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1 High-energy factorization

High-energy resummation allows the computations of contributions to hard QCD processes,

to all orders in the strong coupling αs, which are enhanced by powers of logs of the ratio 1/x

of the center-of-mass energy s to the scale of the hard process Q2: x ≡ Q2/s. Like other

resummation methods (such as Sudakov resummation) its value is not only in enabling

accurate phenomenology in kinematic regions in which the resummed terms are large (i.e.,

in this case, when αs ln 1
x ∼ 1), but also in providing information on yet unknown higher

order corrections. An interesting case in point is the determination of the cross-section for

Higgs in gluon fusion, where high-energy resummation provided the first information on

the dependence of the cross-section on the top mass beyond next-to-leading order, and the

only available information at N3LO and beyond [1, 2].

High-energy resummation is based on factorization properties [3, 4] which have been

known for a long time for total cross-sections, and, originally applied to the photo- and

electro-production of heavy quarks, have been subsequently also derived for deep-inelastic

scattering [5], heavy quark hadro-production [6], Higgs production, both without [7] and

with top mass dependence [1], Drell-Yan production [8], and prompt-photon production [9].

More recently, in ref. [10], high-energy factorization was also derived for rapidity distribu-

tions, and applied there to Higgs production in gluon fusion, both in the infinite-top mass

limit, and with full top mass dependence.

It is the purpose of this paper to extend these factorization results, and the ensuing

resummation methodology, to transverse momentum distributions. This is an especially

interesting generalization of the high-energy resummation methodology both for reasons of

principle, and in view of specific phenomenological applications.

Standard high-energy factorization reduces the problem of computing the cross-section

to all orders in the high-energy limit to the determination of a Born cross-section with in-

coming off-shell gluons. Hence, for instance, Higgs production in gluon fusion is determined
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to all-orders in the high-energy limit at the leading log level by the knowledge of the cross-

section for leading-order Higgs production in gluon fusion through a quark loop, but with

the two incoming gluons off-shell. The all-order resummed result is obtained by combin-

ing this off-shell cross-section with the information contained in the anomalous dimension

which resums to leading log accuracy the effect of radiation from incoming legs. The main

insight on which our results are based is that putting the incoming gluons off-shell is also

sufficient to determine the all-order transverse momentum dependence in the high-energy

limit, even when the leading-order process with on-shell partons has trivial kinematics and

no transverse momentum dependence, such as in the case of Higgs in gluon fusion.

A relevant phenomenological application of our result is the determination of the trans-

verse momentum distribution for Higgs production in gluon fusion with full dependence

on the top mass. This is an important observable because the dependence of the Higgs

couplings on the top mass is a sensitive probe of the standard model, and possible physics

beyond it. However, this dependence is small for the total cross-section [11], and only

sizable for the transverse momentum distribution [12]. The latter, however, is only known

at leading nontrivial order (while it is known up to NNLO in the limit in which the top

mass goes to infinity [13]). Use of our methods will allow for a simple determination of

the top mass dependence of the Higgs momentum distribution to all orders, albeit in the

high-energy limit: this will be done in a companion paper.

The plan of this paper is the following: after a brief summary of the standard high

energy resummation for inclusive cross section in section 2, we present in section 3 the

general resummed formula for transverse momentum distributions, for hadro-, lepto- and

photo-production. In section 4 we then apply our formalism to Higgs production: we

determine the all-order resummed result for the transverse momentum distribution in the

infinite top mass limit, we expand it out up to N3LO, and we check explicitly that up

to NLO it agrees with known results. A check on our result at NNLO can be obtained

comparing to NNLL transverse momentum resummation, which also contrains its general

structure: the relation between high-energy and transverse momentum resummation is

discussed in section 5, and conclusions are drawn in section 6

2 The ladder expansion

We briefly review the derivation of high-energy factorization in the leading logarithmic

approximation (LLx) for inclusive cross section, following the approach of ref. [10] (see also

ref. [14]), which facilitates its generalization to less inclusive observables. In comparison

to the derivation of ref. [10], which was built starting from the electroproduction case, we

deal directly with hadro-production, which is the case we are mostly interested in.

We consider the production process of a state S in a hadronic collision characterized

by a hard scale Q. Specifically, (without loss of generality of the subsequent argument) we

consider a gluon initiated process, like Higgs production

g(p) + g(n)→ S +X, (2.1)

where g(p) and g(n) are initial-state gluons with momentum p and n respectively.
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Figure 1. Factorization of the partonic cross section in a hard part and two ladder parts.

As in refs. [10, 14], we start from the observation [4, 15] that in axial gauge the leading

contribution in the high energy limit comes entirely from cut diagrams which are at least

two-gluon-irreducible (2GI) in the t-channel, with radiation connecting the two initial legs

suppressed by powers of the center-of-mass energy s. It follows that a (dimensionless)

partonic cross section σ can be written in terms of a process-dependent “hard part” Hµνµ̄ν̄ ,

and two universal “ladders” Lµν :

σ

(
Q2

s
,
µ2

F

Q2
,
µ2

R

Q2

)
=

∫
Q2

2s
Hµνµ̄ν̄

(
nL, pL,ΩS , µ

2
R, µ

2
F, αs

)
Lµν

(
pL, p, µ

2
R, µ

2
F, αs

)
Lµ̄ν̄

(
nL, n, µ

2
R, µ

2
F, αs

)
[dpL] [dnL] , (2.2)

where Q2 is the hard scale of the process (typically the invariant mass of S), ΩS denotes a

set of variables which characterize the kinematics of the final state S, and [dpL] and [dnL]

are the integration measures over the momenta connecting the hard part to the two ladders

(see figure 1). In eq. (2.2) 1
2s is a flux factor, and the phase space is included in the hard

part, whence it can be removed if a differential cross-section is sought. The hard part and

the ladders are both separately symmetric under exchange of the indices µ↔ ν and µ̄↔ ν̄.

The hard part and the ladders are both ultraviolet and collinear divergent; renor-

malization and factorization then introduces a dependence on the renormalization and

factorization scales µ2
R and µ2

F. Because the running of the coupling is logarithmically

subleading (the coupling runs with the hard scale Q2 and not with s), we can ignore the

µ2
R dependence, which only goes through αs(µ

2
R) at the LLx accuracy of our calculation.

Furthermore, in order to simplify our derivation, we will assume that the hard part is

two-particle irreducible, rather than just two-gluon irreducible, in which case it is free of

collinear singularities [15, 16] and it is thus independent of the factorization scale. The

extension to the case in which the hard part is two-particle reducible and thus not collinear
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safe, such as deep-inelastic scattering [5] or Drell-Yan production [8] is nontrivial, but it

does not affect our argument, and it will not be considered here.

The most general structure of the hard part and the ladders compatible with Lorentz

invariance and the Ward identities is then

Hµνµ̄ν̄ (nL, pL,ΩS , αs) =

(
−gµν +

pµLp
ν
L

p2
L

)(
−gµ̄ν̄ +

nµ̄Ln
ν̄
L

n2
L

)
H⊥,⊥

+

[
n2
L

(
−gµν +

pµLp
ν
L

p2
L

)(
nµ̄L
n2
L

−
pµ̄L

(nL · pL)

)(
nν̄L
n2
L

−
pν̄L

(nL · pL)

)

+ p2
L

(
pµL
p2
L

−
nµL

(nL · pL)

)(
pνL
p2
L

−
nνL

(nL · pL)

)(
−gµ̄ν̄+

nµ̄Ln
ν̄
L

n2
L

)]
H⊥,‖

+ p2
Ln

2
L

(
pµL
p2
L

−
nµL

(nL · pL)

)(
pνL
p2
L

−
nνL

(nL · pL)

)
(
nµ̄L
n2
L

−
pµ̄L

(nL · pL)

)(
nν̄L
n2
L

−
pν̄L

(nL · pL)

)
H‖,‖

+Rµνµ̄ν̄Hmixed (2.3a)

Lµν
(
pL, p, µ

2
F, αs

)
=

1

p2
L

(
−gµν +

pµLp
ν
L

p2
L

)
L

(1)
⊥

+

(
pµL
p2
L

− pµ

(p · pL)

)(
pνL
p2
L

− pν

(p · pL)

)
L

(1)
‖ (2.3b)

Lµ̄ν̄
(
nL, n, µ

2
F, αs

)
=

1

n2
L

(
−gµ̄ν̄ +

nµ̄Ln
ν̄
L

n2
L

)
L

(2)
⊥

+

(
nµ̄L
n2
L

− nµ̄

(n · nL)

)(
nν̄L
n2
L

− nν̄

(n · nL)

)
L

(2)
‖ , (2.3c)

in terms of dimensionless scalar form factors

Hmixed = Hmixed

(
Q2

(nL · pL)
,
−p2

L

Q2
,
−n2

L

Q2
,ΩS , αs

)
(2.4a)

H{⊥,‖},{⊥,‖} = H{⊥,‖},{⊥,‖}

(
Q2

(nL · pL)
,
−p2

L

Q2
,
−n2

L

Q2
,ΩS , αs

)
(2.4b)

L
(1)
{⊥,‖} = L

(1)
{⊥,‖}

(
−p2

L

(p · pL)
,
µ2

F

−p2
L

, αs

)
(2.4c)

L
(2)
{⊥,‖} = L

(2)
{⊥,‖}

(
−n2

L

(n · nL)
,
µ2

F

−n2
L

, αs

)
, (2.4d)

where with the notation {⊥, ‖} we mean that either of the two values can be chosen. The

tensor Rµνµ̄ν̄ contains all terms which mix contribution coming from the two legs: it has a

lengthy expression, but it turns out to only require a single further scalar form factor.

Equations (2.3) greatly simplify in the high energy limit. In order to study it, we define

x =
Q2

s
, (2.5)

– 4 –



J
H
E
P
0
3
(
2
0
1
6
)
1
2
2

and we introduce a Sudakov parametrization for the two off-shell momenta pL and nL:

pL = z p− k− k2
T

s (1− z)
n =

(√
s

2
z,− k2

T√
2s (1− z)

,−kT

)
(2.6a)

nL = z̄ n− k̄− k̄2
T

s (1− z̄)
p =

(
− k̄2

T√
2s (1− z̄)

,

√
s

2
z̄,−k̄T

)
, (2.6b)

where k and k̄ are purely transverse spacelike four-vectors with k2 = −k2
T < 0 and k̄2 =

−k̄2
T < 0, and s = 2 (p · n). With this parametrization, the integration measures [dpL] and

[dnL] are

[dpL] =
dz

2 (1− z)
d2k; [dnL] =

dz̄

2 (1− z̄)
d2k̄. (2.7)

The high-energy limit is the limit in which x→ 0: we wish to determine the dominant

power of x contributing to σ, eq. (2.2), with terms proportional to ln x included to all

orders in αs at the leading logarithmic (LLx) level. We then observe that, because the

integration over z and z̄ ranges from x to 1, terms which are enhanced at small x come

from the small z and z̄ region. The moduli of the transverse momenta k2
T and k̄2

T are of

order of the hard scale Q2 which bounds them from above, and thus in the high energy

regime Q2 � s, they satisfy
k2T
s � 1 and

k̄2T
s � 1. Therefore, the high energy regime is

z � 1,
k2
T

s
� 1; z̄ � 1,

k̄2
T

s
� 1, (2.8)

and subleading terms in z, z̄,
k2T
s or

k̄2T
s upon integration lead to power-suppressed

O(x) terms.

We can now simplify eq. (2.3). First, we recall [15] that interference between emissions

from different legs is power-suppressed in s. It follows that Hmixed eq. (2.3a) is subleading.

Furthermore, we note [10] that in the limit eq. (2.8) the dependence of the remaining scalar

functions simplifies:

H{⊥,‖},{⊥,‖}

(
Q2

(nL · pL)
,
−p2

L

Q2
,
−n2

L

Q2
,ΩS , αs

)
= H{⊥,‖},{⊥,‖}

(
x

zz̄
,
k2
T

Q2
,
k̄2
T

Q2
,ΩS , αs

)
(1+O (z, z̄))

(2.9)

L
(1)
{⊥,‖}

(
−p2

L

(p · pL)
,
µ2

F

−p2
L

, αs

)
= L

(1)
{⊥,‖}

(
µ2

F

k2
T

, αs

)
(1 +O (z)) (2.10)

L
(2)
{⊥,‖}

(
−n2

L

(n · nL)
,
µ2

F

−n2
L

, αs

)
= L

(2)
{⊥,‖}

(
µ2

F

k̄2
T

, αs

)
(1 +O (z̄)) (2.11)

up to terms that are suppressed by power of z or z̄. Finally, power counting argu-

ments [4, 15] lead to the conclusion that the transverse scalar functions eq. (2.9) are no

more singular that the longitudinal ones: it follows that the partonic cross section, eq. (2.2)

in the small x limit has the form

σ

(
x,
µ2
F

Q2

)
=

∫ [
x

2zz̄
H‖,‖

(
x

zz̄
,
k2
T

Q2
,
k̄2
T

Q2
,ΩS , αs

)]
(2.12)[

2πL
(1)
‖

(
µ2

F

k2
T

, αs

)][
2πL

(2)
‖

(
µ2

F

k̄2
T

, αs

)]
dz

z

dz̄

z̄

dk2
T

k2
T

dk̄2
T

k̄2
T

dθ

2π

dθ̄

2π
+O (z, z̄) ,

where θ and θ̄ are the azimuthal angles of the transverse momenta k and k̄, and at LLx

αs is fixed, and thus σ is µR-independent.
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We note that the dependence on θ and θ̄ is entirely contained in the hard part. Also,

in the high-energy limit the longitudinal projectors which carry the tensor structure of the

term proportional to H‖,‖ eq. (2.3) reduce to [4]

Pµν =
kµkν

k2
T

; P µ̄ν̄ =
k̄µ̄k̄ν̄

k̄2
T

. (2.13)

We can thus rewrite the cross-section eq. (2.12) in terms of a generalized coefficient function

C

(
x

zz̄
,
k2
T

Q2
,
k̄2
T

Q2
, αs

)
≡
∫

dθ

2π

dθ̄

2π

x

2zz̄
H‖,‖

(
x

zz̄
,
k2
T

Q2
,
k̄2
T

Q2
,ΩS , αs

)
=

∫
dθ

2π

dθ̄

2π

x

2zz̄

[
PµνP µ̄ν̄Hµνµ̄ν̄

]
. (2.14)

The coefficient function eq. (2.14) is recognized as the cross section for the partonic process

g∗ (q) + g∗ (r)→ S (2.15)

with two incoming off-shell gluon with momenta

q = zp+ k q2 = −k2
T (2.16)

r = z̄n+ k̄ r2 = −k̄2
T, (2.17)

and the projectors eq. (2.13) viewed as polarization sums.

Because the hard part is 2GI, the coefficient function is regular in the x→ 0 limit, and

small x singularities are only contained in the ladders. In refs. [3, 4] they are computed

at LLx level in terms of a gluon Green function, which in turns sum leading logs of x

by iterating a BFKL [17–21] kernel. In ref. [10] they were instead determined using the

generalized ladder expansion of ref. [16]. This derivation is closer to that of standard

collinear factorization, and thus more suitable to applications of high-energy resummation

to standard, collinear-factorized hard partonic cross-section, and specifically to its extension

to less inclusive quantities.

The ladders contain collinear singularities that must be factorized in the parton dis-

tributions after regularization; this can be done in an iterative way [16] which also leads

to small x resummation, as explained in ref. [10], which we follow in view of our desired

generalization. In this approach, the ladders L
(1)
‖ and L

(2)
‖ are obtained by iteration of

a 2GI kernel K (pi, pi−1, µ, αs) or K (ni, ni−1, µ, αs) with i = 1, 2, . . . , n, connected by a

pair of t-channel gluons (see figure 2). The transverse momenta of the gluons are ordered,

k2
T 1 � k2

T 2 � · · · � k2
T n = k2

T (and k̄2
T 1 � k̄2

T 2 � · · · � k̄2
T n = k̄2

T), with small x

resummation performed by computing the kernels at LLx to all orders in αs.

We start from a regularized version of the expression eq. (2.12) for the cross-section,

written in terms of the coefficient function C, eq. (2.14):

σ

(
x,
µ2

F

Q2
, αs; ε

)
=
(
Q2
)2ε ∫

C

(
x

zz̄
,
k2
T

Q2
,
k̄2
T

Q2
, αs; ε

)[
2πL

(1)
‖

(
z,

(
µ2

F

k2
T

)ε
, αs; ε

)]
[
2πL

(2)
‖

(
z̄,

(
µ2

F

k̄2
T

)ε
, αs; ε

)]
dz

z

dz̄

z̄

dk2
T

(k2
T)1+ε

dk̄2
T(

k̄2
T

)1+ε , (2.18)

– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
1
2
2

Figure 2. Computation of the ladder parts by iterative insertion of the Kernel K.

where the dependence on z and z̄ in the ladders is O(ε) [10]. We factorize, as usual, the

convolutions by Mellin transformation

σ

(
N,

µ2
F

Q2
, αs; ε

)
=

∫ ∞
0

dξ

ξ1+ε

∫ ∞
0

dξ̄

ξ̄1+ε
C
(
N, ξ, ξ̄, αs; ε

)
[
2πL

(1)
‖

(
N,

(
µ2

F

Q2ξ

)ε
, αs; ε

)][
2πL

(2)
‖

(
N,

(
µ2

F

Q2ξ̄

)ε
, αs; ε

)]
, (2.19)

with

f(N) =

∫ 1

0
dxxN−1f(x); f(x) =

1

2πi

∫ N0+i∞

N0−i∞
dN x−Nf(N), (2.20)

where we have introduced dimensionless variables

ξ =
k2
T

Q2
, ξ̄ =

k̄2
T

Q2
. (2.21)

Note that the Q2-dependence of the ladders is fictitious, as
µ2F
Q2ξ

=
µ2F
k2T

. Upon Mellin

transformation, powers of ln 1
x are mapped onto poles at N = 0: note that the Mellin

variable in eq. (2.20), as usual in the context of high-energy resummation, is shifted by one

unit in comparison to the more customary definition.

The observation [16] that collinear poles in ε are all produced by the integrations over

the transverse momenta k2
T, k̄2

T connecting the kernels leads to the identification of the

kernel itself with the anomalous dimension γ in d = 4 − 2ε dimensions, which in our case

must be computed to all orders in αs to LLx accuracy [10]:

K

(
N,

(
µ2

F

Q2ξ

)ε
, αs; ε

)
= γ

(
N,

(
µ2

F

Q2ξ

)ε
, αs; ε

)
. (2.22)
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The ladder expansion of L(1,2) at LLx then has the form

σn,m
(
N,

µ2
F

Q2
, αs; ε

)
=

∫ ∞
0

[
γ

(
N,

(
µ2

F

Q2ξn

)ε
, αs; ε

)]
dξn

ξ1+ε
n
×

×
∫ ∞

0

[
γ

(
N,

(
µ2

F

Q2ξ̄m

)ε
, αs; ε

)]
dξ̄m

ξ̄1+ε
m

C
(
N, ξ, ξ̄, αs; ε

)
× (2.23)

×
∫ ξn

0

[
γ

(
N,

(
µ2

F

Q2ξn−1

)ε
, αs; ε

)]
dξn−1

ξ1+ε
n−1

× · · · ×
∫ ξ2

0

[
γ

(
N,

(
µ2

F

Q2ξ1

)ε
, αs; ε

)]
dξ1

ξ1+ε
1

×

×
∫ ξ̄m

0

[
γ

(
N,

(
µ2

F

Q2ξ̄m−1

)ε
, αs; ε

)]
dξ̄m−1

ξ̄1+ε
m−1

× · · · ×
∫ ξ̄2

0

[
γ

(
N,

(
µ2

F

Q2ξ̄1

)ε
, αs; ε

)]
dξ̄1

ξ̄1+ε
1

.

Factorization is performed by requiring eq. (2.23) to be finite after each ξi or ξ̄j inte-

gration. This leave a single n+m-th order ε pole in the cross-section that can be subtracted

using the standard MS prescription (see appendix A of ref. [10]). After iterative subtraction

of the first n− 1 and m− 1 singularities we get

σn,m
(
N,

µ2
F

Q2
, αs; ε

)
=

[
γ

(
N,

(
µ2

F

Q2

)ε
, αs; ε

)]2 ∫ ∞
0

dξn

ξ1+ε
n

∫ ∞
0

dξ̄m

ξ̄1+ε
m

C
(
N, ξn, ξ̄m, αs; ε

)
×

× 1

(n− 1)!

1

εn−1

∑
j

γ̃j (N,αs; 0)

j

(
1−

(
µ2

F

Q2ξn

)jε
γ̃i (N,αs; ε)

γ̃i (N,αs; 0)

)n−1

× (2.24)

× 1

(m− 1)!

1

εm−1

[∑
l

γ̃l (N,αs; 0)

l

(
1−

(
µ2

F

Q2ξ̄m

)lε
γ̃i (N,αs; ε)

γ̃l (N,αs; 0)

)]m−1

,

where we have introduced the expansion

γ

(
N,

(
µ2

F

Q2ξ

)ε
, αs; ε

)
=

∞∑
j=0

γ̃j (N,αs; ε)

(
µ2

F

Q2ξ

)jε
. (2.25)

Summing over n and m the collinear singularities exponentiate:

σres =
∞∑

n,m=0

σn,m = γ

(
N,

(
µ2

F

Q2

)ε
, αs; ε

)2 ∫ ∞
0

dξ

ξ1+ε

∫ ∞
0

dξ̄

ξ̄1+ε
C
(
N, ξ, ξ̄, αs; ε

)
×

× exp

1

ε

∑
j

γ̃j (N,αs; 0)

j

(
1−

(
µ2

F

Q2ξ

)jε
γ̃j (N,αs; ε)

γ̃j (N,αs; 0)

)× (2.26)

× exp

[
1

ε

∑
l

γ̃l (N,αs; 0)

l

(
1−

(
µ2

F

Q2ξ̄

)lε
γ̃l (N,αs; ε)

γ̃l (N,αs; 0)

)]
.

The limit ε→ 0 can then be taken after expanding

γ̃i ≡ γ̃i (N,αs) + ε ˙̃γi (N,αs) + ε2 ¨̃γi (N,αs) + . . . , (2.27)

with the result

σres (N,αs) = γ (N,αs)
2R (N,αs)

2
∫ ∞

0
dξ ξγ(N,αs)−1

∫ ∞
0

dξ̄ ξ̄γ(N,αs)−1C
(
N, ξ, ξ̄, αs

)
× exp

[
2γ (N,αs) ln

Q2

µ2
F

]
(2.28)
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with [10]

R (N,αs) ≡ exp

[
−
∑
i

˙̃γi (N,αs)

i

]
. (2.29)

Equation (2.28) is the resummed form of the partonic cross section at LLx in the

MS scheme, after factorization of all singularities. The factor R depends on the choice of

factorization scheme [4, 10]; further scheme changes may be performed by redefining the

parton distribution of the gluon by a generic LLx function N (N,αs) [22], after which all

the scheme dependence can be collected in a prefactor

R (N,αs) = R (N,αs)N (N,αs) . (2.30)

Choosing µ2
F = Q2 the final form of the resummed inclusive cross section is

σres (N,αs) = γ
(αs
N

)2
R
(αs
N

)2
∫ ∞

0
dξ ξγ(

αs
N )−1

∫ ∞
0

dξ̄ ξ̄γ(
αs
N )−1C

(
N, ξ, ξ̄, αs

)
, (2.31)

where we have explicitly indicated that, at LLx, γ and R only depend on the ratio αs/N .

In order to make contact with the approach of ref. [4], it is useful to rewrite the

resummed cross-section in terms of the so-called impact factor, defined as

h (N,M1,M2, αs) = M1M2R (M1)R (M2)

∫ ∞
0

dξ ξM1−1

∫ ∞
0

dξ̄ ξ̄M2−1C
(
N, ξ, ξ̄, αs

)
,

(2.32)

in terms of which the cross-section eq. (2.31) has the form

σres (N,αs) = h
(
N, γ

(αs
N

)
, γ
(αs
N

)
, αs

)
. (2.33)

The explicit expressions of the LLx anomalous dimension γ and the factorization-scheme

dependent function R can be found e.g. in ref. [5].

3 The transverse momentum distribution

Having briefly reviewed the approach of ref. [10] to high-energy resummation, we now

extend it to transverse momentum distributions: the generalization turns out to be in fact

completely straightforward, once the kinematics is properly understood.

We consider again the process eq. (2.1), but now assuming that S has fixed transverse

momentum pT. Clearly (see figure 1) pT is the sum of the transverse momenta kT and

k̄T, of the gluons which connect the hard part to the ladder, so in the high-energy limit

eq. (2.8) it must satisfy
p2
T

s
� 1. (3.1)

The factorization eq. (2.12), which was derived by power counting from the conditions

eq. (2.8) still holds, but now with a kinematic constraint relating pT to kT and k̄T:

dσ

dp2
T

= Q2

∫ [
x

2zz̄
H‖,‖

(
x

zz̄
,
k2
T

Q2
,
k̄2
T

Q2
,ΩS , αs

)]
δ

(
p2
T − k2

T − k̄2
T − 2

√
k2
Tk̄

2
T cos θ

)
[
2πL

(1)
‖

(
µ2

F

k2
T

, αs

)][
2πL

(2)
‖

(
µ2

F

k̄2
T

, αs

)]
dz

z

dz̄

z̄

dk2
T

k2
T

dk̄2
T

k̄2
T

dθ

2π

dθ̄

2π
. (3.2)
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The constraint is a simple momentum conservation delta as a consequence of the fact that

radiation is entirely contained in the ladders, and it does not take place from the hard part;

without loss of generality, we have chosen θ as the angle between the directions of k and k̄.

We then define a pT-dependent coefficient function

CpT

( x
zz̄
, ξ, ξ̄, ξp, αs

)
=

=

∫
dθ

2π

dθ̄

2π

x

2zz̄
H‖,‖

( x
zz̄
, ξ, ξ̄,ΩS , αs

)
δ

(
ξp − ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
=

∫
dθ

2π

dθ̄

2π

x

2zz̄

[
PµνP µ̄ν̄Hµνµ̄ν̄

]
δ

(
ξp − ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
(3.3)

where we have introduced a further dimensionless variable

ξp =
p2
T

Q2
, (3.4)

on top of ξ, ξ̄ eq. (2.21). In terms of CpT , eq. (3.3) becomes

dσ

dξp
=

∫
CpT

( x
zz̄
, ξ, ξ̄, ξ̄p, αs

)
×
[
2πL

(1)
‖

(
µ2

F

Q2ξ
, αs

)][
2πL

(2)
‖

(
µ2

F

Q2ξ̄
, αs

)]
dz

z

dz̄

z̄

dξ

ξ

dξ̄

ξ̄
. (3.5)

The coefficient function CpT is the transverse momentum distribution for the production

of S from two off-shell gluons with transverse momenta k and k̄.

We now turn to the ladders. Each insertion of the LLx kernel K eq. (2.22) includes

an infinite series of s- and t-channel branchings [23], which can be viewed as a single

effective emission vertex. The momenta of the gluons q1,. . . ,qL and r1,. . . ,rL respectively

radiated from each of the two rails of the ladder, and of the gluons p1,. . . ,pL and n1,. . . ,nL
respectively propagating along them, in the Sudakov parametrization in the high-energy

limit can be written as (see figure 3)

p1 = z1p− k1 (3.6a)

q1 = (1− z1) p+ k1 (3.6b)

p2 = z2z1p− k2 (3.6c)

q2 = (1− z1z2) z1p+ k2 − k1 (3.6d)

. . . . . . . . . (3.6e)

pL = zp− k (3.6f)

qL = (1− z) p+ k− kn−1 (3.6g)

n1 = z̄1p− k̄1 (3.6h)

r1 = (1− z̄1) p+ k̄1 (3.6i)

n2 = z̄2z̄1p− k̄2 (3.6j)

r2 = (1− z̄1z̄2) z̄1p+ k̄2 − k̄1 (3.6k)

. . . . . . . . . (3.6l)

nL = z̄n− k̄ (3.6m)

rL = (1− z̄)n+ k̄− k̄m−1. (3.6n)
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2Figure 3. Kinematics of the ladder. The blob at each emission vertex denotes inclusion of LLx s-

and t-channel gluon radiation to all orders.

The crucial observation here is that the momenta of the emitted gluons q1 and ri are

integrated over. So, for instance, the transverse momentum of the second emitted gluon is

an integration variable, and we can equivalently choose it as k2 or, shifting the integration

variable, as k2−k1, as in eq. (3.6d). With the choice of integration variables of eq. (3.6), it is

manifest that all the transverse momenta ki and k̄j are independent, with the only ordering

constraints k2
T,1 � k2

T,2 � · · · � k2
T and k̄2

T,1 � k̄2
T,2 � · · · � k̄2

T. The fixed value of p2
T of

the final state S thus only constrains the transverse components of the momenta pL, nL of

the two gluons entering the hard part H. The dependence on the longitudinal momentum

fractions in eq. (3.6) is immaterial for our purposes, and was discussed in ref. [10].

It follows that we can compute the ladders as in the inclusive case, the only difference

being in the integration over the transverse momenta of the two gluons connecting each

ladder to the hard part: we iterate the kernel K and sum over all possible insertions.

The regularized contribution to the transverse momentum distribution when the kernel

K is inserted n-th times on one leg and m-th times on the other leg, after the iterative
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subtraction of the first n− 1 and m− 1 collinear singularities has the form

dσn,m

dξp

(
N,

µ2
F

Q2
, ξp, αs; ε

)
=

[
γ

(
N,

(
µ2

F

Q2

)ε
, αs; ε

)]2

×
∫ ∞

0

dξn

ξ1+ε
n

∫ ∞
0

dξ̄m

ξ̄1+ε
m

CpT
(
N, ξn, ξ̄m, ξp, αs; ε

)
×

× 1

(n− 1)!

1

εn−1

∑
j

γ̃j (N,αs; 0)

j

(
1−

(
µ2

F

Q2ξn

)jε
γ̃i (N,αs; ε)

γ̃i (N,αs; 0)

)n−1

×

× 1

(m− 1)!

1

εm−1

[∑
l

γ̃l (N,αs; 0)

l

(
1−

(
µ2

F

Q2ξ̄m

)lε
γ̃i (N,αs; ε)

γ̃l (N,αs; 0)

)]m−1

, (3.7)

with γ̃ defined as in eq. (2.25).

Summing over emissions the result exponentiates, as in the inclusive case; the only

nontrivial difference is the delta constraint which is included in the pT-dependent coefficient

function eq. (3.3):

dσres

dξp
(N, ξp, αs) = γ

(αs
N

)2
R
(αs
N

)2
∫ ∞

0
dξ ξγ(

αs
N )−1

∫ ∞
0

dξ̄ ξ̄γ(
αs
N )−1CpT

(
N, ξ, ξ̄, ξp, αs

)
.

(3.8)

Equation (3.8) provides a resummed expression for the transverse momentum distribution.

Note that at LLx if the coefficient function is finite as N → 0 we can set N = 0. While

for total cross-sections this is not true for pointlike interactions, we will show at the end of

this section that this is always true for transverse momentum distributions.

As in the inclusive case, this resummed result can be expressed in terms of an impact

factor, now pT-dependent:

hpT (N,M1,M2, ξp, αs) = M1M2R (M1)R (M2)∫ ∞
0

dξ ξM1−1

∫ ∞
0

dξ̄ ξ̄M2−1CpT
(
N, ξ, ξ̄, ξp, αs

)
(3.9)

by exploiting BFKL-DGLAP duality [24] to set

Mi = γ
(αs
N

)
(3.10)

with the result

dσres

dξp
(N, ξp, αs) = hpT

(
0, γ

(αs
N

)
, γ
(αs
N

)
, ξp, αs

)
, (3.11)

which is completely equivalent to the previous expression eq. (3.8), having explicitly

set N = 0.

We have thus come to the conclusion that high energy resummation of a transverse

momentum distribution is obtained using the same formula as in the inclusive case, but with

the total cross-section replaced by the corresponding transverse-momentum distribution.

This result is simple but powerful: in particular, it is worth noting that this means that
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the nontrivial dependence on the transverse momentum is induced through the kinematic

constraint eq. (3.3) by the transverse momentum of the incoming off-shell gluons, which

in turn is determined through eqs. (3.9)–(3.11) by the LLx anomalous dimension (i.e.,

equivalently, the BFKL kernel).

An immediate consequence of our derivation is that the resummation of transverse

momentum distributions for lepto- or photo-production processes reduces to that of the

total cross-section. Indeed, when only one hadron is present in the initial state eq. (3.8)

reduces to

dσres

dξp
(N, ξp, αs) = γ

(αs
N

)
R
(αs
N

)∫ ∞
0

dξ ξγ(
αs
N )−1CpT (N, ξ, ξp, αs) , (3.12)

but in this case the momentum conservation constraint is trivial:

CpT (N, ξ, ξp, αs) = C (N, ξ, αs) δ (ξp − ξ) , (3.13)

so, substituting eq. (3.13) in eq. (3.12), we get the resummed result

dσres

dξp
(N, ξp, αs) = γ

(αs
N

)
R
(αs
N

)
ξ
γ(αsN )−1
p C (0, ξp, αs) , (3.14)

where the coefficient function C is the same as in the inclusive case.

Finally, we consider quark-initiated hadro-production. As well-known [5] the high

energy behaviour of quark channels can be deduced from that of the purely gluonic channel

by using the color-charge relation γqg = CF
CA
γgg, which holds at LLx to all orders in αs, and

noting that γgq and γqq are NLLx. It follows that at LLx a quark may turn into a gluon

but a gluon cannot turn into a quark. Hence, the computation of the resummed cross-

section proceeds as for the gluon channels, but with the subtraction of the contribution

from diagrams where no emission takes place from the quark leg, since they are subleading

in the high energy regime [5]. This leads to the following expressions for the resummed

transverse-momentum distributions in quark-initiated channels:(
dσres

dξp

)
gq

=
CF

CA

[
hpT

(
0, γ

(αs
N

)
, γ
(αs
N

)
, ξp, αs

)
− hpT

(
0, γ

(αs
N

)
, 0, ξp, αs

)]
, (3.15a)(

dσres

dξp

)
qq̄

=

(
CF

CA

)2[
hpT

(
0, γ
(αs
N

)
, γ
(αs
N

)
, ξp, αs

)
−2hpT

(
0, γ
(αs
N

)
, 0, ξp, αs

)]
, (3.15b)

where hpT is the gluon-channel impact factor eq. (3.9), and the color-charge factor CF
CA

is

due to the presence of γqg in the first gluon emission.

The total resummed cross-section can be obtained in each case by integration of the

transverse momentum distributions. The high energy behaviour of the total cross-section,

as well-known [3, 4], is single-logarithmic, or double logarithmic, according to whether the

hard interaction is pointlike or not:

σ ∼
x→0

σLO ×


δ (1− x) +

∞∑
k=1

ckα
k
s ln2k−1 1

x
, pointlike (3.16a)

δ (1− x) +

∞∑
k=1

dkα
k
s lnk−1 1

x
, resolved. (3.16b)
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Figure 4. Born Level diagrams for Higgs boson production in gg channel, respectively in the full

(left) and effective theory (right).

An interaction is pointlike if it does not resolve the pT dependence, i.e. more formally if it

can be represented by the insertion of a single local operator: in such case, the hard part

is independent of pT, i.e. of ξp. All the ξp dependence then comes from the prefactors ξγ

in eq. (3.9), which are due to collinear radiation in the ladders: the transverse momentum

integration over gluon radiation is undamped at high scale, and its logarithmic divergence

is cut off by center-of-mass energy. In Mellin space, this corresponds to the fact that the

impact factor diverges as N → 0. In such case, expansion in powers of αs leads to double

poles in N and thus double logs in x.

The resummed transverse momentum distribution always displays single logarithmic

behaviour, because the ξp → ∞ limit is never reached. However, when the interaction is

pontlike, the coefficients grow logarithmically with pT (or equivalently with ξp), while in

the resolved (non-pointlike) case the coefficients dk (ξp) as ξp → ∞ vanish at least as a

power of ξ−1
p in such a way that the integral over all transverse momenta is finite:

dσ

dξp
∼
x→0

σLO

ξp
×



∞∑
k=1

αks lnk−1 1

x

k−1∑
n=0

ckn lnn ξp, pointlike (3.17a)

∞∑
k=1

dk (ξp)α
k
s lnk−1 1

x
, resolved. (3.17b)

4 Higgs production in gluon fusion

We now use the general result eq. (3.11) and compute the high energy behaviour at LLx of

the transverse momentum distribution for Higgs production in gluon fusion (see figure 4).

The full result is only known at LO [12]. However, in the effective field theory in which

the mass of the quark in the loop goes to infinity, it is known in fully analytic form up to

NLO [25, 26], and at NNLO with a numerical evaluation of the phase space integrals [13].

Here we will only consider the case of the effective field theory: we first determine

the full resummed result, and then we expand it out up to O(α4
s). This illustrates our

methodology, it provides a nontrivial check of it, and yields a prediction for the next

fixed order.
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As explained in the previous section, in order to determine the pT-dependent impact

factor hpT , eq. (3.9), we must determine the transverse momentum distribution CpT for the

process

g∗ (pL) + g∗ (nL)→ H (pS) (4.1)

with incoming off-shell gluons. The color-averaged squared matrix element in the effective

theory is [7, 27]

|M |2 =
α2
s

32

√
2GF

9π2

(
k · k̄

)2
|k |2

∣∣ k̄2
∣∣
(
m2

H

τ

)2

(4.2)

where k and k̄ are respectively the transverse components of pL and nL eq. (2.6), and

τ = x
zz̄ .

The coefficient function CpT is found by providing necessary phase space factor, and

performing a Mellin transform:

CpT
(
N, ξ, ξ̄, ξp, αs

)
=
α2
s

√
2GF

288π

∫ 1

0
dτ τN−1

∫ 2π

0

dθ

2π

cos2 θ

τ
δ

(
1

τ
− 1− ξp

)
δ

(
ξp − ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
= 2σLO

∫ 1

0
dτ τN−2 δ

(
1

τ
− 1− ξp

)∫ 2π

0

dθ

2π
cos2 θ δ

(
ξp − ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
(4.3)

where ξ, ξ̄ and ξp were defined in eqs. (2.21)–(3.4) and

σLO =
α2
s

√
2GF

576π
(4.4)

is the leading-order inclusive cross-section.

The integrals in τ and θ in eq. (4.3) can be performed explicitly, with the result

hpT (N,M1,M2, ξp, αs) =
σLO

2π (1 + ξp)
N
M1M2R (M1)R (M2)

∫ ∞
0

dξ ξM1−2

∫ (
√
ξp+
√
ξ)

2

(
√
ξp−
√
ξ)

2
dξ̄ ξ̄M2−2

(
ξp − ξ − ξ̄

)2√
2ξ̄ξ + 2ξξp + 2ξ̄ξp − ξ2

p − ξ2 − ξ̄2
. (4.5)

Changing variables

ξ = ξp ξ1, ξ̄ = ξp ξ2, (4.6)

the dependence on ξp can be taken outside the integral in eq. (4.5):

hpT (N,M1,M2, ξp, αs) = σLO

ξM1+M2−1
p

(1 + ξp)
N
I (M1,M2) , (4.7)

and the integral

I (M1,M2) = M1M2R (M1)R (M2)∫ ∞
0

dξ1 ξ
M1−2
1

∫ (1+
√
ξ1)

2

(1−
√
ξ1)

2
dξ2 ξ

M2−2
2

(1− ξ1 − ξ2)2√
2ξ1ξ2 + 2ξ1 + 2ξ2 − 1− ξ2

1 − ξ2
2

(4.8)

does not depend on ξp.
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The integrals over ξ1 and ξ2 in I are computed in appendix A; substituting the result

[eq. (A.7)] in eq. (4.7) we finally find that the impact factor is given by

hpT (N,M1,M2, ξp, αs) = R (M1)R (M2)σLO

ξM1+M2−1
p

(1 + ξp)
N

(4.9)[
Γ (1 +M1) Γ (1 +M2) Γ (2−M1 −M2)

Γ (2−M1) Γ (2−M2) Γ (M1 +M2)

(
1 +

2M1M2

1−M1 −M2

)]
.

The fact that the ξp dependence is entirely contained in a prefactor is a consequence of

the fact that in the effective theory the interaction is pointlike, and thus the transverse

momentum dependence is entirely due to collinear radiation, as discussed in the end of

section 3. The resummed result is found from eq. (4.9) by letting N = 0 and by substi-

tuting for Mi the LLx anomalous dimension eq. (3.10), according to eq. (3.9). Our result

manifestly reproduces the expected all-order behaviour eq. (3.17a).

We may check that integration of the transverse momentum dependent impact factor

reproduces the known inclusive result: using the integral∫ ∞
0

dξp
ξM1+M2−1
p

(1 + ξp)
N

=
Γ (M1 +M2) Γ (N −M1 −M2)

Γ (N)
(4.10)

in eq. (4.9) we obtain the inclusive impact factor as given in eq. (5.33) of ref. [27].

We can now expand our result in powers of αs in order to compare to known fixed-order

expressions. We get

dσ

dξp
(N,αs) = σLO

∞∑
k=1

Ck (ξp)α
k
s

lnk−1 x

k − 1!
(4.11)

with

C1 (ξp) =
2CA

π

1

ξp
(4.12a)

C2 (ξp) =
4C2

A

π2

ln ξp
ξp

(4.12b)

C3 (ξp) =
2C3

A

π3

1 + 2 ln2 ξp
ξp

(4.12c)

C4 (ξp) =
4C4

A

π4

3 + 3 ln ξp + 2 ln3 ξp + 17ζ3

3ξp
. (4.12d)

Equation (4.11) gives the result in the gluon channel; results in channels involving quarks

can be obtained using eq. (3.15).

Comparison to the LO exact result can be performed analytically. The LO double-

differential transverse momentum and rapidity distribution in the effective field theory in

the gluon-gluon channel is given by [12, 28]

dσ(0)

dξpdy
(x, ξp, y) = σLO

αsCA

2π
x
x4 + 1 +

(
t
s

)4
+
(
u
s

)4
ut
s2

δ

(
1 +

t

s
+
u

s
− x
)
, (4.13)
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Figure 5. NLO contribution to the transverse momentum distribution for Higgs production in

gluon fusion, normalized to σLO, compared to the high energy prediction C2 (ξp) eq. (4.12b) for two

different fixed values of ξp = 0.5 and ξp = 3.0.
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Figure 6. Difference between the NLO fixed order result and the high energy prediction C2 (ξp)

eq. (4.12b) shown in figure 5.

where

x =
m2

H

s
(4.14)

t

s
= x−

√
x
√

1 + ξpe
y (4.15)

u

s
= x+

√
x
√

1 + ξpe
−y. (4.16)

Integrating over rapidity we get

dσ(0)

dξp
(x, ξp, αs) = αsσLO

2CA

π

1

ξp
+O (x) (4.17)

in agreement with eq. (4.11).

At NLO we compare to the full result numerically. The lengthy analytic expression for

the double differential distribution is given in ref. [25]. We have integrated this numerically

over rapidity y, retaining the full x dependence: this is necessary because, as discussed in

ref. [10], terms which appear to be power-suppressed in x at the level of rapidity distribution

lead to LLx contributions upon integration.

The result of the integration is plotted as a function of ln x in figure 5, in the small x

region (blue line), together with the high-energy prediction eq. (4.12b), for two values of

the transverse momentum p2
T. The difference between the two curves is shown in figure 6.
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It is clear that the difference between the two curves tends to a constant as x → 0, thus

proving perfect agreement between the high-energy behaviour and the exact result. We

have repeated the comparison for a large number of values of ξp, with the same result.

We have performed similar comparisons in the gq and qq̄ channels, and find similarly

good agreement.

A test at NNLO is nontrivial due to the complexity of the exact result of ref. [13]

which hampers its accurate numerical evaluation in the high energy limit; it is very likely

to be possible thanks to the recent results of ref. [29]. However, the NNLO coefficient can

be tested by comparing to NNLL transverse momentum resummation, as we discuss in the

next section.

5 Relation to transverse momentum resummation

As we have argued on general grounds in section 3, eq. (3.17a), and seen explicitly in the

case of Higgs in gluon fusion in section 4, eq. (4.9) the high-energy transverse momentum

distribution in the pointlike limit displays an all-order single-logarithmic behaviour in ξp.

On the other hand, in the pT → 0 limit (and not necessarily at high energy) by standard

Wilson expansion arguments, the interaction can always be represented by a local operator

and the effect of any other scale (such as the heavy quark masses) is entirely contained in

a Wilson coefficient.

Therefore, in the high energy limit, the behaviour eq. (3.17a) (seen in eq. (4.9)) always

holds when pT → 0 i.e. when ξp → 0, even in the resolved case, up to a prefactor (coming

from the Wilson coefficient) which in our LLx limit is independent of αs and only depends

on the scales which are integrated out in the effective field theory (e.g., in the case discussed

in the previous section on the ratios of the heavy quark masses to the Higgs mass).

In this limit, however, hard cross sections are known to display double logs of the

form
ln2k−1 ξp

ξp
, which can be resummed using now standard techniques [30]: in particular,

NkLL resummation allows one to predict the coefficients of all contributions of the form

αns
lnk ξp
ξp

with 2(n − k) − 1 ≤ k ≤ 2n − 1.1 In the high energy limit, the hard cross

section displays single logs αns
lnn ξp
ξp

eq. (3.17a). It follows that at O(αns ) the coefficient

of the highest power of ln ξp is predicted by Nn−1LL transverse momentum resummation,

with lower-order powers of ln ξp predicted by increasingly subleading log resummation. In

particular, the coefficients of ln2 ξp and ln ξp in C3 eq. (4.12c) are predicted by NNLL

transverse momentum resummation, thereby allowing us to also check this coefficient.

The LLx result in the ξp → 0 limit, when taken to all orders in αs, thus provides

information on NkLL transverse momentum resummation to all logarithmic orders 0 ≤
k ≤ ∞ in the x → 0 limit. An immediate consequence of this is that the structure

of transverse momentum resummation must be reproduced in the high-energy limit. This

structure was fully elucidated only recently in refs. [31–33]: schematically, the contributions

1Note that upon Fourier transformation, a
lnk−1 ξp

ξp
term corresponds to a lnk b term, where b = |b| is

the impact parameter, see eq. (5.1).

– 18 –



J
H
E
P
0
3
(
2
0
1
6
)
1
2
2

to the partonic cross section which are singular as pT → 0 have the form

dσres
a1a2

dpT

(
N,pT, Q

2
)

=
∑
ij

σ
(0)
ij

∫
d2beib·pTSij(b

2, Q2)

×
∑
lm

[
Hij,lm(αs)Cil(N,b)Cjm(N,b) + H̄ij,lm(αs)Gil(N,b)Gjm(N,b)

]
× (5.1)

× Γla1 [αs, b
2, Q2]Γma2 [αs, b

2, Q2],

where b = |b|; the sums over (i, j) and (l,m) run over parton channels (quark and gluon),

Γi are standard QCD evolution factors from scale b to the hard scale Q for the two incoming

partons a1 a2; Sij is a Sudakov evolution factor; and all the process dependence is contained

in the N -independent hard functions H and H̄ while the partonic functions Cil and Gil on

the two incoming legs are universal. In the particular case of quark-initiated channel, the

Gil functions vanish.

Equation (5.1) imposes on our resummed result the nontrivial restriction that, in

the ξp → 0 limit, the dependence on M1, M2 of the impact factor eq. (3.9) factorized,

in the sense that it can be written as a sum which reproduces the schematic structure

C(M1)C(M2) + G(M1)G(M2) of the term in square brackets of eq. (5.1). This behaviour

should hold in the small ξp limit in general, and, for pointlike interactions, for all ξp.

Having understood the general structure of the constraints imposed by the matching

of transverse momentum resummation and high-energy resummation, we can now check

explicitly whether they are satisfied by our resummed results. In order to verify whether

the structure eq. (5.1) is reproduced we must perform a Fourier transform of the resummed

cross-section. To this purpose, we define a b-space impact factor

hpT (N,M1,M2, b, αs) =

∫ ∞
0

dξp J0(
√
ξp bmh)hpT (N,M1,M2, ξp, αs) . (5.2)

The b-space cross-section is obtained by performing the usual identification eq. (3.11) with

the impact factor eq. (5.2).

We get

hpT (0,M1,M2, b, αs) = σ0e
−(M1+M2) ln

b2m2
h

4 R (M1)R (M2)

×
[

Γ (1 +M1)

Γ (1−M1)

Γ (1 +M2)

Γ (1−M2)
+M1

Γ (1+M1)

Γ (2−M1)
M2

Γ (1+M2)

Γ (2−M2)

]
. (5.3)

We recognize the structure eq. (5.1): the exponential prefactor corresponds to the evolution

factors Γi, as it is clear recalling that Mi are set equal to the anomalous dimensions while at

LLx level αs does not run, and the term in square brackets reproduces the correct structure

of the universal partonic functions C and G of eq. (5.1). Note that the hard function and

the Sudakov factor in eq. (5.1) do not depend on N ; therefore, in the high energy limit at

LLx only their trivial O(α0
s) part contributes.

We thus see that indeed for pointlike interactions the structure of the result eq. (5.3),

as determined by transverse momentum resummation, hold in fact for all ξp and not just in
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the small pT limit. On the other hand, we expect that in the small pT limit the result found

in the full theory with exact top mass dependence will also reduce to the form eq. (5.3).

Having verified that our result has the correct structure fixed by transverse momentum

resummation constraints, we can check explicitly the coefficients Ci eqs. (4.12). Using the

explicit expression of NNLL resummation for Higgs production [34] in the small x limit

we get

dσ

dξp
(N, ξp, αs) = σLO

(
1 + α2

s

C2
A

N2

)∫ ∞
0

db
b

2
J0

(√
ξp bmh

)
exp

[
Gh.e. (N,L)

]
(5.4)

with

Gh.e. (N,L) =
2CA

N

αs
π
L, (5.5)

where

L ≡ L(b) = ln b2m2
h. (5.6)

Expanding the exponential and performing the Fourier transform in eq. (5.4) we immedi-

ately reproduce the coefficients C1, C2, and the logarithmic contribution to C3. We have

explicitly checked that the same holds in quark channels. We conclude that our result is

consistent with known results from transverse momentum resummation.

6 Outlook

We have shown that transverse momentum distributions can be resummed in the high

energy limit in the same way as total cross-sections and rapidity distributions, namely, by

computing the corresponding Born-level cross-section, but with incoming off-shell gluons.

The extra complexity due to the transverse momentum dependence is entirely contained

in the kinematic constraints which relates the transverse momentum of the final state

to the off-shellness of the initial state, which is in turn re-expressed through high-energy

factorization in terms of the so-called BFKL, or LLx anomalous dimension.

Because of its relative simplicity, our result provides a powerful tool to obtain high-

order information on collider processes. As a first demonstration we have considered here

the case of Higgs production in gluon fusion in the pointlike limit. This is an interesting

case both for validation and conceptual reasons, because full results are available to rather

high perturbative orders, and also because the pointlike limit, though displaying unphysical

double log behaviour at high energy, has a transverse momentum dependence which can

be related to that which is revealed in small transverse momentum resummation.

On the other hand, matching high energy to transverse momentum resummation, both

in the pointlike case and for the full theory, raises the interesting question of combining the

two resummations [35]. However, it should be kept in mind that for accurate phenomenol-

ogy resummed results would have to be combined with the running coupling resummation

at high energy discussed in refs. [36, 37].

On the other hand, the application of our technique to Higgs production in gluon fusion

when the full dependence on the top mass is retained appears to be especially interesting as

a way to gain information on higher order corrections. Indeed, only the leading order result
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is known in this case, while the pointlike approximation is known [38] to fail badly for large

values of the transverse momentum. Also, the structure of the dependence of this process

on the various scales which characterize it (the heavy quark masses, the Higgs mass, and

transverse momentum) is non-trivial and the object of ongoing investigations [39, 40]. We

expect our results, though partial, to help in shedding light on these issues, and work on

this is currently ongoing.

Acknowledgments

We are grateful to S. Marzani for innumerable enlightening discussions and for raising the

issue of the relation to transverse momentum resummation, and to F. Caola and G. Zan-

derighi for useful comments. We thank R. D. Ball, S. Marzani and especially F. Caola for a

critical reading of the manuscript. This work is supported in part by an Italian PRIN2010

grant and by the Executive Research Agency (REA) of the European Commission under

the Grant Agreement PITN-GA-2012-316704 (HiggsTools).

A The Higgs pT-impact factor in the mtop → ∞ limit

We provide here details on the computation of the double Mellin transform integral eq. (4.8)

which leads to the final expression of the impact factor. We first change variables from ξ2

to a new variable u, defined implicitly as

ξ2 = 1 + ξ1 − 2
√
ξ1u (A.1)

in terms of which, eq. (4.8) becomes

I (M1,M2) = M1M2R (M1)R (M2)∫ ∞
0

dξ1 4ξM1
1

∫ 1

−1
du

(
1− 1√

ξ1
u

)2

(1 + ξ1)M2−2 (1−
√
ru)

M2−2

√
1− u2

, (A.2)

where r ≡ 4ξ1
(1+ξ1)2

.

With straightforward manipulations, eq. (A.2) can be rewritten in terms of a single

integral function

F (M1,M2) =

∫ ∞
0

dξ1 ξ
M1
1 (1 + ξ1)M2

∫ 1

−1
du

(1−
√
ru)

M2

√
1− u2

, (A.3)

as

I (M1,M2) = M1M2R (M1)R (M2)[
F (M1 − 2,M2 − 2)− 2F (M1 − 1,M2 − 2) + F (M1,M2 − 2)

− 2F (M1 − 2,M2 − 1) + 2F (M1 − 1,M2 − 1) + F (M1 − 2,M2)
]
. (A.4)
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We compute F by expanding (1−
√
ru)

M2 in powers of u, with the result

F (M1,M2) =

∫ ∞
0

dξ1 ξ
M1
1 (1 + ξ1)M2

∫ 1

−1
du

(1−
√
ru)

M2

√
1− u2

=
∞∑
k=0

(
M2

2k

)∫ ∞
0

dξ1 ξ
M1
1 (1 + ξ1)M2 rk

∫ 1

−1
du

u2k

√
1− u2

=

∞∑
k=0

(
M2

2k

)
4k
√
πΓ
(

1
2 + k

)
Γ (1 + k)

∫ ∞
0

dξ1 ξ
M1+k
1 (1 + ξ1)M2−2k

=

∞∑
k=0

(
M2

2k

)
4k
√
πΓ
(

1
2 + k

)
Γ (1 + k)

Γ (1 + k +M1) Γ (k − 1−M1 −M2)

Γ (2k −M2)
. (A.5)

The sum can then be performed in closed form:

F (M1,M2) =
πΓ (1 +M1) Γ (1 +M2) Γ (−1−M1 −M2)

Γ (−M1) Γ (−M2) Γ (2 +M1 +M2)
. (A.6)

Substituting this expression in eq. (A.4) and exploiting the properties of the Euler Gamma

function we finally get

I (M1,M2) = R (M1)R (M2)

[
Γ (1 +M1) Γ (1 +M2) Γ (2−M1−M2)

Γ (2−M1) Γ (2−M2) Γ (M1+M2)

(
1+

2M1M2

1−M1−M2

)]
.

(A.7)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon

fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127

[arXiv:0801.2544] [INSPIRE].

[2] R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion

at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359

[arXiv:0912.2104] [INSPIRE].

[3] S. Catani, M. Ciafaloni and F. Hautmann, Gluon contributions to small x heavy flavor

production, Phys. Lett. B 242 (1990) 97 [INSPIRE].

[4] S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor

production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

[5] S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering

beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].

[6] R.D. Ball and R.K. Ellis, Heavy quark production at high-energy, JHEP 05 (2001) 053

[hep-ph/0101199] [INSPIRE].

[7] F. Hautmann, Heavy top limit and double logarithmic contributions to Higgs production at

m2
H/s� 1, Phys. Lett. B 535 (2002) 159 [hep-ph/0203140] [INSPIRE].

– 22 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.016
http://arxiv.org/abs/0801.2544
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2544
http://dx.doi.org/10.1140/epjc/s10052-010-1258-x
http://arxiv.org/abs/0912.2104
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.2104
http://dx.doi.org/10.1016/0370-2693(90)91601-7
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B242,97"
http://dx.doi.org/10.1016/0550-3213(91)90055-3
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B366,135"
http://dx.doi.org/10.1016/0550-3213(94)90636-X
http://arxiv.org/abs/hep-ph/9405388
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9405388
http://dx.doi.org/10.1088/1126-6708/2001/05/053
http://arxiv.org/abs/hep-ph/0101199
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0101199
http://dx.doi.org/10.1016/S0370-2693(02)01761-6
http://arxiv.org/abs/hep-ph/0203140
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0203140


J
H
E
P
0
3
(
2
0
1
6
)
1
2
2

[8] S. Marzani and R.D. Ball, High Energy Resummation of Drell-Yan Processes, Nucl. Phys. B

814 (2009) 246 [arXiv:0812.3602] [INSPIRE].

[9] G. Diana, High-energy resummation in direct photon production, Nucl. Phys. B 824 (2010)

154 [arXiv:0906.4159] [INSPIRE].

[10] F. Caola, S. Forte and S. Marzani, Small x resummation of rapidity distributions: The Case

of Higgs production, Nucl. Phys. B 846 (2011) 167 [arXiv:1010.2743] [INSPIRE].

[11] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook

of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

[12] U. Baur and E.W.N. Glover, Higgs Boson Production at Large Transverse Momentum in

Hadronic Collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].

[13] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in

association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003

[arXiv:1504.07922] [INSPIRE].

[14] F. Caola, High-energy resummation in perturbative QCD: theory and phenomenology, Ph.D.

Thesis, Milan University, July 2011.

[15] R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Perturbation Theory and

the Parton Model in QCD, Nucl. Phys. B 152 (1979) 285 [INSPIRE].

[16] G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading

Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].

[17] L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian

Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].

[18] V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk Singularity in

Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

[19] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills

Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].

[20] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian

Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

[21] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics,

Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

[22] R.D. Ball and S. Forte, Momentum conservation at small x, Phys. Lett. B 359 (1995) 362

[hep-ph/9507321] [INSPIRE].

[23] R.D. Ball and S. Forte, Asymptotically free partons at high-energy, Phys. Lett. B 405 (1997)

317 [hep-ph/9703417] [INSPIRE].

[24] G. Altarelli, R.D. Ball and S. Forte, Resummation of singlet parton evolution at small x,

Nucl. Phys. B 575 (2000) 313 [hep-ph/9911273] [INSPIRE].

[25] C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse

momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].

[26] V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to

differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys.

B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

– 23 –

http://dx.doi.org/10.1016/j.nuclphysb.2009.01.029
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.029
http://arxiv.org/abs/0812.3602
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3602
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.001
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.001
http://arxiv.org/abs/0906.4159
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4159
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.001
http://arxiv.org/abs/1010.2743
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.2743
http://arxiv.org/abs/1101.0593
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0593
http://dx.doi.org/10.1016/0550-3213(90)90532-I
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B339,38"
http://dx.doi.org/10.1103/PhysRevLett.115.082003
http://arxiv.org/abs/1504.07922
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07922
http://dx.doi.org/10.1016/0550-3213(79)90105-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B152,285"
http://dx.doi.org/10.1016/0550-3213(80)90003-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B175,27"
http://inspirehep.net/search?p=find+J+"Sov.J.Nucl.Phys.,23,338"
http://dx.doi.org/10.1016/0370-2693(75)90524-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B60,50"
http://inspirehep.net/search?p=find+J+"Sov.Phys.JETP,44,443"
http://inspirehep.net/search?p=find+J+"Sov.Phys.JETP,45,199"
http://inspirehep.net/search?p=find+J+"Sov.J.Nucl.Phys.,28,822"
http://dx.doi.org/10.1016/0370-2693(95)01090-D
http://arxiv.org/abs/hep-ph/9507321
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9507321
http://dx.doi.org/10.1016/S0370-2693(97)00625-4
http://dx.doi.org/10.1016/S0370-2693(97)00625-4
http://arxiv.org/abs/hep-ph/9703417
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9703417
http://dx.doi.org/10.1016/S0550-3213(00)00032-8
http://arxiv.org/abs/hep-ph/9911273
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911273
http://dx.doi.org/10.1088/1126-6708/2002/12/016
http://arxiv.org/abs/hep-ph/0209248
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0209248
http://dx.doi.org/10.1016/S0550-3213(02)00333-4
http://dx.doi.org/10.1016/S0550-3213(02)00333-4
http://arxiv.org/abs/hep-ph/0201114
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201114


J
H
E
P
0
3
(
2
0
1
6
)
1
2
2

[27] S. Marzani, High Energy Resummation in Quantum Chromo Dynamics, Ph.D. Thesis,

Edinburgh University (2008) https://www.era.lib.ed.ac.uk/handle/1842/3156.

[28] R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ+τ−: A Possible

Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys. B 297 (1988) 221

[INSPIRE].

[29] A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N3LO+NNLL with small-R

resummation, arXiv:1511.02886 [INSPIRE].

[30] J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan

Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

[31] S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic

contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299

[hep-ph/0008184] [INSPIRE].

[32] S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear

Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012) 2132]

[arXiv:1106.4652] [INSPIRE].

[33] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of

transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881

(2014) 414 [arXiv:1311.1654] [INSPIRE].

[34] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and

the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068]

[INSPIRE].

[35] S. Marzani, Combining QT and small-x resummations, arXiv:1511.06039 [INSPIRE].

[36] R.D. Ball, Resummation of Hadroproduction Cross-sections at High Energy, Nucl. Phys. B

796 (2008) 137 [arXiv:0708.1277] [INSPIRE].

[37] G. Altarelli, R.D. Ball and S. Forte, Small x Resummation with Quarks: Deep-Inelastic

Scattering, Nucl. Phys. B 799 (2008) 199 [arXiv:0802.0032] [INSPIRE].

[38] V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion

contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030]

[INSPIRE].

[39] A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto,

JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].

[40] E. Bagnaschi, R.V. Harlander, H. Mantler, A. Vicini and M. Wiesemann, Resummation

ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond,

JHEP 01 (2016) 090 [arXiv:1510.08850] [INSPIRE].

– 24 –

https://www.era.lib.ed.ac.uk/handle/1842/3156
http://dx.doi.org/10.1016/0550-3213(88)90019-3
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B297,221"
http://arxiv.org/abs/1511.02886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.02886
http://dx.doi.org/10.1016/0550-3213(85)90479-1
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B250,199"
http://dx.doi.org/10.1016/S0550-3213(00)00617-9
http://arxiv.org/abs/hep-ph/0008184
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0008184
http://dx.doi.org/10.1140/epjc/s10052-012-2013-2
http://arxiv.org/abs/1106.4652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4652
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.011
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.011
http://arxiv.org/abs/1311.1654
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1654
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.022
http://arxiv.org/abs/hep-ph/0508068
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508068
http://arxiv.org/abs/1511.06039
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06039
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.014
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.014
http://arxiv.org/abs/0708.1277
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1277
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.003
http://arxiv.org/abs/0802.0032
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0032
http://dx.doi.org/10.1016/S0550-3213(01)00446-1
http://arxiv.org/abs/hep-ph/0108030
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0108030
http://dx.doi.org/10.1007/JHEP01(2014)097
http://arxiv.org/abs/1308.4634
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4634
http://dx.doi.org/10.1007/JHEP01(2016)090
http://arxiv.org/abs/1510.08850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08850

	High-energy factorization
	The ladder expansion
	The transverse momentum distribution
	Higgs production in gluon fusion
	Relation to transverse momentum resummation
	Outlook
	The Higgs p(T)-impact factor in the m(top) –> infty limit

