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Abstract 

A statistical method for computing high enetgy collisions of protons with multiple production' 

01 particles is discussed. The method consists in assuming that as a result of fairly strong inter

actions between nucleons and mesons the probauilities of formation of the various possible 

numbers of particles are determined essentially by the statistical weights of the various possibilities. 

1. Introduction. 

The meson theory has been a dominant factor in the development of physics 

since it was announced fifteen years ago by Yukawa. One of its outstanding 

achievements has been the prediction that mesons should be produced in high 

energy nuclear collisions. At relatively low energies only one meson can be 

emitted. At higher energies multiple emission becomes possible. 

In this paper an attempt will be made to develop a crude theoretical approach 

for calculating the outcome of nuclear collisions with very great energy. In 

particular, phenomena in ,,,hich two colliding nucleons may give rise to several 

"-mesons, briefly called hereafter pions, and perhaps also to some anti-nucleons, 

will be discussed. 

In treating this type of processes the conventional perturbation theory solution 

of the production and destruction of pions breaks down entirely. Indeed. the 

large value of the interaction constant leads quite commonly to situations in which 

higher approximations yield larger results than do lower approximations. For 

this reason it is proposed to explore the possibilities of a method that makes use 

of this fact. The general idea is the following: 

\Vhen two nucleons collide with very great energy in their center of mass 

system this energy wiII be suddenly released in a small volume surrounding the 

two nucleons. We may think pictorially of the event as of a collision in which 

the nucleons with their surroundil1g retinue of pions hit against each other so 

that all the portion of space occupied by the nucleons and by their surrounding 

pion field will be suddenly loaded with a very great amount of energy. Since 
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High Energy Nuclear E1Jents 571 

the interactions of the pion field are strong we may expect that rapidly this energy 

will be distributed among the various degrees of freedom present in this volume 

according to statistical laws. One can then compute statistically the probability 

that in this tiJlY volume a certain number of pions will be created with a given 

energy distribution. It is then assumed that the concentration of energy will 

rapidly dissolve and that the particles into which the energy has been converted 

will fly out in all directions. 

It is realized} that this description of the phenomenon is probably as extreme~ 

although in the opposite direction, as is the perturbation theory approach. On 

the other hand, it might be helpful to explore a theory that deviates from the 

unknown truth in the opposite direction from that of the conventional theory. It 

may then be possible to bracket the correct state of fact in between the two 

theories. One might also make a case that a theory of th~ kind here proposed 

may perhaps be a fairly good approximation to actual events at very high energy ~ 

since then the number of possible states of the given energy is large and the 

probability of establishing a state to its average statistical strength will be increased 

by the very many ways t'o arrive at the state in question. 

The statement that we expect some sort of statistical equilibrium should be 

'_lualified as follows. First of all there are- conservation laws of charge and of 

momentum that evidently must be ful!illed. One might expect fdrther that only 

those states that are easily reachable from the initial state may actually attain 

statistical equilibrium. So, for example, radiative phenomena in which photons 

could be created will certainly not have time to develop. The only type of 

transitions that are believed to be fast enough are the transitions of the Yukawa 

theory. A succession of such transitions starting with two colliding nucleons may 

lead only to the formations of a number of charged or neutral pions and also 

presumably of nucleon-anti-nucleon pairs. The discussion shall be limited, chere

lore, to these particles only. Notice the additional conservation law for the 

difference of the numbers of the nucleons and the anti-nucleons. 

The proposed theory has some resemblance to a point of view that has been 

adopted by Heisenbergl who describes a very high energy collision of two nucleons 

by assuming that the pion "fluid" surrounding the nucleons is set in some sort 

of turbulent motion by the imp<:.ct energy. He uses qualitative ideas of turbulence 

in order to estimate the distribution of energy of this turbulent motion among 

eddies of different sizes. Turbulence represents the beginning of an approach to 

thermal equilibrium of a fluid. It describes the spreading of the energy of motion 

to the many states of larger and larger wave number. One might say, therefore, 

in a qualitative way that the present proposal consists in pushing the Heisenberg 

point of view to its extreme consequences of actually reaching statistical equilibrium. 

The multiple meson production has also been investigated in an interesting 

paper by Lewis, Oppenheimer and Wouthuysen2• These authors stress the 

importance of the strong coupling expected in the pseudoscalar meson theory for 
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.572 E. FERMI 

the production of processes of high multiplicity. 

In· the theory here proposed there is only one adjustable parameter, the 

volume tJ, into which the energy of the two colliding nucleons is dumped. Since 

the pion field surrounding the nucleons extends to a distance of the order ~/ pc 

where p is the pion mass, tJ is expeded to have linear dimensions of this order 

of magnitude. As long as the Lorentz contraction is neglected one could take 

for example a sphere of radius Ii/ pc. However, when the two nucleons approach 

each other with very high energy in the center of gravity system, their 

surrounding pion clouds will be Lorentz contracted and the volume will be 

<:orrespondingly reduced. 

For this reason the volume tJ will be taken energy dependent according to 

the relationship: 

(1) 

where .rio is the volume without Lorentz contraction. ~V is the total energy of 

the two colliding nucleons in the center of gravity system and M is the nucleon 

mass. The factor 2jJ;ft? / W is the Lorentz contraction. The uncontracted volume 

!2o may be taken as a sphere of radius R: 

(2) 

It is found in the applications that one seems to get an acceptable agreement 

with known facts by assuming: 

R=fi/ pc= 1.4 x 1O-13cm. (3) 

This choice of the volume, although plausible as order of magnitude, is 

clearly arbitrary and could' be changed in order to improve the agreement with 

experiment. One finds that an increase of tJo would tend to favor processes in 

which a large number of particles is created. 

According to this point of view the total collision cross-section of the two 

nucleons will be always of the order of magnitude of the geometrical cross-section 

of the pion cloud. In the numerical calculations actually, the total cross-section 

has been taken equal to area of a circle of radius R, namely, 

(4) 

Assuming (3) one finds q,,,,=6 x 10-!:6cm!!. In order to compute the partial cross

section for a phenomenon in which for example three pions are produced in the 

collision, one will multiply the total cross-section (4) by the relative probability 

that three pions instead of any other possible number and kind of particles are 

produced. 

The probability of transition into a state of a given type is proportional to 

the square of the corresponding effective matrix element and to the density of 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

/4
/5

7
0
/1

9
2
6
2
2
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



High Ellerg-y Nuclear Events 573 

states per unit energy interval. Our assumptfon of a statistical equilibrium consists 

in postulating that the square of the effective matrix element is merely proportional 

to the probability that, for the state in question, all particles are contained at the 

same time .inside tJ. For example in the case of a state that describes 11 com

pletely independent particles with momenta PI' P2'···P. this probability is (52/ V)" 
where V is the large normalization volume. The number of states per unit energy 

interval is 

( V)" d 
81t'~8. dW Q(W), 

where Q( W) is the volume of momentum space corresponding to the total energy 

W. The probability for the formation of the state in question is therefore ass .. med 

to be proportional to the product: 

S(n) =(~). dQ(W) . (5) 
81t'N' dW 

There are some complications arising from the fact that the particles are 

not independent. 

a) In the center of mass system the positions and momenta of only 1z-1 

of the n particles are independent variables. For this reason the exponent of .Q 

will be n-1 instead of n. Also the momentum space Q( W) will be 3 (1l-1)

dimensional instead of 31z-dimensional. 

b) Some of the particles may be identical and this f:1.ct should be taken 

into account in computing Q(W). 

c) Some of the particles may carry a spin and one should then allow for 

the corresponding multiplicity of the states. 

d) The conservation of angular momentum restricts the statistical equilibrium 

to states with angular momentum equal to that of the two colliding nucleons. 

In all cases considered t for the aucleons is smaller than the radius 1£ p.c of 

the sphere of action. It is then meaningful to discuss separately collisions ,dth 

various values of the impact parameter b (b is the distance of the two straight 

lines along which the nucleons move before the collision). In units of It the 

angular momentum is !=b/t. The cross-section for collisions ''lith impact parameter 

between band b+db is 21Cbdb=211:t2Idl. One should treat separately collisions 

with different values of the impact parameter and compute for each of them the 

probability of the various possible events. The cross-section for a special event 

is then obtained by adding the contribution of the various I-values. 

It is found in most cases that the results so obtained differ only by small 

numerical factors fiom those obtained by neglecting the conservation of angular 

momentum. 

This has been done as a rule in order to simplify the mathematics. The 

corrections arising from the conservation of angular momentum have been, how

ever, indicated in typical cases. 
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574 E. FERMI 

2. Example. Pion Production in Low Energy Nucleon Collisions. 

As a first example tht: production of pions in a collision of two nucleons 

with relative energy barely above the threshold needed for emission of a pion 

will be discussed. This example IS chosen because it is the simplest possible. 

It is, however, a case in which the statistical approach may be misleading, since 

only few states of rather low energy are involved. We ",ill first simplify this 

example by disregarding the spin of the nucleons as well as the possible existence 

of a spin of the pions and by disregarding also the various possible electric 

charges of the particles in question. In the center of gravity system we will 

have therefore two nucleons coUiding against each other. T/2 is the kinetic 

energy of each of the two nucleons. A pion can be emitted ,vhen T> p.c. We 

shall assume that this inequality is fulfilled; that the kinetic energy. however, 

exceeds the threshol~ by only a small amount, so that both the two nucleons 

and the pion that may be formed will have non-relativistic energies. 

Conservation 9f -energy in this case allows only two types of states; Type 

(a) in which the two nucleons are scattered elastically without formation of pions; 

and type (b) in which a pion is formed and three particles, two nucleons and 

a pion, emerge after the collision. 

The statistical weight of the states of type (a) is obtained as follows; Since 

the momenta of the two nucleons are equal and opposite the momentum space 

will be three-dimensional. We can compute the statistical weight with (5). s 

witI be taken= 1 because the momentum of one particle determines that of the 

other. The reduced mass is Mj2, the momentum p= v .lI-fT and the phase 

space volume Q(1) =41<tJ/3. According to (5) the statistical weight of this 

state has therefore the familiar expression: 

(6) 

S2 should be compared with the statistical weight S3 for case (b) in which 

three particles, two nucleons and one pion, emerge. Since the total momentum 

is zero, only the momenta of two of the three particles are independent and 

therefore in (0) s=2. The calculation of the momentum volume involves some 

slight complication on account of the conservation of momentum. Let I be the 

momentum of the pion and let the momenta of the two nucleons be -il±q. 
The kinetic energy will then be: 

7' (1 1)~ 1~ 
.1:1= -+- fT+-Cf 

2p. 4M .. M 
(7) 

where Tl = T - pC is the kinetic energy left over after a pion has been formed. 

Formula (7) represents an ellipsoid in the six dimensional momentum space of 

the two vectors p and q. Its volume is: 
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Hig-h Energy Nuclear Evmts 575 

_ rf' ( 4M!/to)3/2 T,8 
Qs- 3! 2.Af+/J 1· 

(8) 

The factor rf' /3! is, for a six-dimensional sphere, tne analog of the factor 4r. /3 

in the volume of an ordinary sphere. Substituting in (5) one finds: 

!J! ( M!/J )3/2 T,!~ !J2M112/E"IT/ 

16'rf'/.S\:2M+/J 1 32.v2rf'~6 
(9) 

The last expression is simplified by assuming p.~M. The probabilities of the 

t\VO events (a) and (b) are proporttonal to S2 and S3. Since S3 is very small, 

we may take the ratio S,/ S2 to be the probability that the collision leads to 

pion formation., This is given by: 

S3 _ IJp.S!! (T-pe) 2 IJ/J(T'-pe) 2 
- - - .. _- ~,-!........!.'";='=-'--~-

S2 8.v2 d 3 .vT ' 8.v 2 1rJ.3C 

Since T is barely larger than the threshola energy pe, this value has been sub

stituted for T in the denominator. In this case aiso the Lorentz contraction of 

tl:.! two colliding nucleons is negligible and we can therefore substitute for IJ the 

value !Jo given by (2) and (3). One finds: 

(11) 

The cross-section for pion {ormation is given by the product of the total cross

section (4) and the probability (11). For example, in a bombardment of 

nucleons at rest with 345 MeV nucleons, (the proton energy available at Berkeley) 

one finds that the energy available in the center of gravity system is T=16;')l\'IeV. 

On the other hand pe=I40MeV and the previous formula gives therefore S3/S2 

=.0038. This means that at this bombarding energy a pion will be formed in 

about 0.4 per cent of the nueleo, collisions. 

If one examines the process more in detail one will recognize that in a 

collision of two protons the probability of emission of a positive pion is twice (II) 

namely, .0076. Because if a positive pion is formed a proton and a neutron, 

instead of two protons, will also emerge. Their statistical weight is twice that 

for two protons because they are not identical particles. Similarly in the collision 

of a proton and a neutron the probability of emission of a positive pion is one

half of (10) namely, .0019. The probability of emission of a negative pion is 

the same. 

For example, when a carbon target is bombarded by 345 MeV protons the 

probabilities that the collision takes place between the proton and another proton 

or a neutron are the same. Hence, the probability of emission of a positive pion 

will be .0076/2+.0019/2; that is, .0048; and the probability of emission of a 

negative pion wlIl be ~0019/2=.001. Since the nuclear cross-section of carbon 

is about 3 x 10-2licm2, one wiII obtain the expected values of the cross-sections for 
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576 E. FER:\II 

emission of a positive and a. negative pion by multiplying the nuclear cross-section 

by the above probabilities. The results are 1.4 x 1O-2'cm2 for the positive and 

3 x 10-~';cm2 for the negative pions. Considering the extremely crude calculation 

these values are in surprisingly good agreement with the experimental results. 

In th<:; above discussion the conservatio:1 of angular momentum has been 

disregarded. \Vhen a pion is produced the kinetic energy of the three emerging 

particles is small and they will therefore escape in an s-statc. Consequently, 

only the initial states of zero angular momentum can be contribute to this type 

of final state. Their m'lximlm crCiss-sectioll has the well known expression n-f' 

which is appreciably smaller than (4). However, also the com?etitioa of elastic 

scattering versus pion production is less since only the scattering states of zero 

angular momentum will contribute. 

By carrying O~lt the calculation one finds that the two effects almost cancel 

each other and that the conservation of angular momentum changes the previous 

results for the cross-section for pion production by only a faCtor 2/3. As long 

as the conservation of angular momentum is negle.::ted one expects the scattering 

of the h\"o nucleons to be spherically symmetrical in the center of mass system. 

This is nCi longer the case when the angular momentum is conserved. One 

finds then that the elastic scattering cross-section per steradian in the center of 

mass system instead of being constant is approximately proportional to l/sin fJ, 

where t} is the scattering angle in the sam:! system. 

3. Formulas for the Statistical Weights. 

Some standard formulas expressing the statistical weights, S, for a number 

of simple cases will be collected here. 

First, the case will be considered that after a collision 1t particles emerge 

with masses mlJ m2······m,.. Neglecting spin properties and assuming that the 

particles are statistically independent, and disregarding also the momentum con

servation, one finds for S the following two formulas corresponding to the classical 

and to the extreme relativistic case: 

(12) 

(classical case) 

(13) 

(extr. relativistic case) 

In (12) T is the total classical kinetic en~rgy of the 12 particles and in (13) Ut 

is the total energy including rest energy of the n particles. One can also compute 

a form:Jla for the case that s of the particles, usually the nucleons, are classical 

and ll, usually the pions, are extreme relativistic. Neglecting again spin statistics 
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High Energy ..:Vuclcar Evems 577 

and momentum conservatioa and assuming further that all the classical particles 

have the nucleon mass, 1J1, one finds: 

S(s 11)= 11l38/2!JlH. (W_sJI?)3n+3s/2-1 
, -2=-·:l6:-:!:::-2~--:!!R-+--:3s--:/ .=-°n-as-+-sn-cm- (31/ + 3s /2 - 1) ! . (14) 

It is sometimes convenient to re-write (14) in the folIo wing form: 

( 
!JI/3( Tr-sJIc2) )2.0+38/2-1 

M-/!/J"2+J/3 ;r;2/afic. 
S (s, n) = -:::::-;;:--:-;;::===-=-:-:--:-:::-::- ---------

2a./~/2+!/3r_/!+i&-'-/2+l (311+3s/2-1)! (15) 

since it is thus easy to obtain an approximate expression for the sum of the 

statistical weights S(s,1I) over aU values of Ii. The approximation applies to the 

cases when the average value of n is;> 1. One finds then: 

IX> M3t/!jJ"!+J/S (1J1/3( TV-sJft..2) ) 
.. ~ S(s, 1l)~ 3 X 2'_/21C"2+2/SjlIa/2+1 &-'-/2+1 exp 1r2/:lnc . (16) 

The numerical values of (15) and (16) adopting for !J (1), (2) and (3) are: 

( )
311+31/2-1 

6.31 w-s 
~ 6.31 ( 98.8 )'/2 'Zf/13 

llfc-S(s, 11) =-- --
Wl/S W (3n+3s/2-1)! 

and: 

U:! .;. S( ) 2.10 (98.8 ),/2 . (631 W-s) 
11'L(;.{..J s, n ~-- -- exp . ---

.. _0 W I/3 W 'Z(,l/s 

where one has put 

w=W/Mc 

and it has further been assumed p/.M: .1:). 

(17) 

(18) 

(19) 

In the previous formulas the momentum conservation has been disregarded. 

The formulas, however, can be generalized without difficulty so as to introduce 

at least approximately the requirement that the total momentum be zero. The 

approximation consists in assuming that the mass of the pion is very small 

compared to the nucleon mass. The momentum of the nucleons will then be 

much greater than the momentum of the pions since the kinetic energy is 

approxim3.tely equipartitioned among the variolls particles. Therefore, one can 

approxim3.tely apply the condition that the sum of the momenta vanishes to the 

nucleons only. One recognizes then that formula (15) must be changed as follows. 

a) Instead of s one will write s-1 at all places except in the term· lY-sJli,·2 

since we have now s-I independent momenta of the heavy particles. b) The 

factor M&/2 must be changed because instead of the mass one should substitute 

an expression which is the analog of a reduced mass. It is found that the 

factor in question must be substituted by 1113(·-ll/2/sa/2. \Vhen the conservation 
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578 E. FERMI 

of momentum is approximately taken into account formulas (17) and (18) should 

then be changed as follows: 

6.31 (98.8 )(,-1)/2 (6.31(w_J:)/Wl/3)3tt+'lI/2-1, 
McS(s, 11) = --::-:~-

S312W1/3 W (3n+3s/2-1)! 

.. . 2 10 (98 8 )(.-1)/2 
McIJS(s,1t)1#>6· _.- exp(6.31 (w_s)/w1 /S). 

__ 0 SM'W1/ 3 W 

(20) 

(21) 

In all the preceding formulas the particles have been assumed to be statistically 

independent. As long as few nucleons and pions are involved, the error is not great. 

Larger errors are expected for high multiplicity. The formulas, however, become 

quite involved since there are at least three kinds of pions and four kinds of nucleons 

aad anti-nucleons. No attempt has been made to introduce these complications 

for phenomena of relatively low energy. They have been calculated as if there 

were only one type of pions, one of nucleons and one of anti-nucleons statistically 

independent. This procedure is certainly inadequate and will give a too high 

multiplicity at high energy. For phenomena of extremely high energy it becomes 

simple to introduce the statistical correlations by substituting the statistical by 

a thermo-dynamical model. This case will be treated in Section 6. 

In the previous expressions also the conservation of angular momentum has 

been neglected. The error introduced with this omission will be discussed in 

Section 6, where an appropriate correction factor for it will be given. 

4. Transition from Single to Multiple Production of Pions. 

In Section 2 the emission of a single low energy pion has been discussed. 

Collisions ,of higher energy in which besides the two original nucleons also 

several pions may be produced will be considered now. A rough indication of 

the .features of this process may be obtained' by computing the relative probabilities 

for the emission of 0, I, 2,······n··· pions with (~O). In that formula one will 

put s=2. Statistical correlations and conservation of angular momentum will be 

negelcted. Omitting a common factor, the probabilities of the various values of 

n are proportional to: 

(22) 

Table I gives the probabilities of pion production of different multiplicities 

calculated according to this formula. The ·first column of the table gives the 

energy, w, of the two nucleons in the center of gravity system in units of Me. 
The second column gives the energy, 'lv', of the primary particle in the laboratory 

frame of reference. The next eight columns are labeled by the number, 11, of 

pions produced and give the probabilities of various events in per cents. The 

last column gives the average number of pions produced. 
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High Eturgy Nuclear Evmts 579 

TABLE I 

w w' ,,,=0 1 2 3 4 5 6 7 It 

2.5 2.1 49 47 4 .6 

3 3.5 9 59 30 2 1.2 

3.5 5.1 2 31 46 18 3 1.9 

4 7.0 13 40 33 11 2 2.5 

5 1U 2 15 34 31 14 3 1 3.5 

Notice that already for a bombarding energy of about 1 BeV corresponding 

to the first line of the table the probability of elastic collision of the two nucleons 

is 50 % . This probability decreases rapidly and drops below one per cent for 

bombarding energies of about 5 BeV. As the bombarding energy increases the 

probability of mUltiple phenomena increases as indicated in the table. The most 

probable value of n according to (22) should be given approximately by 

2.1( 'lV-2) /wlls• 

It will be seen in Section 6 that at high energy very appreciable errors are 

are introduced by neglecting the angular momentum conservation and the statistical 

correlations. Table I gives only a qualitative indication of the transition from 

elastic scattering to single and then multiple pion production. The quantitative 

features of the multiple production, however, ~hould be more reliably represented 

by formula (32). 

s. Production of Anti-Nucleons. 

When the two colliding pions have a total energy> 4Mc in the center of 

gravity system, competition with processes in which a nucleon-anti-nucleon pair 

is formed becomes possible. \Vhen the energy is barely above the 4jUc-thres

hold, no pions can be formed accompanying the pair. As the energy increases, 

however, the pair will be as a rule accompanied by a number of pions. For 

moderate energy w< 10 one will use formula (20). Substituting in it s=4 we 

obtain the statistical weight for nucleon pair formation associated with the emission 

of 11 pions. Substituting s=2 we obtain an expression proportional to the pro

bability that no pair is formed and the two original nucleons plus 11 pions emerge. 

Omitting the common factor Me one obtains from (20) : 

S 4 _ 775 (6.31 ('lV_4)/W"3)3oI+7!2 

( ,,1)- w11/1l (3n+7/2)! . 
(23) 

In normalizing these probabilities to total probabilitiy= I, one can make use of 

the fact that the probability of pair formation in the range of energies here dis

cussed is always less than one per cent. One can therefore disregard the pair 

formation in the normalization factor which reduces to ~ S(2,1l). In calculating .. 
this sum one can use (21). One obtains in the end the following expression 

for the probability of pair formation accompanied by II pions: 
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580 E. FERMI 

P(4 n)= 105 (6.31 w-4 )a'1+7/2exp(_6.31(w_2)/w1/3). 

, W W 1/S (311+7/2) ! 

TABLE n 

w wi fi=O fi=1 fi=2 fi=3 fi=4 Total 

4+, 7.0 1000 ,7/2 .1,7/2 

4.5 9.1 14 .6 15 X 10-4 

5 11.5 !!l 8 .7 36 X 10-4 

5.5 14.3 !1 n 5 .5 47 X 10-4 

6 16.9 1! !5 14 3 Mxl0-4 

Columns 3 to 7 inclusive X 10-4 

Table II is calculated with this formula. Again the first and second columns 

represent in units of Me the total energy in the center of gravity system and 

the total energy of the bombarding particle in the laboratory system. The next 

five columns give the probabilities of pair formation accompanied by n pions. 

These probabilities have been multiplied by a factor 104. The eighth column is 

the total probability of pair formation. 

Again, in computing this table the statistical correlations mentioned in 

Section 3 and the conservation of angular momentum have been disregarded. 

For this reason the data of the table are merely indicative of the results that 

would be given by a more correct computation. 

At the highest energy here considered the probability of anti-nucleon form

ation is 0.005. Since in a collision of this energy probably two or three pions 

are formed in the average one concludes that at these energies the ratio of anti

nucleons to pions formed is about 0.002. Therefore, anti-nucleons will be hard 

to find even in fairly high energy collisions. 

6. Collisions of Extremely High Energy. 

In discussing the collision of two nucleons with extremely high energy one 

can simplify the calculations by assuming that all the various particles produced 

are extreme relativistic and that thermo-dynamics may be applied instead of a 

detailed statistical computation of the probabilities of the various events. 

In this discussion the conservation of angular momentum will first be neglected. 

Its effect will be given at the end of this section. 

The extremely high energy density that is suddenly formed in the volume 

JJ will give rise to multiple production of pions. and of pairs of nucleons and 

anti-nucleons. Since both kinds of particles are extreme relativistic, the energy 

density will be proportional to the fourth power of the temperature, T, as in 

Stefan's law. 

The pions, like the photons, obey the Bose-Einstein statistics. Since we 

further assume that the temperature is so high that the rest mass is negligible. 
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High Energy Nuclear Events 581 

their energy momentum relationship will be the same as for the photons. 

Consequently the Stefan's law for the pions will be quite similar to the ordinary 

Stefan's law of the black body radiation. The difference is only in a statistical 

weight factor. For the photons the statistical weight is the factor, 2, because 

of the two polarization directions. If we assume that the pions have spin zero 

and differ only by their charge ± e or 0, their statistical weight will be 3. 

Consequently, the energy density of the pions will be obtained by multiplying 

the energy density of the ordinary Stefan's law by the factor S/2. This energy 
density is therefore: 

3 x 6.494(k T)4 

2n2fh3 

(2:5) 

The numerical factor 6.494=n4 /US is six times the sum of the inverse fourth 

powers of the integral numbers. 

The contribution of the nucleons and anti-nucleons to the energy density is 

given by a similar formula. The differences are that the statistical weight of 

the nucleons is eight since we have four different types of nucleons and anti

nucleons and for each, two spin orientations. A further difference is due to the 

fact that these p~rticles obey the Pauli principle. In the extreme relativistic 

case their energy density is: 

4x5.682(kT)4 

n2'/t3eB 

CD 

Here the numerical factor 0.682 is 62!(-1),,+1/1l4• 

I 

(26) 

The temperature is obtained by equating the total energy to the product of the 

volume JJ times the sum of the two energy densities (25) and (26) . Making 

use of (1) one obtains the temperature from the following equation: 

(kT)4=.102 -f'eBW2. 
McJJo 

(27) 

In order to compute the number of pions, nucleons and anti-nucleons produced 

we need formulas for the density of the various particles. These are computed 

according to standard procedures of statistical mechanics. In the extreme 

relativistic case the density of the particles turns out to be proportional to the 

third power of the temperature. The total densities of the pions and of the 

nucleons are given by the following two expressions: 

(kT)3 
n". =.367 ; 

-!feB 
(28) 

The total' numbers of pions and nucleons are obtained by multiplying the expres

sions (28) by the volume JJ and by substituting in them the temperature calculated 

from (27). The result must be finally corrected in order to take into 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

/4
/5

7
0
/1

9
2
6
2
2
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



582 E. FERMI 

account the conservation of angular momentum. Only the result"of this correction 

will be given. I"t is found that conservation of angular momentum has the effect 

of reducing the numbers of pions and nudeons by a factor that has been calculated 

numerically to be about . .51. The conservation of angular momentum has the 

further effect that the angular distribution of particles produced is no longer 

isotropical but tend~ to favor somewhat, particles moving parallel to the original 

direction of the two colliding nucleons. Introducing these corrections one finds 

that the number of pions is: 

No. of Pions=.091( tJOMW2 )114= .54v'W/i/l/c (29) 
cfJ3 

and the number of nucleons plus anti-nucleons is: 

D MW2)J/4 ---
No. of nucleons and anti-nucleons = .21( 0 = 1.3 v' w..yc" . 

en,3 
(30) 

From this follows that the number of charged particles that emerge out of an 

extremely high energy collision is given by: 

(30a) 

(IV'=energy in the laboratory system) 

In these tormulas Do has been substituted by its value, (2), (3). 

These formulas apply only to extreme high energies. Substituting the value. 

(2), (3), for Do one finds from (27) that the relationship between temperature 

and energy can be written in the form: 

kT/Mc=.105v'W/Mc. (31) 

Relativistic conditions for the nucleons will be achieved therefore only when 

W> 100Mc. This corresponds in the laboratory system to an energy of the 

bombarding particles of more than 5 x 1012 eV. At somewhat lower energies the 

number of anti-nucleon pairs formed will decrease very rapidly, especially since 

an energy 2M? is needed in order to form a pair. In this energy range the 

formation of paris is probably better represented by the computation of Section 5. 

A comparison of (29) and (30) indicates that in such collisions of extremely 

high energy the number of nucleons and anti-nucleons produced exceeds that of 

the pions. Naturally, the anti-protons which are the particles in which we are 

most interested from the experimental point of view are only one-fourth of the 

particles (30). Therefore, a somewhat larger number of pions than of anti-protons 

is formed, even at these high energies. The reason why so many nucleons of 

all kinds are formed compared to the pions is their statistical weight (8 for the 

nucleons, 3 for the pions). 

In an intermediate energy range where the multiple production of pions is 

the" relevant phenomenon one can still apply the thermo-dynamic method restrict

ing, however, the thermo-dynamic equilibrium to the pion gas only, and assuming 
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High Energy Nuclear EVe1lts 583 

that the activation energy of the pairs is too high for producing a sizeable number 

of these particles at the given temperature. The energy density in this case will 

be given by (25). The numerical coefficient in formula (27) will be reduced 

for this reason from .152 to .046. Also in the same tormula one wiII substitute 

W by W-2.M'c since the energy of the two nucleons does not contribute to the 

energy of the pion gas. Introducing also the factor .51 for the conselvation Df 

angular mDmentum one finds that the number of pions in this appro.ximation is 

given by: 

• Ml/4JC/4 ( W _ 2Mc) 8/2 (w- 2) 3/2 

No. of pIOns = .323 14 114 = J .34 , 
~3 c· W w 

(32) 

where w= WI Mc. 
In the intermediate energy range of bombarding par,tides from 10 to 100 BeV 

this formula prDbably gives a better estimate of the multiplicities than do the 

computations of Table I. In particular it would appear that especially the 

multiplicities given in the last two lines of Table I are too large. According to

(32) one wDuld expect for these two energies m:.IltipIicities of about 2 instead 

of the considerably higher values given in Table I. The difference is due to two. 

effects which have been disregarded in cDmputing Table I; namely, the statistical 

correlatiDn between various types of pions and the angular momentum conserva

tiDn. Bo.th factors are approximately taken into aCCDunt in formula (32). 

Since no. o.bservation of m·.Iltiple pro.duction Df an isolated nucleon is available 

at present, the comparison of these findings with experimental results is only 

tentative. The present theory seems to give rather Io.W multiplicities except at 

extremely high energies Df the order of 1012 to 1013 eV. As mDre experimental 

results become available it may be possible to improve the agreement of the 

theory with experiment by changing the choice (3) of R. If experimentally the 

mUltiplicities sr.ould turn DUt to be larger than accDrding to the theory, one 

would increase R or decrease it in the Dpposite case. 

In the present theDry we have cDnsidered o.nly one type Df mesons, the 

pions. If meSDns of larger mass strongly bDund to nucleons should exist, as seems 

to be indicated by the recent expenments Df Anderson3 , these particles also could 

reach statistical equilibrium. Since their rest energy is large, however, they 

would compete unfavDrably with the productiDn of pions except at very high 

energies. One wDuld expect therefDre in mDst collisions that the number of pions 

produced should be appreciably larger than that of the heavier mesons. 
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