functions

From the high energy power counting discussed in Section 2.3, we know that the
gluon channel dominates to leading logarithmic accuracy in the small-x regime. Beyond
leading order, however, the quark sector has to be considered on an equal footing with
the gluon sector. Actually, from a phenomenological viewpoint, the knowledge of the
next-to-leading quark anomalous dimensions may be more relevant than that of the
corresponding corrections to the gluon anomalous dimensions. The reason for this is
that the most accurate information on small-x parton densities is coming out from
HERA data [37] on deep inelastic structure functions, which couple directly to quarks
(and not gluons).
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Fig. 7. (a) High-energy factorization of the gluon — quark Green function Gg, and (b) the corresponding
off-shell kernel Kqg.

(b)

In order to compute the (flavour-singlet) quark anomalous dimensions we consider
the Green function Q‘SS) :

G = K Gia - (4.1)
b
or, more precisely, its expansion in 2GI kernels (Fig. 4b), and we apply the high-energy
factorization formula (2.29). We thus arrive at the analogue of the k, -factorization
formula (2.34):

| k=yp+ky

1
dy [, K
Geo “#(a.p) =/d2+28k/7y (ng) “#(g,4) —Lkz—*)
0

- FO(y,k; as, p,8) (4.2)

where K@ (Fig. 7) is the 2GI kernel K;g) to the lowest order in as (u, ¥ and
a, B are respectively the spin indices of the incoming gluon and outgoing quark).
Moreover, since we are interested in the anomalous dimensions rather than the coefficient
function, it is also convenient to apply the collinear projector Pc and consider (as in
the gluon sector) the Green function G integrated over g and the invariant mass
¢*> up to the factorization scale u = 0? (we use the Sudakov parametrization g* =
xp*+q + (@ +a%) p*/2xp-p)
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Pc G =G (x,a5(0*/1u?)°, &)

d 2d2+2e i
/2?277)4+29 (zplé q) Bgég) “(q.p) ©(Q*~1q) . (4.3)

Inserting Eq. (4.2) into Eq. (4.3) and taking the N-moments we get
GQy(as(Q*/u?)*, &)
= [ @ R (0%, a5 Q%4 5) FO (s o) (4.4)

The factorization formula (4.4) relates the quark Green function to the k| -distribution
F© in the same way as Eq. (2 34) relates the heavy-flavour cross section to the gluon
density. The off-shell kernel K v, obtained from K(®(g,k) after integration over
g and explicitly calculated in Appendix C, is indeed regular for N — 0 so that the
resummation of the singular terms (as/N Y& in G;g) n is achieved by k| -integration of
the corresponding terms in F®. Note, however, an essential physical difference with
respect to Eq. (2.34). Unlike the hard cross section &y, the off-shell kernel I?qg,N is
not collinear safe. The collinear singularity arises from the integration of the splitting
process g — g g in Fig. 7b and shows up as an e-pole in the n-dimensional on-shell
case k>=0:

) 1-2)0%\°
Rye(2, K =0,a5(0Q%/u?)% ) =2 :rS (( Zz)Q )

T'(1+e¢) i
1. (1—-2)2+z2%+¢
ZT , 4.5
P 1+e¢ (4.5

or, alternatively, as a logarithmic divergence in the on-shell limit k> — O for the four
dimensional case:

2
R (2, K /Q% as,e=0) = 7 2“—; 0 (0% - k%) -TR[((I -2)2+2%) lan?
2
—(1—6z(1—z))(1—ZQ—k2)] : (4.6)

Note that the coefficients of both the e-pole and In(Q?/ k?)-term are correctly propor-
tional to the n-dimensional Altarelli-Parisi splitting function Pq(s?) in one-loop order:

1- 2 2
PO (z;8) =Tx ( Zl):;z te 4.7)

Actually, the full off-shell kernel IA(qg, ~ in Eq. (4.4) can consistently be interpreted as
the integral of a generalized off-shell (and positive definite!) splitting function B{Y.
The explicit calculation in Appendix C gives
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(1—z)(Q*—2K%)

b 2 2 2/..2ve 2 2 d(‘iz qz ’
Roe(2, K/ 0% as(Q*/p?)%:8) =2 © (Q* — 2 K°) / ra ﬁ)
0
ew(l)
X T PO K (4.8)

27 °T(1+¢) *
where the splitting function is

2

-2
PO (7, K? ~2;8 =T, ( ! )
qg( /q ) R q2+z(1——z)k2

(1-2)2+z22+¢ ) , K
: az22(1-2)t %,
[ l+e +az7(l-2) i

(4.9)

and § = q — z k denotes the boost-invariant (along the k-direction) transverse momen-
tum transferred in the splitting process g — gg of Fig. 7b.

The fact that the kernel K, is not collinear safe prevents us from taking the & — 0
limit in Eq. (4.4) even after having factorized the transition function T'ge y as in
Eqgs. (2.34), (2.36). The non-polynomial e-dependence of K, (due to both 13‘1(;))
and the phase space integration in Eq. (4.8)), as much as the off-shell dependence of
Pq(g), are thus responsible for non-trivial (and factorization scheme dependent) quark
anomalous dimensions 7y, v in higher perturbative orders.

Using the power series solution (3.3) for the gluon distribution F, ,f,o) and performing
the k, -integration in Eq. (4.4), we can determine the corresponding power series
expansion for the quark Green function G‘(Ig’) ~- Considering the N — 0 limit for f(qg, N
(i.e., neglecting subdominant corrections at high energy) we find (see Appendix C)

1
(0 2/,2 _ as et r02\" 1 4+¢
qu,N(aS(Q /m )8,8)—'2—;TRS ;(

“T(1+e) \p? 3+2)(2+¢)
© rag . et g2\ 1
' {”; [Ws°r(1+e) (F) ] xe ()
+ O (a5(as/N)Y) , (4.10)

where the coefficients di(e) are expressed in terms of cx(g) in Eq. (3.4) as follows

1 4+ (1-3k)e

k+1 4+¢

I'(1+ke) (1 —ke)T(1+8)T(4+¢)
T+ (1+k)e)T(4+ (1—k)e)

di(e) =

cr(e) . (4.11)

On the other side, the procedure of factorization of the collinear singularities in
Eq. (2.21) gives Gflg’) v = 32 Gaa, NTag, n» Which, neglecting terms of order a2 (as/N)%,
can be written as
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Gy (as(Q*/4?)®,8) = G n(as(Q?/u?)%, &) Tgg n(as(Q?/u?)®,¢)

+ Ty n(as(Q?/u?)e ) , (4.12)
1%
24
FIIS,N(aS’e) =" "—"qu,N(a) Fgg,N(a’e) . (4.13)
& (24
0

Remember that Gy n is finite for & — 0 order by order in ag. The structure of the
e-poles on the r.h.s. of Eq. (4.12) thus defines G, v and the transition function I'pe v
uniquely. It follows that, comparing the expansion (4.10) with Egs. (4.12), (4.13) and
using the known result for I'y, v (i.c. the leading-order gluon anomalous dimension
(3.13)), we can compute the anomalous dimension 7y, » (and the renormalized Green
function Ggg n) order by order in perturbation theory.

We have explicitly performed this calculation up to the sixth order and the result for
the quark anomalous dimensions in the MS scheme reads

3

rante =511 {12550 5 (5) [+ 200] (5 + 35

N
< 200] (5)'+ g+ e av0] (§)

o ()}

- — 2 — 3
as Qg ag as
~ B clir161% 4. (—) . —)

Tx { + 16757 +1.56 +342(N

2 3

+5.51 (%)4+7.88 (‘;’V) +O<(‘;j)6)} . (4.14)

The calculation is straightforward but already very cumbersome to this order in pertur-
bation theory !, and we are not able to provide an explicit resummed formula for Yae
to all orders (some all-order features of y,, are presented in Appendix C). However
we emphasize that this is just an (open) algebraic problem related to the use of the
MS factorization scheme, that is the highly non-trivial e-dependence of the coefficients
di(e) in Eq. (4.11) and the non-local structure of the e-poles in Eq. (4.13). The series
(4.10) for the quark Green function indeed contains all the necessary information on the
anomalous dimensions y,, v to any perturbative order as(as/N)*. In the next section
we show that, choosing a different factorization scheme of mass singularities, we can
explicitly resum all the next-to-leading terms as(as/N)" in Y N

The coefficients of the first two terms in the curly bracket of Eq. (4.14) agree
with the known one- and two-loop anomalous dimensions in the MS scheme [27,28].
The higher-order contributions can be used to estimate the effect of these small-x

1 Note that, because of the cancellations involved in the gluon sector (see Egs. (3.10), (3.12)), the first
three coefficients in the perturbative expansion (4.14) are entirely related to the s-dependence of the off-shell
kernel kqg_ N.
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corrections at intermediate values of x. In particular, the O(ag) term in Eq. (4.14)
can be combined with the existing (’)(ag) calculations of the coefficient functions
for the DIS [30] and Drell-Yan [31] processes in order to check the stability of the
fixed-order perturbative expansion in the x-range accessible at present. Note also that,
unlike the case of the gluon anomalous dimensions (3.13), (3.16), all the perturbative
coefficients in Eq. (4.14) are non-vanishing (and positive). Therefore in the quark
sector one may expect [22] (and finds [20]) an earlier departure from the fixed-order
perturbative behaviour.

The flavour-singlet anomalous dimension ygq’ ~ (Appendix A) starts in order a% and
its resummed expression at high energy is related in a simple way to that for vy w,
namely
;—;_TR %] +O(ak (as/N)¥) . (4.15)

The derivation of Eq. (4.15) is similar to that of the analogous Eq. (3.30) for the
gluon sector. One has to apply the high-energy factorization procedure of Section 2.3 to
the Green function G5 (here, the superscript S denotes the fact that the incoming and
outgoing quarks carry a different flavour), thus obtaining the following & -factorization
formula

G5V (as(Q*/u*)®,8)

= /d2+28k Roo w(K2/Q%, as(Q*/ u?)58) FLO (ks as, u.€) . (4.16)

Cr
'qu,N(aS) =Ca [qu,zv(as) -

This equation differs from Eq. (4.4) only by the replacement of the pure-gluon k-
distribution .7-',2,0) by fq(f),f, (see Eq. (3.20)). Therefore, using Eq. (3.21), one can

relate the two Green functions Ggq(o) and Ggg) :
2\ ¢ 2\ &
S (0) 0 _Cr | 0 0
035 (o5 (%) -#) = & [ (= () <)
0%\°
— Ky v <k=0, as (F) a>] . (4.17)

S (0)

zq.n 18 achieved by the following high-

The factorization of collinear singularities in G
energy relations

G5 N as,e) =T3, y(as,8) + Gy, y(as.e) + Gy n(as,e) Ty n(as.e) ,

(4.18)
asSS
s L[ da s r 4.19
qu,N(aS’g) = g 7 [‘qu,N(a) +7qg,N(a) gq,N(a,S)] . ( . )
0

Using Eqs. (4.18), (4.19), (3.27) one can express qu(o) as a function of Ggq, Yap

Gy Vaer Teg- Analogously, by means of Eqs. (4.12), (4.13) one can express G
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as a function of Ggg, Y4 Tz Inserting the expressions obtained in this way into
Eq. (4.17), one ends up with the equation

ass.:
1 da
Gaq v (as:€) +; / ”&“7’;(,,1\/(61’)
0
asSzd
c 1 o .
= C—F [qu,N(as,s) + - / — Yeen (@) — Kge n(k=0,a5;¢) |, (4.20)
A £ o
0

from which the result (4.15) follows.

It is worth noting that the all-order relation (4.15) between ygq’ ~ and yge n, as well
as its leading-order analogue (3.30), have been derived using only algebraic identities at
high energy, with no reference to the details of the dimensional-regularization prescrip-
tion. In particular they remain true using dimensional reduction [38], a dimensional
regularization scheme which explicitly respects supersymmetric Ward identities. In this
sense, Eqs. (3.30) and (4.15) can be considered as high-energy limits of the supersym-
metry identity Vg + Ygq = Yge+ Vg valid in N =1 supersymmetric Yang-Mills theory,
i.e. for Cp =Tg = Cy. It follows that in the supersymmetric case the gluon anomalous
dimensions yg and v, coincide also at the next-to-leading level as(as/N)¥. This
property may be useful as a technical tool to check and simplify the calculation of the
(still unknown) next-to-leading corrections in the gluon sector.

5. Deep inelastic scattering at small x
5.1. Structure functions and parton densities

The cross section for deep inelastic lepton-hadron scattering is given in terms of the
customary structure functions F;(x,0?%) (i =1,2,3). Here Q% denotes the square of
the momentum transferred by the scattered lepton and x is the Bjorken variable. In
the following we only consider the scattering process occurring through the exchange
of a single photon. As far as the hadronic component is concerned, this approximation
simply amounts to neglecting F3, which is a non-singlet structure function and, hence,
non-singular at small x (see Section 2.3). We also present our results in terms of
the structure functions F» and Fp, Fp(x,Q?%) = F(x,0%) — 2xF (x,0Q%) being the
longitudinal structure function.

In the naive parton model the DIS structure functions are related to the parton densities
of the incoming hadron as follows (e; are the quark charges)

Ny
Fa(x,0) =Y el [fo(x,0) + fa(x,0M)] (5.1)

i=1

Fr(x,0) =0 . (5.2)
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Taking into account perturbative QCD corrections in leading-twist order and using the
factorization theorem of mass singularities, Eqs. (5.1), (5.2) become

Ny
Fi(x,0%) = Nif (Zeﬁ) Fi(x,0") +F¥(x, 0% (i=2,1), (53)
i=1

where the singlet and non-singlet components F5 and FNS are given by

1
d .
F5(x,0%) = / 2 [CPwias(ud) @) FuC/2 )
+ C¥(zsas(pud), Q% up) folx/z, pup)] » (5.4)
1
RS0 = [ M astud). @i SN2 Gl (55)
x J=1

Here fs and f f(+) are respectively the singlet and non-singlet quark densities defined

in Appendix A, and CA (A =S, g NS) are the coefficient functions! computable as
power series in as(u%). Note that, because of the naive parton model relation (5.1),
we have C2 (z)=6(1 —z) + O(ag) for A=S, NS, and C2(z) = O(as). Therefore
also the gluon density fg contributes to F, beyond the lowest order. Moreover, since
CL = O(as) is not vanishing, the Callan-Gross relation (5.2) is violated.

At present, the coefficient functions C/* are completely known up to O(a?) [30,39].
The non-singlet coefficients C¥S are not enhanced by Inx terms in higher orders. The
all-order resummation of the logamhmlc contributions as+21n x (or as(cvs/N)"+1 in
the N-moment space) to Cf and C] is performed in the next subsection.

5.2. Coefficient functions

The coefficients functions C are evaluated starting from the expression F; =
>oa F,((?) F of the hadronic structure functions F; in terms of the partonic struc-

ture functions F,(a), and then performing the collinear factorization as in Eq. (2.15).

Considering first the gluon structure functions F}(g ), we have

FQ = (Ze ) [CETg + CE2NfT g (5.6)

On the other side, from the high-energy factorization in Section 2.3 (see Fig. 4a), we
obtain

1 The coefficient functions in Egs. (5.4), (5.5) are normalized according to our notation in Section 2.1 (see,
in particular, Eq. (2.11)). This normalization differs from that often used in the literature [30].
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F (x; as(Q/u?)*, )

=W (Ze ) / d*¥k

j=1

Z2 58(2,K2/Q% as(QX/ut)%;e) FO (x/2.k; as, m.e) , (5.7)

X

where F® s the k)-dependent gluon Green function in Eq. (2.35), and &% are
obtained by applying the high-energy projector Py to the lowest-order g4 contribution
to the y*g — ¥*g absorptive part A,, (Fig. 5), as in Eq. (2.30). The off-shell cross
sections b"f have been explicitly evaluated in Refs. [8] (i =2) and [32] (i = L) for
the case of massive quarks and n =4 dimensions. The generalization to the massless
case and n =4+ 2¢ dimensions is straightforward.

Eq. (5.7) is the dimensionally-regularized version of the k -factorization formula
(1.2). We can thus properly address the issue of collinear-singularity factorization. The
main point to be noticed is that the off-shell cross sections &% and &5 have a different
collinear behaviour. As a consequence of the Callan-Gross relation (5.2) (i.e., the fact
that on-shell partons do not couple directly to a longitudinally polarized photon), &%
is collinear safe. Its on-shell and £ =0 limit is indeed finite:

6“i(z,k=0,as(Q2/M2)£;s)

0*\° 2
=25, NsTr (8 1-— o . 5.8
2 (#2 Te [822 (1= 2) + O(s)] (5.8)
On the contrary, &5 is not collinear safe and its on-shell limit has an &-pole proportional
to the lowest-order Altarelli-Parisi splitting function P in Eq. (4.7):

752k =0,a5(Q°/u®)%8)
2 1
—zﬂs (§2) Ny - [P (z;2) + O(e)] . (5.9)

Therefore, the factorization structures (5.7) for FIE? and Fz(o) are respectively anal-
ogous to Eq. (2.34) for the heavy-flavour case and Eq. (4.4) for the quark Green
function. The factorization of collinear singularities has to be carried out accordingly.

We start considering the longitudinal structure function. In the high-energy limit, both
the coefficient function CLS and the transition function T'y, are of order as(as/N)"
(k > 0). Therefore from Eq. (5.6) we have

FL(?- <Ze) [CETge + O (a5 (as/N)Y)] (5.10)

and we see that, in order to compute C%, we have to factorize I'ge on the rhs. of
Eq. (5.7). Using the factorization formula (2.36) and proceeding as in Section 2.4,
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we arrive at the following expression for the N-moments of the longitudinal coefficient
function

C8 y(as,Q%/uk) = hp v (yn(as)) Ry(as) (Q%/us)™® + O(ai(as/N)¥) ,

(5.11)
where the function Ay x(y) is given in terms of the off-shell cross section o
x0
dx?® (K"
h (YY) =‘y/—k—2-— (@) a'i,N(kz/Qz,aS;t::O) . (5.12)
0

The explicit evaluation of the function h; n(y) requires the knowledge of the off-
shell cross section &% in n =4 dimensions. The analogous calculation for massive
quarks has been performed in great detail in Refs. [8,32]. Therefore in this paper we
limit ourselves to presenting only the final result. In particular, since the off-shell cross
section &5 in Eq. (5.7) vanishes uniformly in k. in the high-energy limit z — 0
(as discussed in Section 2.3, this property follows from the fact that only 2GI kernels
contribute to &%), the function hz y(7y) is weakly N-dependent:

hv(y) = h(y) 1+ O(N)) (N—-0). (5.13)

In order to evaluate the dominant terms ag (aS/N)" in Eq. (5.11), we can thus set
N =0 in Egs. (5.12), (5.13). Computing explicitly the corresponding function hr(y),
we find

4(1-y) I3 —y)T3(1+7y)
3-2y T2-29)T(2+2y)

hi(y) = 2"—S Ny Tr (5.14)
T

The results in Egs. (5.11), (5.14) give the resummed expression for the coefficient
function C%¢ N in the MS scheme to the logarithmic accuracy as (as/N) including
the corresponding dependence on the factorization scale ur. The resummation effect
is incorporated in (5.11) through the (as /N)-dependence of the BFKL anomalous
dimension (3.14) and the y-dependence of Ry and h. n as given by Egs. (3.17) and
(5.12).

Let us now consider the structure function F> . As noted above, the pattern of collinear
singularities in Eq. (5.7) is similar to that in the corresponding Eq. (4.4) for the quark
Green function. Eq. (5.7) thus contains all the relevant information on both the DIS
coefficient function C5 and the quark anomalous dimensions y,.. As a matter of fact,
since in the small-N 11m1t C2 y=1+ O(as(as/N)*), from Eq. (5.6) we obtain the
analogue of Eq. (4.12):

Ny
1
Fien(as(@*/u")*,0) = 5 (E ie?) (€5 n(as(ub/ 1", O i ©)
=

Tgp n(as(uk/p?)°,€) +2 Ny Typ n(as(ut/p*)°, €)
+ O(ad(as/N)")] . (5.15)
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Starting from Eq. (5.7) and factorizing the collinear singularities according to Eg.
(5.15), one can compute Cf’ y and ¥, y order by order in perturbation theory.

Obviously, this algebraic problem is by no means simpler than that encountered in
Section 4 for the evaluation of 7y, y and we are not able to provide an explicit resummed
formula for Cf, ~- Nonetheless, Eq. (5.7) can be used in a very simple way for deriving
an all-order relation between ny n and Yo n.

The main observation is that, setting u% = Q2 on the rhs. of Eq. (5.15) and
performing the derivative with respect to Q2, we obtain a factorized structure similar to

Eq. (5.10):

a
Tinge 2en(@s(Q*/u)%0)

Nf (Ze ) [Ygg'N(QS(QZ/“z)E) C§ y(as(Q*/phe, 1;e)

Jj=1
+ 2 Nf Ygp n(as(Q?/u?)®, &) teaso - C§ v(as(Q%/u?)e, 1, e)]

Tge, n(as(Q%/u?)®, &) +0(a5(as/N) ). (5.16)

Here, all the collinear singularities are factorized into the gluon transition function | A
whereas the term in the square bracket, much like Cf in Eq. (5.10), is finite as & — 0.
Stated differently, the off-shell kernel 365 /31n Q? in Eq. (5.7) (although not o5 itself)
is collinear safe, and its & =0 limit is related to the linear combination yg,C5 +2N ;v,,.
Therefore, proceeding as in the case of the longitudinal structure function, we obtain

yn(as) C5 y(as,Q*/uk = 1) +2Ns v4e n(@s) = by (yn(as)) Ry(as)
+ O(a%(as/N)¥) , (5.17)

where Ry is given in Eq. (3.17), yny(as) is the BFKL anomalous dimension and the
function hy N(7y) is

Tae (K2\" 4
ho n(Y) =7/F (@) W&g,N(kZ/QZ,as;e =0) . (5.18)
0

The off-shell kernel 3475 ,/dInQ* in n = 4 dimensions has been computed in
Ref. [8] for the case of massive quarks. Performing the massless limit, we find

ha,n(¥) = ha(y) 1+ O(N)) (N —0), (5.19)

2243y -3y) PO -y)I*(1+7y)
32y I(2-29)T(2+2y) "

(24
ha(y) = 5 Ny Tx (5.20)
T
The results in Egs. (5.17), (5.19), (5.20) provide the explicit resummation of the
contributions ays (as/N )¥ to the coefficient function Cf n in terms of A;(yy) and the
quark anomalous dimensions 7y, . In particular, using the six-loop expression (4.14)



508 S. Catani, F. Hautmann/Nuclear Physics B 427 (1994) 475-524

for 4 n» One can compute Cj » up to the five-loop order. The dependence of C n
on the factorization scale u% is given by

Q2 yn(as)
C{N(as,QZ//.L%-) = ng,N(aS’QZ/IL%«" =1) (,u_2>
F

yesnta) [ (02"
2Ny vn(as) [(M%) 1

+ O(ai(as/N)5) . (5:21)

The singlet coefficient functions Cj,C5 in Eq. (5.4) can be evaluated starting from
parton structure functions F; -( ) with an incoming quark. These structure functions fulfil
a k -factorization formula 51m11ar to Eq. (5.7) with the replacement F(® — FO,

Fq () being the k, -distribution with an incoming quark in Eq. (3.20). One can apply
the algebralc manipulations analogous to those used in Sections 3 and 4 for evaluating
Ygq and yqq, thus obtaining the following colour charge relations

2 2
PS g CF o _as 4 2 k
CLin (as, Mz) Ca [CL N (as, P ) oy Ny Tr 3] + O (a5(as/N) ) s

F F

(5.22)
2 2 2
s 2\ _CF s QN _ 25y 12 0
CZ’N(aS,M%-)—CA [Cz‘N(aS’M%-> 2ﬂNfTR3(1+2ln )
+ O (B (as/N)*) . (5.23)

Here, for the sake of convenience, we have introduced the pure-singlet coefficient func-
tions CPS = C§ — CNS. They have the same singular small-x behaviour as the singlet
functlons (of] and start in O(a?2) in perturbation theory.

The perturbatlve expansions of the resummed results derived in this section read:

a 4 la
Cf,N(aS,QZ/MZF =1)= ﬁTRNfg{l - §Ws

P o) (%) 2 b+ R ()

[1216 34 (2)__;(3)—64“(4)] (—s) +‘9<(C:)5)}

- - = 3 - 4
as 4 as ag ag ag
~ 3T 033 4213 (—) 2.27 (—) 0.43 (—)

= RNf3{1 03357 +213 () + =) + >

+O ((%)3} (5.24)
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2 43 7 [1234 13
C8 y(as, Q% /ub=1) = —TRNf 3{1 + [3 - 2;(2)] % + [—8—?— - 5@

+3 ;(3>] (5) 4 22 2oy + 2o - 120w)] ()

243
[ - @+ 20 - 2 e 3 ~2604)
o) (34 ((5))
~ ;—;TRNf§{1 + 1.49% +9.71 (%)2 +16.43 (%5-)3 +39.11 (%)4

o ((%s_)s>} . (5.25)

The first two coefficients in Eqs. (5.24), (5.25) agree with those recently computed in
Refs. [30,40]. We regard this agreement as a non-trivial check of our results. Note also
that the three- and four-loop coefficients (and the five-loop coefficient in Eq. (5.25)!)
are substantially larger than the two-loop ones. We thus argue that the higher-order
contributions computed in this paper may have a phenomenological relevance already at
the values of x accessible at the HERA ep-collider [37].

Concluding this subsection, we point out that & -factorization formulae similar to
Eq. (5.7) have recently been used [19] with the phenomenological aim of relating the
original BFKL equation [12] to the DIS structure functions.

5.3. The DIS factorization scheme

In the previous sections we have repeatedly noted that the parton densities are not
physical observables. Indeed they depend on the regularization/factorization scheme
used for removing the parton level collinear singularities. This freedom in defining the
parton densities means that, starting from the MS densities fa, one can introduce a
new set f. of parton densities via an invertible transformation

Fon () =" Uap w(as(u®)) Fon(p?) . (5.26)
b

Obviously a similar transformation applies to the coefficient functions, in order to leave
the physical cross section unchanged. The evolution of the new parton densities with

u? is controlled by the new anomalous dimension matrix

?’;b,N = [,B(CYS) (as r?_i;U) U +UYU_1]ab,N . (5.27)

The transformation matrix U,, has a power series expansion in as such that
U, n(as) =845 + O(as), and has to fulfil the following physical constraints:
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i) flavour and charge conjugation invariance
Ugg=Ugg = Uygg»  Upg = Usg = Ugg

1 1
Ugq; = Uzg, = (5,,- - —) UM + — (U + Ugs)

Ny “ " 2Ny
_ 1 NS 1 v )
U‘Iiéj = Uéiqj = (61" - N—f> qu - 2_]\7; (U - USS) s (5.28)
1i) fermion number conservation
Ugig;,n=0 — Ugig;, n=0 = &j; (5.29)

or, equivalently, Ug’j Nep = U%S, veo = U /2;

iii) longitudinal momentum conservation
> U w1 =1. (5.30)
a

Eq. (5.28) is the analogue of Eq. (A.5) in Appendix A for the anomalous dimen-
sions 7g. In particular, it guarantees that the flavour singlet and non-singlet sec-
tors are decoupled in any regularization/factorization scheme. The matrix components
Uz, U(’I‘gs , UV introduced in Eq. (5.28) act on the flavour non-singlet parton densities,
whilst Uss, Ugg, Ugy, Ugg control the transformation on the singlet sector.

Higher-order QCD calculations for hadron collisions are usually performed in two
different factorization schemes of collinear singularities, the MS scheme, used so far in
this paper, and the DIS scheme [41]. After having regularized the collinear singularities
in the parton matrix elements, the DIS-scheme parton densities f<P') are defined
by enforcing the constraint that the DIS structure function F;(x, Q%) has the same
expression as in the naive parton model. In particular, in the one-photon approximation
to deep inelastic lepton-hadron scattering, the relation (5.1) is true to all orders in
perturbation theory:

Ny
Fy(x,0%) =) e} [fP®(x,0M) + FP®(x,07)] . (5.31)
i=1
Equivalently, one can say that in the DIS scheme the DIS coefficient functions are 2
Cévs (DIS)(Z;aS(Qz),Qz/Iu% =1) =C2s O (z:a5(0?), 0/ uk =1)=6(1—12) ,
C§ P (z;a5(0%), 0%/ uk =1)=0. (5:32)

In order to evaluate higher-order contributions in the small-x regime, the DIS scheme
offers some computational and phenomenological advantages [{22]. The former amounts
to the fact that in the DIS scheme one can explicitly resum the corrections as (as/N)*

2 Note that Eqs. (5.32) hold true only for a factorization scale My = 0.
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for the quark anomalous dimensions to all orders in as, as we shall illustrate below.
As to the latter, we notice that the next-to-leading contributions ag (as/N)* to the
gluon anomalous dimensions are still unknown. Therefore, the knowledge of the quark
anomalous dimensions in the DIS scheme may facilitate phenomenological investigations
of the small-x behaviour of the structure function F,(x, Q?).

The comment above applies once the DIS scheme has been defined to all orders in
perturbation theory. The point is that Eq. (5.31) (or, equivalently, (5.32)) fixes only
the quark densities unambiguously. The relation between the singlet quark density in the
DIS scheme and the MS-scheme parton densities is

TN () = G5y (as(u?), 1) Fsw(u?) + €5 y(as(u?),1) fon(u?)  (533)

or, in terms of the matrix U, in Eq. (5.26),
Uss,w(as) = Cy y(as, 1), 2NpUyg n(as) = C§ y(as, 1) . (5.34)

The DIS-scheme gluon density, instead, still remains ambiguous and is given by an
arbitrary combination of gluon and singlet quark densities in the MS scheme

f(DIS)(/,LZ) = qu,N(as([l?)) fs,N(/.Lz) + Ugg,N(aS(/sz)) fg,N(Mz) s (5.35)

with the only constraint (5.30), which reads
Ugg,N:l(aS) =1 _ng‘N=](aS’1) , qu,N:l(aS) =1 "Clzs,N(aS’l) . (5.36)

The convention introduced in Ref. [41] for defining f(DIS) up to O(as) amounts
to extending Eq. (5.36) to any value of N in order as. A natural generalization of
this convention is to require Eq. (5.36) to be valid for any N and to all orders in as.
Doing that, the DIS-scheme gluon density is completely defined.

Note, however, that for the purposes of our all-order calculation, it is not necessary
to specify the actual form of the two matrix elements Uy, v and Uy, y in Eq. (5.35).
We just assume that they are chosen not to be extremely singular at high energies, i.e.
they should not contain leading-order contributions of the type (as/N)* for N — 0.
This is sufficient to ensure that most of the MS-scheme results obtained in the previous
sections remain valid in the DIS scheme. In particular the gluon anomalous dimensions
¥i2') and the longitudinal coefficient functions C{™' are

Yean (¥s) =Yean(as) + O(db(as/N)*) (a=g,q),  (537)
2 2
i (as(u%>, %) =Cly (as(u%), %F-) +0 (A5 (A=g9),

where the resummed expressions for the MS-scheme anomalous dimensions Yga and
coefficient functions CL are given in Egs. (3.14), (3.30), (5.11), (5.22).

The quark anomalous dimensions, instead, do not coincide any longer (to this log-
arithmic accuracy) with the corresponding anomalous dimensions in the MS scheme.
Using Eqgs. (5.27) and (5.33) we obtain



512 S. Catani, F. Hautmann/Nuclear Physics B 427 (1994) 475-524

Yoo (@s) =vgs,n(as) + cg,v(as, 1) Yge, w(@s) + O(ad (as/N)¥) .

(5.38)
On the other hand, the expression on the r.h.s. has been computed with logarithmic
accuracy as (as/N)* in Section 5.2. Inserting Egs. (5.17), (5.20) into (5.38), we

find the following resummed expression for the quark anomalous dimension in the DIS
scheme:

OISy = IS 7 2+43yw =37k TP -y T3 (1 +yy)

YagN 20 T 3-2yy  T(2+2yn)T(2-2yn) Ry(as)
+ O (b (as/N)¥) . (5.39)
The colour charge relation (4.15) is still true in the DIS scheme:
Y5O (ag) = [ Yoo (as) = 22 Ty ] +O(a (as/N)Y) (5.40)

Some comments are in order. The DIS-scheme result (5.39) for the quark anomalous
dimensions has to be contrasted with the results discussed in Section 4 for the MS
scheme. The algebraic complications of the MS scheme prevented us from obtaining
resummed expressions in closed form for y, and C§ separately. We were able to
explicitly resum only the combination in Eq. (5.17), which turns out to be equivalent to
the anomalous dimensions in the DIS scheme. This computational simplification has a
more physical origin. The singlet sector of the deep inelastic lepton-hadron scattering is
characterized by four physical observables, which can be studied in QCD perturbation
theory: the structure functions Fy, F; and their first derivatives with respect to Q2.
The MS scheme describes these observables in terms of eight different quantities: four
coefficient functions C/ (i = 2,L, A = g,S5) and the four matrix elements of the
singlet anomalous dimensions. Obviously, only some linear combinations of them have
to be regarded as physical observables. The DIS scheme, reducing to two the non-trivial
coefficient functions (C; = 1, C§ = 0), limits the number of arbitrary unphysical quan-
tities necessary to describe the scattering process. The ensuing anomalous dimensions
are more easily computable to all orders in ays because they are more directly related
to observable scaling violations.

Using the expansion (3.16) for the BFKL anomalous dimension yy and the expres-
sion (3.17) for Ry(as), the first perturbative terms of the quark anomalous dimension
(5.39) can be readily computed:

- — 2
o) _ s p 2 [ Bas 71 s
YagN '277TR3{1+ cn (@) (F)

P[22+ z<3)]( %)’

27
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710 20 22 as\>
+ 37 L) = T LD LB =134 + 5 ¢(5)] (W)

~ 6
ag
o((%)
~ 27,2 1+217@+230(&S)2+827(&S)3+
T 2r f3 CUN TN AN

+ 14.92 (%)4 4+29.23 (%)5 O ((%)6)} . (5.41)

The coefficients of the first two terms in the curly bracket agree with the one- and
two-loop calculations in the DIS scheme [27,28,30]. Moreover, all the coefficients in
Eq. (5.41) are systematically larger than the corresponding MS-scheme coefficients
in Eq. (4.14). This behaviour is due to the additional contribution of the coefficient
function C§ in Eq. (5.38), and it is likely to persist in higher orders.

Note also that the all-order expression (5.39) is analytic for 0 < Yv < 1/2. Thus,
independenly of the value of as, the leading trajectory in N-moment space is still
given by the BFKL pomeron. As the BFKL anomalous dimension yy increases to-
wards its saturation value at yy = 1/2, the quark anomalous dimension quickly in-
creases, approaching a singularity due to the pomeron normalization factor Ry(as)
(see Eq. (3.19)). This increase of y{P™S leads to strong scaling violations, although the
singularity at yy = 1/2 is cancelled in physical observables by analogous contributions
to the resummed coefficient functions in Eq. (5.37).

6. Summary

In the present paper we have shown how the high-energy factorization theorem [8]
can be extended beyond the leading logarithmic accuracy in a manner which is consistent
with the all-order factorization of collinear singularities. Much effort has been devoted to
investigating the issue of the dependence on the factorization scheme of parton densities
and coefficient functions. This analysis has led to the (off-shell) k, -factorization in
dimensional regularization represented schematically by Eq. (2.29) (see also Egs. (4.2)
and (5.7)). Eq. (2.29) has then been used to study the high-energy (or small-x)
behaviour of deep inelastic scattering processes.

A first general consequence of Eq. (2.29) is that flavour non-singlet observables are
regular at small x order by order in perturbation theory.

As regards the singlet sector, k -factorization allows one to sum classes of logarithmic
corrections to all orders in as. To this end, one has to evaluate 2GI kernels (see
Eq. (2.29)) in fixed-order perturbation theory and use the master equations (3.2),
(3.20) for the gluon Green functions.

Egs. (3.2) and (3.20) are the generalization of the BFKL equation [12] to the case
of n =4+ 2¢ space-time dimensions. Their solution is discussed in Section 3. In
particular, the calculation of the gluon anomalous dimensions Yes. N{as), Voq n(as)
(see Egs. (3.13), (3.14), (3.30)) has been carried out to the leading logarithmic
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accuracy (as/N }* in the context of dimensional regularization and the BFKL results
on the pomeron trajectory have been re-derived. Besides this, we have been able to
compute (to the same accuracy) the normalization factor Ry(as) (see Eq. (3.17)) of
the perturbative QCD pomeron in the MS factorization scheme.

The quark sector enters the QCD evolution equations to next-to-leading logarithmic
order as (aslnx)k. Using high-energy factorization, in Section 4 we have evaluated
the corresponding quark Green functions. We have shown that the result in Eq. (4.10)
originates from an integral equation whose kernel is related to a generalized (off-
shell) Altarelli-Parisi splitting function (see Eq. (4.9)). We have also discussed how
Eq. (4.10) can be used for evaluating the small-N limit of the quark anomalous dimen-
sions yg,, n(as) and 'ygq, ~(as). The result of our explicit calculation up to six-loop
order is given in Eq. (4.14).

As an example of application of high-energy factorization to a specific hard process,
in Section 5 we have considered deep inelastic lepton-hadron scattering (for the case of
heavy-flavour production see Refs. [8]-[10] and Section 2.4). Resummed expressions
to next-to-leading accuracy ag (as/N Y for the DIS coefficient functions C; and Cj
are presented in Egs. (5.11), (5.17), (5.21), (5.22), (5.23). These results are given
in the MS factorization scheme. In Section 5.3, we have also introduced an all-order
generalization of the DIS factorization scheme first proposed in Ref. [41]. Within this
scheme, where most of the DIS coefficient functions are trivial (see Egs. (5.32) and
(5.37)), we have obtained the next-to-leading resummed expressions (5.39), (5.40) for
the quark anomalous dimensions.

Quantifying precisely the phenomenological consequences of the results presented
here is a matter of detailed numerical investigations. However, the size of the next-
to-leading-order coefficients in the perturbative expansions (4.14), (5.24), (5.25) and
(5.41) suggests that these contributions may have phenomenological relevance in ac-
curate analyses of scaling violations, already at the values of x (x ~ 1073 + 107%)
accessible at present hadron colliders. In particular, since the first leading-order co-
efficients of the gluon anomalous dimensions are vanishing (see Egs. (3.16)), the
next-to-leading corrections in the quark sector computed in this paper may be quite
important for the study of the proton structure functions being measured at HERA. A
fully consistent analysis to next-to-leading logarithmic order obviously requires also the
computation of the still unknown (to this accuracy) gluon anomalous dimensions. We
hope to report progress on this subject in the near future.
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Appendix A

The rescaled parton densities f,(x, u?) = x f.(x, u?) introduced in Eq. (2.6) fulfil
the evolution equations

1
d ~a * 2 ~
‘Zl(r;xﬂl; ) =§b:/d2 Pab(aS(,uz),Z) fb(x/z,;,l,2) R (A.1)
0

where P, (as,z) are the generalized Altarelli-Parisi splitting functions in Eq. (2.3).
According to our normalization, the splitting functions have the following one-loop
expressions

PO (2) =2C4 [(—l—z—) —1+ 1—;5 +2(1-2)]

I—z/4
11 2
+ (G Ca—5TaNs) 81-2) .
1+ (1—2)?
(0) — p®) —
Pogi (2) = Py’ (2) =Cr Z ’
PO (z) =P (z) =Tg [2* + (1 - 2)7] , (A2)

1422
1—-12z

Pq('gj(Z) = sz(;gj(z) =Cr ( >+ 5,’j , P(I(ig;(z) =P‘7(i(¢)li(z) =0, (A3)

in terms of the SU(N,.) colour factors (N, = 3 is the number of colours)

N2 -1 wb 1
Ca=N,, Cr = N, Tr(tt)=5abTR=§ ab - (A4)
(4

The leading-order splitting functions P.Y )(2) (which have been known for a long
time [26]) are factorization theorem invariants, i.e. they do not depend on the explicit
procedure to factorize collinear singularities. The physical reason for this is that they are
directly related to observable scaling violations in deep inelastic scattering processes.
On the contrary, splitting functions and anomalous dimensions beyond one-loop order
do depend on the regularization and factorization schemes of collinear singularities.
Nonetheless, due to charge conjugation invariance and SU(Ny) flavour symmetry of
QCD, they satisfy the following scheme-independent properties

Yag = Yag = Yag » Vga = Yed: = Vea o
_ _ s
Yaiq; = Yaig = yﬁaij + 'qu s Yaiq = Yaq = quvq:gaij + Yag - (AS5)
The symmetry properties (A.5) imply that the anomalous dimensions matrix . has
only seven independent components. Correspondingly, three flavour non-singlet (f(*,

fq, S f(+)) and two flavour singlet ( fs, fg) parton densities can be introduced so that
the evolutlon equations (A.1)) (or (2.9)) are completely diagonalized (in the partonic
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space) for the non-singlet sector. One explicitly finds (we drop the overall dependence
on N, p and ag)

=V £(—) £(+)
M_ V) %__ () %= (+)

dingz ¥V Tdng V0 Tding? ’ (A.6)
where
Ny 1 Ny
FV=NYFy- ) P =Faxfa- %, —> (fo £ f) s (A7)
j=1 j=1
and the non-singlet anomalous dimensions are given by
YV =y =y N (s =) Y E =vy vy (A.8)

The evolution equations are instead still coupled in the singlet sector:

d f
dln;i2 =Yg +Yag + Nr(Yaq + Ve 1 Fs + 2Ns vee s .
df o .
d_l‘r‘;# =Yeqfs T Veels» (A9)

where the quark singlet density is defined by fs = Y% (4 + fa).

From Eq. (A.2) we see that all the three non-singlet anomalous dimensions are de-
generate in one-loop order. The anomalous dimensions in two-loop order were computed
in Refs. [25 27,28]. In this order the degeneracy mentioned above is panially removed
because 'y S 0. However we still have y(V)(as) =y )(as) + O(a}) since v, and
qu commde in O(a%). The equality between 'yqq and yqq is expected to be violated
starting from O(a3).

The high-energy power counting in Section 23 implies that the non-singlet anoma-
lous dimensions in Eq. (A.8) (and hence yqq N 'yqq N 7qq N yjq.) n) are regular for
N — 0 order by order in as. In other words, the corresponding n-loop splitting functions
P(=1 in Eq. (2.3) are less singular than 1/x for x — 0. All the high-energy contri-
butions af /N" (n > k > 1) are thus associated with the gluon anomalous dimensions
Yea.N» Yeqn and with the quark anomalous dimensions y,e v, ygq N 7qq N

Appendix B

In order to obtain the solution of the master equation (3.2) for the k, -distribution
FO) it is convenient to introduce the dimensionless distribution F, as follows

I'(l1+4+¢g)

FN (s s, o 8) = 60T () + i Fu(as(/u%)*0) - (B.1)

Note that F does not depend on &, &g and k independently. In fact, rewntmg Eq (3.2)
in terms of F, we see that it only depends on & and the combination as(k?/u?)e :
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5 8!//(1) k2 €
Fnlas(K*/u*)®e) = N1_+5 ( )

N ﬂ k_2 / d2+26q 1
N \p? (2m)% mq? (k — q)2

K2
' [((k rRE
k
%ﬂ(a (k*/u?)°, e)] (B2)
(k%)°
Then, we perform the shift ¢ — ¢’ = q — k of the integration variable in Eq. (B.2),

and introduce the ratio 7 = |q'|/|k| and the angle 8 between q' and k. The integral
equation (B.2) now reads

Fnlas((k—q)?/u?)e, &)

. V) K2
Fulas(/u),e) = 32 m( ) (B.3)
[y, 200+ 7@/" (sin @)%
ﬁr(%-hc;) T 1+2T0080+T2
0
- [Fn(as(K?/u?)®, €)

+ 7t cosaﬁ,v(as(k2/p,2)8,e)]} .

The angular integration in Eq. (B.3) can be performed in terms of associated Legendre
functions. However we did not find the ensuing representation of any convenience.
The perturbative solution of Eq. (B.3) has the following expression

eq k

_ © ra () /2
F K2/ u2)e. e) = [ﬂ S — (_> ] , B.4
v(as(k*/u”)*, &) k_E_l N T a2 k(&) (B.4)

Inserting equation (B.4) into Eq. (B.3), we obtain the recurrence relation (3.4) for the
perturbative coefficients c;(e). The recurrence factor I;(g) is given by

Iy(g) = I(y=ks;e) , (B.5)

where I(y;¢e) is the following integral

I(y;e) = (7% + 71728 cos 6)

2T(1+8) [dr | (sin@)
i dé 2
val(z +e&) 14+27cosf+ 1
0

_2al(1 +¢)
—\/FF(%+8) )

_1 T +e) [F(1+2£)I‘(y)r(1—y)
Tel(1+2e) LT (e+y) T (1+&—7)

46 (sin )%~ [sin ((1-2y)8) cos@ sin(ZeG)]

sin(2 7 y) sin(2 7€)

“T(14e) (- s)] (B.6)
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Using Egs. (B.5) and (B.6) we obtain Eq. (3.5).

The integral I(y;€) in Eq. (B.6) represents the action of the kernel of the master
equation (B.2) (or, equivalently, (3.2)) on a test function F (k) behaving like ( K%).
Therefore the fact that I(y;¢e) is finite for £ — 0 and 7 fixed is a consequence of the
collinear regularity of the kernel of the BFKL equation in four dimensions. Note also
that this regularity is achieved through the cancellation of collinear singularities which
are present separately in the real and virtual contributions, i.e. in the first and second
terms in the square bracket of Eq. (B.2) or (B.6).

As discussed in Section 3, the lack of scale invariance in the master equation (B.2)
does not allow us to find a general solution for F for any value of &. This means that
we are not able to resum the formal power series expansion in Eq. (B.4). Nevertheless,
we can obtain an explicit all-order solution in the relevant limit of small & values.
This limit is sufficient to compute the transition function I'y, (i.e. the gluon anomalous
dimensions) and the associated normalization factor Ry in Eqgs. (3.8), (3.9).

To do this, let us perform the derivative of Eq. (B.3) with respect to Inas and then
divide both sides by F. We thus obtain

¥ 2T(1+8)
ST +e) var( e

iif]do (sin§)2

T 1+27cos@+ 72
0 0

]:N(aST ’8)

Fn(as, ) ® 9inas

a _
T 1nJ-"N(aS,s)] . (B.7)

& In Fa(as, €) —s+

a
JdInag

ln]_-‘N(as 7'28,8)

+ 128 cosfe

Unlike Eq. (B.3), Eq. (B.7) is homogenous with respect to F. Therefore we can easily
factorize the singular transition function T'g, v (as,€).

More precisely, let us notice that the distribution F introduced in Eq. (B.1) is related
to the integrated gluon Green function (3.6) as follows

Fulas (0Y/ud)*,0) = 0P~ GO\ (as(Q/u?)’,8)
90

ad
=& S s Oam w(@s(QY/u)%,€) (B3)

Using the factorization formula (3.8),

GO\ (as,&) =Gy n(as, &) Tgg n(es, )

asS

1 da
=Guntaser o |1 [ T | (B9)
0

we thus have
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- InG N(as,e)] e (@5, 8) Ty w(as, ) .
(B.10)

~ J
Fn(as,e) = [)’N(CYSS ) +e— 7in

Since the anomalous dimensions yy(asS.) and the renormalized Green function
Gge n(as, &) are regular for £ — 0, it follows from Eq. (B.10) that the relevant

functions involved in Eq. (B.7) and Eq. (B.7) itself can be expanded in & around
€ =0. A straightforward calculation gives

dlnyn(as) | dInRy(as)
salna In Fiy(as 7 ,s)—[yN(asS)+s( dlnag dlnag )}
I
: [1+281nrm+(’)(sz)] ,
dna
Fn(as®,¢) [1+281 (31n71v(as) l?lnRN(as)) (B.11)
Fn(as,€) dInag dnag '
+ 2eln’r ;T,f as) + O(e )] exp{2yn(as$;) In7}

where Ry(as) = Gg y(as,e =0). Correspondingly, Eq. (B.7) reads as follows (we
drop the overall explicit dependence on ay)

dlnyy JdInRy
dInag dInag

dl dInR
2y, JinRuy)

2y —
)+O(8)_8+[YN+8 (81nas dnag

YN+ & (
ag
: Wﬂ(m;e) I(yn;€) (B.12)

where we have introduced the (second-order) differential operator {)

dlnyy  dlnRy\ 4 1 oy 9\
&) =1 (2 —+5 ( o
Qywe)=l+e [ dlnag * :?lnas) YN T2 dInas 37N) +OE)
(B.13)

acting on the integral I(yy;e) in Eq. (B.6). Equating the O(&%) and O(g) terms in
Eq. (B.12) we thus find an implicit equation for yy(as) and a differential equation
for RN(as)

To order &%, we obtain

1=2 x (ywlas)) (B.14)

i.e. the result (3.14) for the BFKL anomalous dimension, X (v) being the characteristic
function in Eq. (3.15). To order &, we have

(261nyN z?lnRN) 'y
dInag Jdlnag

1 , , N
T2 RYO ¢ om) = =) + P w] =52 (B.15)

é
)_{__i

1
2 dnas X (rn)
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where x'(y), x”(y) are the first and second derivatives of y(y) with respect to y. In
order to solve Eq. (B.15), it is convenient to consider vy as the independent variable

31[1RN _ aln'yN a'?lnRN

alnas - 3]116!5 alnyN ’ (B'16)
and use Eq. (B.14):
N dlnyy x(ywn)
2 , = — . B.17
as x(rn) dlnag v X' (¥wN) ( )
Inserting Egs. (B.16), (B.17) into Eq. (B.15) we get the differential equation
dlnRy 1 2 x'(vw)
=SYN | = e+
Finyn 27" [ w Xy TXOV
2 ! Y — oy —
20 ) =] (B.18)
x(vn)

whose solution is given by Eq. (3.17).

Appendix C

The evaluation of the quark anomalous dimensions starting from the & -factorization
formula (4.4) requires the explicit computation of the off-shell kernel K. Inserting
Eq. (4.2) into Eq. (4.3) and comparing the latter with Eq. (4.4) we find

1

Rop n(K2/Q%, as(Q*/*)%; 8) = / dz 2V Rye(2, K2/ Q% as(Q%/u?)%5 8)
)
(C.1)
where K, (z) is obtained from K@ (q,k) (see Fig. 7b), after integration over g, as
follows

. K 0%\*
qu (Za é‘iyas (F) ;8)

qu d2+25q ) ) # . kﬂ k
=21 __@(p?- L) RO®eB(g k)L . Cc2
[ Samma @16 (555) K@= (€2

In Eq. (C.2) the following Sudakov parametrization for the momenta k and ¢ is
understood:

2 2
+q _
Cra o

3 C-3
2xp-p ( )

k=yp*+ Kk, ¢=xp*+q]+

| =

It is also convenient to introduce the boost-invariant (along the k-direction) transverse
momentum §

q=q—zk. (C4)
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Performing the Dirac and colour algebra we get

i b
() 2 o e
aB

25-q N: -1
1
28, ((k—q) ) ,5 T3P k2 Tr[4p gk (4—F) kJ_]
22
=167r2as (,LLZ)_E TRl ®(1—Z) 2)2 ( )
[ i _i(k.~)2+4(1—2 Yk-G+4z(1- )kz] (C.5)
(- ko1 eRaTae ¢ ’ .

and, inserting Eq. (C.5) into Eq. (C.2), the azimuthal average over ¢ and the integration
over ¢* can easily be performed, thus leading to

. [ KR (02" as et o (&

b (e g () ’8)“5;SSWT“®“‘“/"“ ()
~2 ~2

®(Q2_1q _Zk2> - q =

—2 (@ +z (1 - 2) K]

[ 2z(1—-72)
e SR
1+¢

2
+422(1—z)2§] . (C.6)

Eq. (C.6) is precisely the result in Eq. (4.8), expressed in terms of the off-shell splitting
function (4.9).

The qz—integration in Eq. (C.6) is not elementary and provides a representation of the
off-shell kernel K, in terms of hypergeometric functions. However, in order to obtain
the power series expansion (4.10) for the Green function G;g), it is more convenient
to carry out first the k-integration in Eq. (4.4). Inserting the expansion (3.3) into
Eq. (4.4), we get

esv )

2
;g)N(aS(Q2/M " 8)__ r S °T(1+s) (Q ) hag, n(y =0;8)

as e ro2\*1*
{1+Z[ ‘T'(1+¢) ( )]
qg,N(7=k8;8)}

Lc (ge)
ke % Thee n(y =0;8)

(C.7

where the function kg y(7y; &) is defined by the following k& -transform of the off-shell
kernel qu
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a ee([l(l) 2\ ¢
—iTR Se (“Q_) hqg,N('y;s)

27 I'(l+e) \u?
oodk2 k2 Y . k2 Q2 €
=7 O/F (@) qu,N (@,as (F) ;8> . (C.8)

The evaluation of hg, is straightforward. We insert Eq. (C.6) into Eq. (C.8) and
perform first the trivial integration over k> with QZ /(z(1 = 2)k?) = r fixed. Then,
the integrations over 7 and z decouple and can be carried out in terms of Euler gamma
functions. Note also that the N — O limit of hg n is regular (i.e., kqg(z) ~ z, modulo
In z-terms, for z — 0 and any value of k? /Q?). Therefore, to the logarithmic accuracy
we are interested in, we can limit ourselves to computing /e y=o. The final result is:

44e-3yT(1+9TU—-y)T(1+&)T(2+¢)

A g) = C9
a8, N=0(V; &) vy +e I'{l+e+y)T(44+e—1y) (€9
Using Eq. (C.9), we recover Eqs. (4.10) and (4.11) by the identification
h = kg,
di(e) _ hegn=0(y=ke;€) (C.10)

cr(8) ~ hgg n=0(y =0;8)

As discussed in Section 4, we have not been able to use the power series expansion
(4.10) for explicitly resumming all the next-to-leading logarithmic corrections in the
quark anomalous dimensions g y. In general, to this accuracy we can write

ag 2 > ag k
Yoo n{as) = ETRg {14—; ai (W) } , (C.11)

and the values of the coefficients a; for k < 5 are given in Eq. (4.14). The calculation
of the higher-order coefficients is much more cumbersome. Here, we present only the
result for the rational part of a;. In other words, let us split a; as follows

ay=ri+b, (C.12)

where by is an irrational number given in terms of powers of Riemann zeta functions
{(n) (n>3) and r; is the residual rational contribution to a;. We find the following
expression for 7 in the MS scheme:

o2 [3 L (l)k] , (C.13)

or, equivalently,

: > as\* 3 agy - 1 2 ag
+§’k (%) =3 o (R)+3(GRH)] - (C.14)

One can easily check that Eq. (C.13) reproduces the values of r; in Eq. (4.14), i.e.
r =5/3,ry = 14/9, r3 = 82/81, ry = 122/243, rs = 146/729. The derivation of the
result (C.13) is left as an exercise for the reader.
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