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ABSTRACT 

We discuss high-energy inelastic neutrino-nucleon inelastic processes 

in the light of recent theoretical and experimental developments for the 
. 

corresponding electroproduction processes. We review the kinematics 

for the process in a form especially convenient for experimental analysis. 

We discuss sum-rules and results related to current commutation relations. 

Consequences of the parton model and diffractive models are considered. 

Other results are (1) the vector and axial contributions to the total cross 

section are equal, provided the only symmetry breaking term in the energy 

density transforms like a quark mass term under U(6) @U(6). (2) Scale- 

invariance of one of the three form factors (VP or VW,) describing the 

process implies a neutrino total cross section which rises linearly with 

laboratory energy, provided the lepton current is local and there is no 

W-boson. The effect of a W-boson on this result is studied. (3) The 

relation of existing neutrino data and electroproduction data given by 

the conserved vector current hypothesis is studied and found compatible 

with experiment. 

* 
Work supported by the U. S. Atomic Energy Commission. 



I. INTRODUCTION 

Recent experiments on inelastic electron-proton scattering’ have stimulated 

2-8 
considerable theoretical interest in their interpretation. The purpose of this 

paper is to study the closely-related neutrino-induced inelastic processes and to 

discuss these interpretations and implications for such experiments. 

We first review the kinematics of neutrino-nucleon processes in a hopefully 

convenient and transparent form for experimental analysis. Sum rules and results 

related to current commutation-relations are discussed, and then we consider the 

results of the parton model. Finally we discuss a few consequences of the 

Pomeranchuk-trajectory-exchange model, such as proposed by Harari, 
7 

and by 

A barbanel, Goldberger and Treiman. 6 Much in this paper has a considerable 

overlap with published work and we have included it in the interest of clarity and 

completeness. Contributions specific to this paper include: 

a) A kinematical analysis and choice of variables which appear to have special 

convenience; and which parallel the choice found to be useful in electroproduction 

experiments. In particular we show that provided only one of the three form 

factors describing the neutrino process (v/I or vy2) is scale-invariant, then 

the total neutrino cross section rises linearly with laboratory neutrino energy,, 

b) If the only term in the energy density which breaks chiral Su(2) cgr SU(~) 

symmetry has the transformation properties of a quark mass term under chiral 

U(6) (54 U(6), we can relate the vector and axial contributions to the total neutrino 

cross section, This is shown to be compatible wi.th experiment. 

c) For the quark version of the parton model, we catalogue several sum rules. 

d) We argue that in the Pomeranchuk-exchange model as defined by Harari, 

the axial-vector contribution to the neutrino total cross section is probably larger 
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than the vector contribution, in order to fit the data. The contribution of the 

vector current can be bounded above by the electroproduction data with the use 

of the conserved vector current hypothesis. 

II. KINEMATICS 

We discuss in some detail the kinematics of inelastic neutrino-proton scat- 

tering in order to obtain formulae easily comparable with experiments. Upon 

neglect of the muon mass, the V-A form of the leptonic current determines the 

polarization state of the final muon (as well as that of the incident neutrino) and 

thus defines a pure polarization state for the %irtualW” exchanged between the 

leptons and hadrons. It is therefore natural, as observed by Lee and Yang, ’ to 

describe the process in terms of cross sections corresponding to the three helicity- 

states of the virtual W : right-handed (R), left-handed (L) and scalar (S). The 
, 

formulae we get correspond to those widely used in inelastic electron-proton 

and p-proton scattering. 

The kinematics of the process is shown in Fig. 1, where 

P = four-momentum of neutrino 

P’ = four-momentum of muon 

qzp-p’= momentum transformed from leptons to hadrons 

V = E - E’ = energy transfer, in laboratory frame 

ll? = four-momentum of target nucleon 

8 = angle of produced muon relative to incident neutrino I 

8’ = angle of ,$ relative to incident neutrino 

Q2 =-q2 = 4EE’ sin2 O/2 



Neglecting the muon mass, we can write the leptonic current as 

.lept 
5 

= 3P’)$(l- 3/5) u(P) = 2 

- g op* p’+ie o g lPpY 

If--- EE’ cos # 
(2.1) 

From current conservation, we can eliminate one of the components and expand 

the current in terms of three orthonormal polarization vectors whose spatial 

components lie along the axes shown in Fig. 1; the z-axis lies along% This 

decomposition simplifies considerably in the high energy limit v >> 2M = 2 BeV; 

Q2<< v2, which is all we consider here. The exact formula is given at the end 

of this section and discussed in Appendix I. The polarization vectors are, in the 

high-energy approximation 

2 

ew ( 1, 0, 0, 1 - 2v2 & 1 
R 1 

T-J=& 
(0, 1, i, 0) 

c=&- ’ (0, 1, -i, 0) 

I 
(2.2) 

while the current, evaluated in the laboratory frame, becomes (up to an overall 

(2.3) 

The polarization vectors satisfy the conditions ci = +l, 
2 eR 

, 
L = -1; es R L . q= 0. 

3 I 

The only change in (2.3) in going over to antineutrino-induced processes is the 

interchange R-L. 

For the hadronic current-operator, we use the Cabibbo-current 

Jc((0) = (V’. - Ap)Aso cos eic +- (V - I I . cL Ap)As=l c sin 8 (2.4) 
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The normalization is such that in the quark model 

J,&O) = f;l~~(l-y~)(n’ cos 6” + A’ sin $) (2.5) 

where p’ , n’ , Xf are the quark field operators. The cross section into a group 

of final hadronic states In > is given by 

dn) 71 'da 6 El Q2 
-- 

dQ2dzJ 
=EE’z%E v2 

(2.6) 

Using the current (2.3), we see the cross section is the sum of 3 helicity cross 

sections and 3 interference terms. Pais and Treiman 
10 

have made the following 

. 

general comment: Let r be the set of final-state hadron momenta which are 

measured. [This may include a partial summation over the particle momenta in 

the states n>] . Let r’ = 
I Rf be the set of momenta obtained by rigid rotation 

of r about 9 by angle 9 (the muon and neutrino momenta are not rotated). Then 

.lept under this rotation the only change in the cross section is to replace J 
I-J 

in (2.3) 

as follows: 

Accordingly, the interference terms between S-R, SL, and L-R are proportional 

to @osw+S), @i cos ($+a’), cos (2# +F) respectively. By taking 

appropriate moments of the data, these interference terms may be isolated. We 

emphasize that this “azimuthal test” for interference terms can be made for any 

hadron configuration, even when some particle momenta have been summed out. 

Likewise, if Cp is averaged out, or if there is no $-dependence, the interference ” 

terms cancel. Assuming the $-average taken, we get, in the high-energy limit 

(see Appendix I) 

J E’ d”R E d9, 
+=7+- 2E’ dr 

I 
(2.8) 
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The do~/d f arc the appropriate helicity cross sections for virtual W-nucleon ab- 
” 

sorption into final phase-space dr, defined analogously to the Hand cross sections 11 

used in electroproduction. They depend only upon qP and hadron variables. Thus 

in principle they can be separately obtained by varying E and E’ with q fixed and 

studying the dependence. This is analogous to the “Rosenbluth straight-line 

plot” used in electron-scattering experiments. 

For cross sections with all hadron states summed over, another notation is 

convenient and widely used. 12,13 
These use invariant form factors (Y, p, y 

(or I&, s, V13) instead of uR, oi; and VS. In electroproduction, it has been 

found convenient to use a hybrid” form 14 
utilizing one of these form factors, W2, 

and using the cross section ratio uT/(oT f os) for the other. A similar form is 

convenient for the ncdrino process. We write, at high energies only 

P(Q2,v ) & W - 5 (W 1 (2.9) 

where 

tu = 
uL ak 

cR'crL+2"s 51 (R) = “R+“L+2u~ 
11 (2.10) 

is a convenient shorthand for the cross section ratios. The relationship between 

p, W and the cross sections o 
w2 R’L’S 

is, in general 

(2.11) 

Had no approximation beyond m z 
P 

0 been made, (2.10) would be replaced by 

-&3(Q2,v) 1--&+$$ (R + L) -+ (E+ET)m (L-R) 

I 

’ 
dcr 

dQ2d 11 2EE’ 

'(2.12) 
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,, 

(2.13) 

As Q2-0, oR and crL approach finite quantities, but as diverges as (Q2)-l. 

The coefficient is proportional to 1<n/9p Jcl (0)]P>i2. For AS = 0 processes, 

Adler’s theorem 
15 

relates this term to ?T* absorption on nucleons, with the aid 

of the PCAC hypothesis. The formula is Q2 s rnz 
( ) 

(2.14) 

with F, z 0.9 rn* the pion decay constant and or the appropriate r* - nucleon 

cross section. 

We close this section with a comment on isotopic spin questions. For AS =’ 0 

transitions, charge symmetry says that 

d? (W*P) d5 (tin) 
yjj= =pl (2.15) 

where f and I+ are related by a 180’ rotation in isotopic spin space (the charge 

symmetry operation e 
inT2 

). Thus o-(7/p) - o-@n) is a measure of a,(vp) - aR(vp), 

because, under v -t, R--L in (2.3) and (2.8). Likewise o-(v n) - o-(m) measures 

Qpl4 - aR(vn). Therefore neutrino-antineutrino comparisons in D2 or light nuclei 

arc an excellent way to test for differences in crR and o- 
L 

. 

III. SUM RULES 

In this section, we catalogue in our notation the sum rules which express integrals 

over the data in terms of equal-time commutators of currents with each other 
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and their time derivatives. Some of these may be written as follows 

lim 

Q2- 

&v, Q2, - Ptv, Q2) 
I 

= Jo0 

Q2) @+‘I;) PCV, Q2)W+L) 
I 

co 

s 
dv 

0 
=Jxx 

F(v, Q’)(z-x)+&L-R) = iJxy 
I 

(3-l) 

(3.2) 

w-9 

where L, R, ‘z, fi: are defined as in (2.10). The superscript bar refers to anti- 

neutrino-induced processes. Altogether there are twelve such sum rules for which 

it might eventually be practical to test; there are separate sum rules for p and n 

targets and for AS = 0 and 1 AS ( 5 1 transitions. 

The right-hand sides of these sum rules are equal-time current commutators 

evaluated as P~---+=J ; in particular 

P-4) 

Equation (3.1) is the Adler l2 (Fubini” - Gell-Mann - Dashen17) sum rule and 

depends on a reliable current-commutator Joe, but not a totally reliable derivation. 

Equation (3.2) is the %ackwardfl asymptotic sum rule. 18 
Equation (3.3) is a sum 

rule of Gross and Llewellyn-Smith. 
13 

The right-hand sides of the last two sum 

rules are model-dependent. Furthermore it is not clear, even given the model, 

that they can be calculated from the “naive” canonical commutation relations of 

the model. We catalogue in Table I, only as an example, the results for J in the 
PV 

llnaive’* quark model. We consider these commutators to be postulated, rather 

than derived, as done by Feynman, Gell-Mann, and Zweig 19 
in their formulation 

of chiral U( 6) (8, U( 6). 
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TABLE I 

Proton Target Neutron Target 

AS= 0 1. AS I = 1 AS = 0 I AS I =l 

Joo 

J 

iJ XY 

2 cos2 ec 4 sin2 ec -2 cos2 ’ s i-2 sin’ 0 
C 

2 cos2 ec 4 sin’ ec -2 cos2 ec +2 sin2 8 
C 

6 COS2 ec 4 sin2 ec 6 cos2 ec 2 sin2 ec 

An additional hierarchy of sum rules involve commutators of space-components of 

the current with various time-derivatives of the current at infinite momentum. A 

prototype is that given essentially by Callan and Gross 20 
and by Cornwall and 

Norton. 
21 

. 
J. 

lim 
f[ 

dx vp(v, Q2)(%+T) + v&v, Q2)(R+L) 1 = 5 

=ziT$ < 91 [is 8 t), J:(O)]/9 >t=o (3.5) 

where 

Q2 
x = 2Mv (3.6) 

Notice that for AS = 0 transitions, p p = p,, xp = Rn, etc., so that this integral 

can be related to the behavior of the sum of vp and vn cross sections. 

‘The properties of commutators such as in (3.5) are theoretical terra incognita. 

Deductions from Lagrangian models appear to be unreliable. Here we add one 

more such deduction in a model of commutators suggested by the “naive” quark 

model and to some extent the model of symmetry-breaking of Gell-Mann, Oakes, 

and Ronner. 
22 

We make the following assumptions: The Hamiltonian may be 

written. as 

H = IIR(t) -+ HL(t) -t II’(t) 
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with 

(a) k&o) - ApW, HR(0)] = 0 P-7) 

w ~pPl + Ap (O)> HL(O)] = 0 (3.3) 

04 Under chiral U( 6)@ U( 6), H’ transforms as (6+ $) $ (3 6), i. e. , in 

the same way as a quark mass term: H’ is the term responsible for the breaking 

of chiral symmetry. 

As an example, the “gluon” model satisfies these conditions. From the above 

assumptions it is possible to (formally) prove the following theorem on “asymptotic 

chiral symmetry”: 

Theorem: Under the above assumptions 

This is shown in Appendix II. 

Upon spin-average over the nucleon state Px> 
I it follows that the V-A cross 

terms do not contribute to these commutators, and therefore we have the corollary. 

Corollary: The vector and axial-vector contributions to 

vP(R+L)+v;B(-&Z) 1 (3.10) 

and to 1 

(3.11) 

are equal. 

It is possible to test this corollary, using the neutrino and electroproduction 

data. But first we note that f7scale-invariance, l1 as evidenced in electroproduction 

data’ and quite possibly in the existing neutrino data, 
23 

implies that VP and v7 are 

nontrivial functions of x for large Q2. The cross section ratios R, L, 3, L are 

also scale-invariant, barring pathologies. Such a behavior is clearly compatible 
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with the sum rules (3.1) - (3.3), (3.5) and the corollary (3.10) and (3.11). It 

also leads to a total neutrino cross section rising linearly with laboratory neutrino 

energy. We discuss next the total neutrino cross section and obtain bounds for 

the integral over VP, which then is used in testing the corollary. 

Using (2.9) and scale-invariance (i.e., v/3 a function of x alone), ‘we find 

dcr G2 E’ v- 
s 

2Mv dQ2 

dv 2?f E -0 
,vPtQ2, v) l+;(L) -;tR)] 

cv G2M E’ --- 
n E 

l+ 
5 <L> - $- <R>],il&(@p; vPn) (3.12) 

where (R) , <L> implies that the appropriate averages over x have been taken. 

Then the total cross section is 

” Utot = +(F (vpp;vPn)(f ++ <L> -$ <R>j (3.13) 

The factor in curly brackets lies between 1 and l/3. In particular 

2 

$<L> -$<R> = 

3 uR=uL; us=0 

1 ‘z UR = UL = 0 

1 
3 UL = us = 0 (3.14) 

From (3.13) we see that a linear rise in otot depends only on the assumption that 

VP be scale invariant. The neutrino measurements 
23 

give 

fftot 
= + (0.6 zt 0.15) (3.15) 

and we get 

0.6& 0.15 < jbdx(@p;1’Pn)~l.8* 0.45 (3.16) 



Neglecting AS # 0 transitions, the vector AS = 0 part of the neutrino cross 

section can be related via the conserved vector current hypothesis to the isovector 

contribution of the electroproduction data. For’ AS = 0 transitions, we have, from 

an isotopic rotation 

isovector 

v, As=0 2 

pP 
(% Q’)+@; M=o(v, Q2) = 2 [Wzp(v, Q )+W2n(~, Q2)] Only (3- 17) 

where W 
2p, n 

are the corresponding electroproduction structure functions. Using 

the results of the corollary, . 

[+@p+v8n]As0 = 2~c+~p+vp,ly. AS--O= 4~~[vw2p+vw2njls~tor 

1 
(3.18) 

The electroproduction data, 
1 

with the assumption os<c u T, gives 

J 

1 

dx vw2p = . 18 f a02 
0 

(3.19) 

The inequalities (3.16) and (3.19) read 

0.6rt .~5$$@p~v”n)~4~~vW2p~w2~~n) = .72* .08(w2;;2~n > (3.20) 

where < > again implies that the appropriate average over x has been taken. The 

agreement is satisfactory albeit inconclusive in view of the statistics of the neutrino- 

data, the uncertainties in <R>, and <L> , the uncertainties in WI/W2 and in 

W2n/W 2P’ 
and the unknown magnitude of the isoscalar contribution in the electro- 

production process. 

IV. POMERANCHUK - EXCHANGE 

Abarbarnel, Goldberger and Trciman, 6 and Harari7 have argued that the 

v - dependence of the electroproduction data suggests that the dominant dynamical 
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mechanism for large v/Q2 is exchange of the Pomeranchuk trajectory. I1arar.i: 

by using a duality argument, has suggested that for large Q2 and all v only the 

Pomeranchuk trajectory contributes. The most characteristic prediction of the 

Pomeranchuk-exchange class of models are the equality of ep and en cross sections, 

and likewise of vp, vn, vp and% cross sections, both’total and differential. In 

addition vW2 -f (Q2) for large v at fixed Q2 , and (R > , <L > likewise tend to 

constants. The feature of scale-invariance, i.e., f(Q2)-constant, is more 

difficult to explain in such .models. Furthermore, in these models there is no 

V-A cross term, and consequently cR= aj;. Ignoring hs # 0 transitions the 

vector (as opposed to axial) contribution to the total neutrino cross section can 

be obtained from electroproduction data, as we did in Section III, Eq. (3.18). 

Taking that result and using the notation VP, = VP, = v/3, we find 

fdxvp= j~,J+.#J) fi: o-9* 0.2 (4.1) 

where we have taken (S) = 0, as suggested by the data. 
~23 We can now estimate 

the vector contribution to (4.1) and thus obtain a value of the axial part. From 

the conserved vector current argument 

J 
dx vp 5 -36 rt -06 (4-V 

An SU(3) or quark-model estimate would give 

/ 

isoscalar - & 
dx VW2p J- 

isovec tor 
3 dx “W2p 

Thus a llbestll estimate for the isovector contribution might be 

J isovector 3 
dx yW2p z- 4 

J 
dxvw2= .13*.02 

(4.3) 

F-4) 

giving 

f 
dXV& a26 rf: a04 (4-5) 
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This would imply that the axial contribution is 

dx vpA z .64rt .2 (4.6) 

indicating that it is larger than the vector contribution. Without assuming (4.4), 

we still obtain the bound 

J 
dxlJpA 1 .54i .2 (4.7) 

It is perhaps surprising that the axial contribution should be larger than the 

vector, owing to the fact that the axial current is mediated by heavier states 

(e. g. , Alvs p ) than the vector current. However in the present state of the data 

and theory, none of this can be considered as very conclusive. 

V. THE PARTON MODEL 

In the parton model, 394 the scattering process is described in an infinite 

momentum frame. In such a frame we visualize that the proton consists of N 

point-like constituents (partons) with probability P(N). The parton longitudinal 

momentum distribution in this frame is given by fN(x), where x is the fraction of 

the proton longitudinal momentum carried by the parton. The physical cross 

section is obtained by assuming that the lepton scatters incoherently, with the 
1 

point cross section, from the partons. The point cross section is then averaged 

over the parton momentum distributions fN(x) and over the proton configurations 

N. These ideas are discussed more fully in Refs. 2 and 4. For definiteness, we 

shall hereafter assume the partons to have spin l/2, and in most cases we shall 

take them to be “point quarks. 11 

We begin by cataloguing the high-energy cross sections for neutrinos and 

antincutrinos on (point) spin l/2 partons and antipartons. The results are given 

in Table II: 
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TABLE II 

v + parton 
(isospin down) 

V + parton 
(isospin up) 

v t- antiparton 
(isospin down) 

V + antipar ton 
(isospin up) 

do/dQ’ dv 
helicity of helicity of nonvanishing 
neutrino recoiling helicity 

parton cross section 

L L 
aL 

$+-~)(l-~~ R ” crL 

$(,- i)(l-$-r L R oR 

R R 
“R 

In Table II we have omitted the factors of cos’ Oc or sin’ ec coming from the 

Cabibbo structure of the weak current. We have also assumed the contributing 

partons to have spin l/2, isospin l/2, and coupled by V- A to the leptons. 

For spin l/2 partons, only oL contributes to the neutrino cross section as v, 

Q2-CO; i.e., oR = us = 0. To see this, we observe that in this limit, it is always 

possible to find a Breit frame for which the parton is extreme-relativistic before 

and after the collision (Fig. 2). The V-A structure of the weak current guarantees 

that it be left-handed. Therefore the “virtual Wlf must also be left-handed. 

Furthermore, for the case of backward scattering in the center-of-mass frame, 

the cross section vanishes unless the incident lepton is left-handed. This condition 

corresponds to Ef-0 (or v -E) in the laboratory frame. Therefore under these 

circumstances T-parton (and v - antiparton) scattering vanishes. This same argument 

reveals why in the general formula (2.9) only the contribution of u survives as 
L 

v-E for neutrino-induced and uR for antineutrino-induced processes. 

We now may compute the neutrino cross sections in the parton model. Following 

the procedure of Refs. 2 and 4, and assuming that each kind of parton has the same 



distribution fN(x) of longitudinal momentum 

P(Q’,v)(R) = 

with 

X= 
Q2 

2My ” 

and (RI = ~R/(c~ + aL + 2~~) as defined in (2.10). 

N is the number of partons (here taken to be quarks-antiquarks) in a’given 

configuration, 
% 

, is the number of &Y antiquarks (or more generally isospin down 

.antipartons) in the same conf.iguration. According to Table II, only pf antiquarks 

contribute to P(R). In the same way we find 

v@(R) = 2 P(N) NPf X r,tx> 

vpiyx) = 2 gP(N) N..., cos2 6” + 
II Nx 

, sin’ Oc xfN(x) 
I 

VP(L) = 2 gP(N) Nn, cos’ BcfNX, 
[ 

sin2 ec 1 XfN(X) 

7$((E) = 2 ~(WNp xf,tx, 

. 

(5.3) 

The integral over p or B times the cross section ratio therefore measures the 

mean number of the appropriate kind of partons in the nucleon. [This integral 

may well diverge logarithmically] : 

P 
5x 

1 

0 
dv p(v, Q’) (R) =J-#~(R)=z F(N) ~~~ J dx G(X) = 2 OWN) No, = 2 <N$ 

0 0 

We get the results (Q2-m) 
00 

S 0 
WTv,Q2W = 2<NF,> 

co 

s 
dv p(v) Q2) (n) = 2 <NE, cos’ $ + N-, sin’ Oc > 

0 
h 
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00 

1 
dv (31~ Q2) W = 2 <N,, cos’ $ + NA, sin’ f?c> 

00 

1 dub Q2)t?3 = 
0 

2<Np’) (5.5) 

The sum rules (3.1) - (3.3) have a simple meaning in this (quark) parton model 

(remember v 12 
s 

= 0). The Adler sum rule (3.1) is 

s d&p) = 2 <Np, +Nzf cos’ ec L N-, - Nn, cos’ ec > 
P 

t 

cos’ ec + 2 sin’ $ proton target 
= 2 

-cos’ ec + sin’ 8 
C 

neutron target (5.6) 

in agreement with Table I. Because oS = 0, (3.2) is a special case of (3.1). The 

Gross-Llewellyn-Smith 
13 

sum rule (3.3) becomes (Q2-m) 

00 

S d@((L-R)+@(L-R)] 
0 

= 2<Np, +Nn, cos’ ec + NA, sin’ 0c - Npf - N-.’ cos’ $ - %, sin’ 8, > 

1 3 cos’ Bc I- 2 sin’ ec pro ton target 
= 2 

3 cos’ ec + sin2 oc neutron target (5.7) 

We can obtain another set of sum rules using the stronger assumption that all 

partons in a configuration have the same distribution of longitudinal fraction fN(x). 

It then follows that 
1 

s 
dxXfN(X) =+ (5.8) 

and we find (Q2-a~) 
0 

- 17 - 
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This gives us the results (Q2-=) 

s 

1 N N-1 

0 
dx v&R) = 2<-+ cos’ tic + -+ sin’ $> 

s 

1 N * Np 

0 
dx V@(L) = 2<-$ ~0s’ ec + N sin’ 6J> 

1 N, 
dx u&K) = 2<+ > (5.10) 

Using the measurement of the total neutrino cross section (3.17) and assuming 

scale-invariance and CC, = 0, we have from (3.15) 

= 0.6 f .15 (5.11) 

where /3 is averaged over neutron and proton target nucleons. Therefore, from 

c0s2 ec< N 2>+$ <$>+ sin2$ <y> = 0.3 f .08 NAt 
(5.12) 

The average < > now includes an average over neutron and proton target nucleons 

and it implies . 

<4> = <I&> = <Tk> +;<+> (5.13) 

We can now rewrite (5.12) as 

(cos2ec+ +) <F> + sin’ ec <$> -i <+>. = 0.3 f .08 (5.14) 

and find 

(2, x (.22 *.06)+;<+> (5.15) 

a reasonable value when it is compared with the electroproduction data and their 

interpretation in terms of the (quark) parton model. 

A difference in neutrino and antineutrino total cross sections even when averaged 

over n and p targets, is characteristic of parton models. 495 Using only charge 
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symmetry, some scale-invariance, and the high energy approximation 

i7 
0-Lot - “tot = v 77 

2 G’ME cos2 e 
c /dx @(L-R) + (5.16) 

In the (quark) parton model, we find from (5.10X(5.13) and (3.17) 

P 
uFot - utot = (0.6 f .15) 

G’ME A (5.17) 

Therefore 

+> =(0.3 k.08) (5.18) 

Thus the model predicts, at least 

u;ot WI 2 uyot (El (5.19) 

For <i>,O. I, as perhaps suggested by the shape of the electroproduction data 

for vWzp, we find 

u;ottE) 5 (0.7 f 01) u;ot(E, (5.20) 

where, again, the cross sections are averaged over neutron and proton. 

One cannot overestimate the crudity of this model. However, what can be 

emphasized is the richness to be found in the comparison of the various kinds of 

neutrino-induced ‘processes, both with regard to the internal quantum numbers of 

target and projectile and the helicity states of the ‘fvirtual W” exchanged between 

lepton and hadron. 

VI. EFFECT OF AN INTERMEDLATE BOSON ON SCALE-INVARIANCE 
. 

Throughout this paper we have assumed that the intermediate boson does not 

exist, or if it does, that it is sufficiently heavy so its effects are not observable, 

As a last topic it is interesting to study how our considerations are modified if 

- 19 - 



a W exists. The basic formulae are only changed by the replacement 

(6.1) 

If scale-invariance remains valid, when s = 2ME 2 m& then the total cross 

section no longer rises linearly with energy. To estimate the modification we 

go back to,(3.12) and change variables from (Q’, v ) to (x, y) with 

x=& a&y=+ 

We then obtain 1 

G2ME 
uLot = - 7r tidy F(x) -YP-Y)<R> 1 (6.3) 

For + >> 1 

TV 
V.4) 

We chose for F(x) the same functional form as in electroproduction and also 

<L> = 1, <R) = 0 (to simplify the estimation). In Fig. 3 we plot uLot as a 

function of s/m;. 

The most that can be stated is that an observed linear rise in cross section 

would be evidence against the existence of a W with a mass below a certain value. 

Were the cross section not to. rise linearly with energy, a breakdown of scale- 

invariance, due to a mechanism other than W-exchange, could also be responsible. 

VII. CONCLUSIONS 

High energy neutrino-nucleon interactions provide a rich and complementary 

study to that of “deep inelastic” electroproduction. Some of the questions which 

should be practical to study experimentally are: 
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1) The linear rise of total cross section with energy is a strong indicator for 

the scale-invariance of Adler’s form factor VP. 

2) A difference in neutrino-nucleon and antineutrinc+nucleon cross sections 

measures <(uL - uR)/(oL + crR + 2us)>, a model-sensitive quantity. 

3) The class of interactions for which v/E x 1 (large energy transfer, low 

secondary muon energy) are highly sensitive to the presence of uL in neutrino- 

induced processes and u 
R 

in antineutrino-induced processes. 

The magnitude and energy-dependence of the measured neutrino cross section 

is approximately what might have been expected from the electroproduction data 

by using the conserved-vector-current hypothesis along with various combinations 

of auxiliary hypotheses. If anything, it is a little larger ( s 50%) than might have 

been anticipated. However, theory is in much too crude a condition to allow an 

incisive comparison. 
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APPENDIX I 

The steps involved in deriving the exact (to within the m 
P 

= 0 approximation) 

results of (2.12) and (2.13) are algebraically lengthy and we give here some of the 

intermediate steps. In replacing the trigonometric functions of 8 and.@ by the 

more convenient variables Q2, V, E and Et we note that: 

sin2 -$ = 4% (A* 1) 

and the corresponding cosine follows triviallyi Toobtain sin 8’ and sin{& t 6) we 

use conservation of momentum in two different directions: 

so that 

Perpendicular to q: 
w 

E sin 8’ = Et sin@’ +8 ) 

(A4 

(A* 3) 

The components of the leptonic current can be read from (2.1) with the help of 

(A. 1) - (A.4). 

Q sinet = 2 7 
E + Et 

(A. 6) 

.lept 
‘Y 

= 2i @@’ sin i 

cos - 2 

= 2iQ (A. 71 

The z-component is obtained from j, by using current conservation 

Q2 

(. 1 

l/2 

j, = jz 1 + y2 
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while the right and left-hand combinations follow from (A. 6) and (A. 7): 

.lept 1 
JR, L = JZ tjx i ijy) = @$ (1 + 5)-l/, [@-I- Et)*&-] (A.9) 

By collecting (A.5), (A. 8) and (A.9) Eq. (2.13) follows. The,cross section follows 

by analogy to (2.6) 

do -- 
ds 

= G2 E’ 
27~ E 

~(o)(P>/2(2ap64(Pn-p-q) (A.10) 

The summation ‘c t is over all final-state variables except for the set of final-state 

hadron momenta p , which are measured. We define the helicity cross sections 

for the ‘Virtualt’ W-nucleon absorption into final hadronic space spanning the 

I phase space dp by: 

2(2n)284 (P,-p-q) (A, 11) 

and by arguments described in Section II we can obtain(2.8) and (2.12). 

We finally give the relations between the cross sections defined in this paper 

2,12,13 
and the form factors & and FV3: 

~~ = p(i+ v’/Q~) p) -t tL)l 

vr3 = p$f &a2 [(Lw-o] 

(A. 12) 

(A. 13) 
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APPENDIX II 

In proving the theorem, Eq. (3.9), it is sufficient to take the case for which 

H’ = ld3x H’(x) =1;(x) M q(x) d3x 

with M a 3 x 3 “mass matrW and q = (pt, nr , A ‘) a quark field operator satisfying 

canonical commutation relations. This is because all that we shall use is the 

Lorentz-transformation property of the double commutator in (3.9); this property 

depends only on the group structure and not the specific representation we use 

here. Then at t = 0: 

where Q! and p are SU(3) labels, and A and B 3 x 3 SU(3) matrices. Consequently, 

-26- 

<Pl’g(A + By5)qlP > = $ C(P) (a + b,y5) u(p)=0 

and the double commutator (3.9) is as P -0~. 
z 



FIGURE CAPTIONS 

1. Inelastic neutrino-nucleon scattering together with the coordinate system 

used in decomposing ‘the leptbnic current. 

2. Breit frame for the lepton-parton collision. 

3. Deviations of the total neutrino cross section from the linear energy dependence 

due to the exchange of a massive W-boson. 
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