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ABSTRACT 

High recoverable energy density (Wrec ~ 2.1 J/cm3) was obtained in (0.7-x)BiFeO3-0.3BaTiO3-

xBi(Zn2/3Nb1/3)O3 + 0.1wt% Mn2O3 (BF-BT-xBZN, x = 0.05) lead-free ceramics at < 200 kV/cm. Fast 

discharge speeds (< 0.5 ȝs), low leakage (~ 10-7 A/cm2) and small temperature variation in Wrec (~ 25% 

from 23 to 150 °C) confirmed the potential for these BiFeO3 based compositions for use in high energy 

density capacitors. A core-shell microstructure composed of a BiFeO3-rich core and BaTiO3-rich shell 

was observed by scanning and transmission electron microscopy which may contribute to the high value 

of energy density. In addition, for x = 0.005, a large electromechanical strain was observed with Spos = 

0.463% and effective d33
*  ~ 424 pm/V, suggesting that this family of ceramics may also have potential 

for high strain actuators. 
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INTRODUCTION 

The current research into new energy storage materials is mainly driven by concerns regarding the 

continued use of fossil fuels for automotive applications. Therefore, low cost, sustainable and 

environmentally-friendly energy storage materials with high energy densities are required.1-3 Among 

current energy storage devices, ceramic capacitors are emerging as promising technological alternatives 

to fuel cells and batteries, because of their high power densities combined with fast charge-discharges 

rates, which are favoured in advanced pulse power applications.4-7 This drives the search for dielectrics 

exhibiting both high energy and power densities, to satisfy for power supply components incorporated 

into portable electronics, electric vehicles and other high power and energy storage applications.8-10  

   

To attain high recoverable energy density (Wrec) and efficiency (Ș), a polarization maximum (Pmax), a 

small remnance (Pr) and an optimised breakdown strength (BDS) are simultaneously required. 

Furthermore, the stability of devices in a range of temperature is also a critical parameter. For example, 

for hybrid electric vehicles these devices are expected to operate at temperatures ranging from -40 °C 

to 140 °C. 1,11 Consequently, ferroelectrics (FE) and antiferroelectrics (AFE) are promising candidates 

due to their high Pmax and Curie temperature (TC). The total energy density (W), Wrec and Ș of FE and 

AFE ceramics is given by:  

W = 完 EdPPmax
0 ,                                                                                                                              (1) 

Wrec = 完 EdPPmax
Pr

,                                                                                                                           (2) 

    Ș = Wrec/W                                                                                                                                      (3) 

where P, Pmax and Pr are the polarization, polarization maximum and remnance, respectively.  

 

Although there are commercial energy storage devices based on La doped lead zirconate titanate, 

concerns over the toxicity of PbO have led to a large body of recent research on lead free replacements 

such as BaTiO3 (BT), (K0.5Na0.5)NbO3 (KNN) and (Bi0.5Na0.5)TiO3 (BNT)  based ceramics.12-25 Oxide 

additives such as Al2O3, SiO2, MgO enhance both Wrec and BDS in BT-based ceramics12-14 but BT-

Bi(M,N)O3 (M = Li, Mg, Zn, N = Nb, Ti, Zr) ceramics show greater promise, with Wrec up to 2.5 J/cm3.15-



21 In addition, Bi0.5Na0.5TiO3-BaTiO3-KNbO3 (BNT-BT-KN) and Bi0.5Na0.5TiO3-BaTiO3-NaTaO3 (BNT-

BT-NT) also exhibit large Wrec of 1.72 and 1.2 J/cm3, respectively.22,23 In a recent study, Du et al. showed 

a commensurate improvement in Wrec to ~ 4 J/cm3 in KNN-ceramics due to an enhancement of BDS 

(300~400 kV/cm), which was achieved by a careful control of grain growth.24,25 BiFeO3-BaTiO3 (BF-

BT) ceramics are characterised by high values of Curie maximum (TC) and Pmax (> 40 ȝC/cm2) 26-32, but 

because their dielectric tanį and Pr are relatively large, their energy storage characteristics have been 

seldom studied. Recently, Nb2O5, La(Mg1/2Ti1/2)O3, Ba(Mg1/3Nb2/3)O3 and Nd2O3 have been used as 

either dopants in, or in solid solution with, BF-BT with Wrec of 0.71, 1.66, 1.56, and 1.82 J/cm3, 

respectively, reported33-36 Nd doped BF-BT multilayers showed particular promise with both high Wrec 

~ 6.74 J/cm3 and Ș ~ 77%, from RT to 125 °C.36  

 

Wu et al. theoretically predicted that FE ceramics with core-shell microstructure could achieve 

enhanced energy density and reduced energy loss.37 However, to our knowledge, up to now the energy 

storage characteristics of BF-based ceramics featuring a core-shell microstructure remain elusive, as no 

experimental evidence has been provided. Also Bi(Zn2/3Nb1/3)O3 (BZN) doped BF-BT materials were 

recently reported to have excellent piezoelectric properties27 but their energy storage performance is yet 

to be determined, despite each effect relying on a large remanent/induced polarisation. In this work, a 

unique core-shell microstructure was induced by the substitution of BZN into BF-BT, its impact on the 

structure-property relationships, in particular on the energy storage characteristics, evaluated.  

 

EXPERIMENTAL SECTION 

Ceramic synthesis and characterisation: (0.7-x)BiFeO3-0.3BaTiO3-xBi(Zn2/3Nb1/3)O3 + 0.1wt% Mn2O3 

(BF-BT-xBZN, x = 0, 0.005, 0.01, 0.02, 0.05, 0.08) ceramics were fabricated using solid state 

reaction.26,36 In order to increase the resistivity of ceramics, 0.1 wt% Mn2O3 was added into the calcined 

powder of BF-BT-xBZN.26,28,36 Mn-ions are considered to form defect dipoles with oxygen vacancies 

and decrease their mobility. Densities of ceramics were determined by the Archimedes immersion 

method and were typically >95%. The phase structure of sintered ceramics was determined at RT by 

X-ray powder diffraction (XRD) using a Bruker D2 Phaser. Grain and sub-grain structures were 



evaluated by scanning electron microscope (SEM) and transmission electron microscopy (TEM) using 

an FEI Inspect F50 equipped with a backscattered (BSE) detector and a Tecnai G2-F20, respectively. 

For SEM, ceramics were ground/polished to a mirror finish using wet abrasive paper and diamond paste 

(MetPrep Ltd.). For TEM, BF-BT-0.05BZN ceramics were ground to 120 µm, 3 mm disks 

ultrasonically cut and their centers dimpled down to 10 µm. Prior to Ar-ion milling to achieve electron 

transparency, samples were annealed at 650 °C/0.5 h to ensure that residual stresses were removed. 

Electrical properties: Fired-on gold paste electrodes were applied to both surfaces of the ceramics. 

100-120 °C was used to pole the electroded ceramics at fields of 40 ~ 60 kV/cm. A ferroelectric tester 

(aixACCT TF 2000E) was employed to measure the polarization and the electric-field induced strain 

from -50 °C to 150 °C using a 1 Hz triangular signal at provided by a TREK power supply. Leakage 

current density was also measured using the aixACCT TF 2000E. The dielectric properties as a function 

of temperature were evaluated from RT to 650 °C using an LCR meter (Agilent 4184A). AC impedance 

spectroscopy was carried out at 400 °C using a second LCR Meter (Agilent E4980A). Charging-

discharge characteristics were determined using a capacitor discharge circuit.16,36 A Tektronix DPO 

4104 oscilloscope together with a Pearson 6585 coil were employed to obtain the discharge current 

waveforms. The discharge energy was then measured using ceramics connected in series with a load 

resistor (RL). 

 

RESULTS AND DISCUSSION 

Room temperature XRD data in the 20°~70° 2ș range for BF-BT-xBZN ceramics are illustrated in Fig. 

1(a). Reflections are ascribed to either a single-phase perovskite or a mixture of perovskite phases, 
without any detectable secondary impurity phases for x < 0.08. Secondary peaks however, were 

observed for x = 0.08, denoting the solid solubility limit for Zn1/3/Nb2/3 self-compensated doping in BF-

BT. The average ionic radii, R, of (Zn2/3Nb1/3)3+ ions is given by R = 2/3R(Zn2+) + 1/3R(Nb5+) = 0.707 

Å (0.74 Å and 0.64 Å are the respective ionic radii of Zn2+ and Nb5+),38 which is larger than that of Fe3+ 

and Ti4+ (0.645 Å and 0.605, respectively) and consistent with the diffraction peaks shifting to lower 

diffraction angle with increasing BZN concentration (Fig.1). The likely crystal symmetry is often 



determined by (021)/(110) peak splitting at ~2ș = 32°. In the present case, expanded XRD patterns 

reveal an apparent coexistence of rhombohedral (R) and pseudocubic (PC) symmetries at room 

temperature in BF-BT-xBZN ceramics, as corroborated by broad multiple peaks. To confirm the phase 

assemblage, Rietveld refinement of BF-BT-0.05BZN was carried out using a two-phase refinement 

method (R3c + Pm3博m) in the GSAS+EXPGUI package.39,40 Observed and calculated patterns were in 

good agreement for BF-BT-0.05BZN as demonstrated in Fig. 1(b) (Rp = 7.6%, Rwp = 9.7% and chi-

squared (ぽは) = 2.3), corroborating the presence of PC (Pm3博m) and  R (R3c) symmetries. 

 

The relative permittivity (İr) and dielectric loss (tan į) for BF-BT-xBZN ceramics from RT to 550 °C 

measured at 100 kHz are illustrated in Fig. 1(c). BF-BT and BF-BT-0.005BZN exhibit a relatively sharp 

peak in İr at 476 °C and 480 °C, respectively, associated with a ferroelectric to paraelectric transition 

(TC) on heating but with increasing BZN concentration, two broad dielectric maxima are observed, each 

at lower temperatures. Furthermore, compared with BF-BT and BF-BT-0.005BZN, the maximum 

dielectric permittivity (İm) of BF-BT-xBZN (x > 0.005) decreases significantly and is accompanied by 

the emergence of broad frequency-dependent dielectric peaks (Fig. 1c). These two modifications are a 

manifestation of polar coupling disruption brought in by replacement of (Zn2/3Nb1/3)3+ for Fe3+. Despite 

these changes, tan į remains < 0.15 at < 230 °C, and then increases greatly (Fig. 1c), presumably due 

to a rise in dc conductivity. To evaluate the electrical homogeneity, impedance spectroscopy (IS) 

analysis was performed at 400 °C, Fig. 1(d) and Fig. S1. Indeed, electrical homogeneity can be 

qualitatively assessed from Z’’ and M’’ spectroscopic plots constructed from IS data.41,42 It is evident 

that the peak positions of Z” and M” are almost coincident for BF-BT (Fig. S1a of ESI), however a 

frequency offset between the Z” and M” peak is observed for BF-BT-0.02BZN and BF-BT-0.05BZN 

(Fig. 1d and Fig. S1b of ESI). This shows the latter compositions to be electrically heterogeneous, which 

we interpret on balance of evidence as arising from compositional inhomogeneity. 

 

The SEM images of as-sintered and polished surface for BF-BT-xBZN are illustrated in Fig. S2 and 

Fig. 2(a-c), respectively. All samples present a single modal grain size distribution around an average 



of ~4 m (Fig. S2 of ESI). Except for BF-BT and BF-BT-0.005BZN ceramics, there is evidence of core 

shell microstructure for BF-BT-xBZN (Fig. 2a-c), with dark and light contrast relating to BaTiO3-rich 

and BiFeO3-rich regions according to energy dispersive X-ray spectroscopy (EDS) mapping (Fig. 2d-

k). The EDS elemental maps of polished BF-BT-0.05BZN samples are shown in Fig. 2(d-k). The Ba 

and Ti signals are weaker in the brighter regions of the SEM image, associated with the grain cores (Fig. 

2d and e). Conversely, Bi and Fe exhibit a slightly increased intensity in the brighter areas (Fig. 2f, g). 

These results indicate that the observed core-shell microstructure in BF-BT-xBZN are associated with 

the micro-segregation of Ba and Ti into the shell, while Bi and Fe are concentrated in the core regions.41-

47. Murakami et al. investigated the role of composition and quenching on core-shell formation in 

BiMg1/3Nb2/3O3 doped BF-BT ceramics.41,42 They concluded that the major influence was the onset of 

immiscibility on cooling from the sintering temperature, driven by the electronegativity difference of 

the dopant species. Effectively, the more covalent the dopants, the greater the tendency for immiscibility. 

 

To examine the core-shell microstructure, TEM was conducted on BF-BT-0.05BZN ceramics. For 

further data on undoped systems the reader is referred to ref. 36. Fig. 3a is bright-field (BF) TEM image 

of a grain close to a <211>pc zone axis. The dark spherical region in the grain center corresponds to the 

bright regions in the SEM images in Figure 2 and is thus BiFeO3 rich. <211>pc zone axis diffraction 

patterns (Fig. 2a) from the BiFeO3 rich core have {½½½} superstructure reflections arising from 

antiphase O-octahedral tilting consistent with an R3c phase.36 These superstructure reflections are 

absent in the shell regions which are BaTiO3-rich, suggesting that they are PC. The weak aligned 

contrast in the shell region is consistent with relaxor-like phases in which there is nano- rather than 

micro- or meso-range correlation of dipoles, commensurate with the diffuse frequency dependent Curie 

maxima, Fig. 3(b). The core and shell structures shown in Fig 3(a) and in Fig. 2 have been tentatively 

assigned to the high (BiFeO3-rich) and low (BaTiO3-rich) temperature broad Cure maxima in Fig. 3(b).  

 

Field-induced polarization (P-E), bipolar strain (S-E) and unipolar strain curves for BF-BT-xBZN 

ceramics measured at 100 kV/cm are illustrated in Fig. 4(a-c) (no field-induced strain for BF-BT-

0.08BZN was detected). Pr, coercive field (EC) and electric-field induced positive (Spos) and negative 



strain (Sneg) as a function of x are summarized in Fig. 4(d,e). The large signal piezoelectric strain 

coefficient (d33
*) and hysteresis (SH) are calculated by  

d33
* = Smax/Emax,                                                                                                                             (5)     

   SH = HEmax/2/Smax,                                                                                                                           (6)     

where Smax, Emax and HEmax/2 is the average electric field induced maximum strain obtained from the 

unipolar strain loops, the maximum electric field and  the width of the loop at half the applied field, 

respectively.48 BF-BT and BF-BT-0.005BZN ceramics exhibit saturated polarization loops and 

butterfly-shaped strain loops at 100 kV/cm (Fig. 4a,b), which also corroborate the high electrical 

resistivity of these ceramics. With increasing BZN content, the P-E and S-E loops become slimmer and 

are no longer saturated (Fig. 4a,b), along with Pr, EC, d33 and Sneg continuously decreasing (Fig. 4d,e), 

suggestive of relaxor-like behavior, which is commensurate with both the broad İm (Fig. 1c) and 

nanodomain structure (Fig. 3). The largest Pr ~ 24.6 ȝC/cm2, EC ~ 32.8 kV/cm, d33 ~ 180 pC/N, Sneg ~ 

0.079% values and smallest HS ~ 18.4% value are exhibited by BF-BT ceramics (Fig. 4d,e,f), due to 

coexistence of R3c and PC symmetries (Fig. 1).26,36 On the other hand, the largest Spos ~ 0.463% and 

d33
*  ~ 424 pm/V values are exhibited by BF-BT-0.005BZN ceramics (Fig. 4e,f), which arises from a 

field-induced transition from short- to long-range dipolar order at the transition from a normal to a 

relaxor ferroelectric (Fig. 4a,b and Fig. 1c).26,36 

 

Because of their slim P-E loops (Fig. 4a), BF-BT-0.05BZN and BF-BT-0.08BZN exhibit a greater 

potential for energy storage and were selected for further characterization. Unipolar P-E loops are 

illustrated in Fig. 5(a,b), with corresponding values of Pmax, Pr and P (Pmax - Pr) at different electric 

fields given in Fig. S3. As the increase of electric field, Pmax and P are found to increase linearly with 

a marginal improvement of Pr for both samples (Fig. S3). The highest values of Pmax and P are 36.7 

and 32.8 ȝC/cm2 for BF-BT-0.05BZN at 180 kV/cm, 26.4 and 24.5 ȝC/cm2 for BF-BT-0.08BZN at 190 

kV/cm, respectively. Equations 1-3 are employed to calculate W, Wrec and Ș , Fig. 5(c,d). As field 

increases, W and Wrec increase, reaching 3.7 and 2.06 J/cm3 for BF-BT-0.05BZN at 180 kV/cm, and 2.9 

and 1.98 J/cm3 cm2 for BF-BT-0.08BZN at 190 kV/cm, respectively. The Ș values, however, decrease 



for both compositions to 53% for BF-BT-0.05BZN at 180 kV/cm and 68% for BF-BT-0.08BZN at 190 

kV/cm. 

 

The discharge behaviour, leakage current and temperature stability are critical for high power 

capacitors. The discharge behaviour of BF-BT-0.05BZN and BF-BT-0.08BZN as a function of 

applied field is given in Fig. 6. The current increases as the electric field increases from 40 

kV/cm to 70 kV/cm and all discharge processes occur within ~0.5 ȝs, as shown in Fig. 6(a,b). 

The time for the discharge energy in the load to achieve 90% of the final value (90), is obtained 

from the Wrec curves (Fig. 6c,d). Ĳ0.9 of both composition under different electric fields is less 

than 0.1 ȝs. 

 

In-situ temperature dependence of leakage current density (J) and unipolar P-E loops at 120 

kV/cm for BF-BT-0.05BZN are shown in Fig. 7(a,b). The corresponding values of J, Pmax, P r 

and P are given in Fig. 7(c) and Fig. S4. W, Wrec and Ș are also calculated and plotted in Fig. 

7(d). The value of J below 50 °C is of the order of 10-7 A/cm2 in the high field region (Fig. 7a,c), 

~ one order magnitude less than reported for BF-based ceramics at RT.49,50 From -50 °C to 150 

°C, J consistently increases (Fig. 7a,c), indicating increased conductivity at high temperatures. 

As temperature increases, saturated P-E loops are obtained at ~150 °C, giving increased values 

of Pmax and P r (Fig. S4), which is attributed to lower activation energy of the transition from 

relaxor to ferroelectric.26,36 W increases with temperature, while Wrec and Ș increase before 

decreasing from a maximum of 1 J/cm3 and 59% at 75-100 °C, Fig. 7(d). The variation in Wrec 

is ~ 25% between RT and 150 °C, which is attractive for commercial applications.  

 

A comparison of Wrec and strain for ceramics is plotted in Fig. 8.12-25, 26-36, 48-92 Wrec generally increases 

with electric field but lead-based ceramics still exhibit larger Wrec values compared to the lead-free 

ceramics (Fig. 8a). To our knowledge, BF-BT-0.05BZN has one of the highest value of Wrec ~ 2.1 J/cm3 

among current lead-free FE ceramics with an electric field < 220 kV/cm, which is ascribed to the high 



BDS ~ 190 kV/cm, Pmax ~ 36.7 ȝC/cm2 and P ~ 32.8 ȝC/cm2. In Fig. 8(b), BF-BT-0.005BZN has one 

of the highest values of strain ~ 0.463% amongst ferroelectric ceramics, with a medium value of d33
*  ~ 

424 pm/V and a low value of strain hysteresis ~38% (in comparison with BNT),82-89 which is attractive 

for actuator applications. Core-shell structures in FE ceramics are reported to alleviate inhomogeneity 

of local electric fields and weakens dielectric nonlinearity, resulting in slimmer hysteresis loops.37 

Although the work presented does not conclusively prove the arguments presented by the authors of ref. 

37, enhanced energy storage is observed for core-shell BT-BF-xBZN compositions. Furthermore, we 

note that recent multilayering of Nd doped BF-BT ceramics improved Wrec from 1.82 to 6.74 J/cm3 and 

Ș from 50 to 77%.36 Similar improvements for multilayers of BF-BT-xBZN whose bulk ceramics have 

superior energy storage properties would suggest that they have potential for commercialization should 

lead based systems fail to gain exemption from future environmental legislation. Moreover, BT-BF-

xBZN compositions are rare-earth (RE)-free, lowering their cost and enhancing their potential for 

sustainable manufacturing. 

 

CONCLUSIONS 

Dense BF-BT-xBZN lead-free ceramics were fabricated using solid state reaction. R and PC phases 

coexisted in all studied BF-BT-xBZN compositions at RT. As BZN concentration increased, a core-

shell microstructure was observed with a BaTiO3-rich shell and BiFeO3-rich core, confirmed by SEM, 

EDS, IS, TEM and LCR measurements. With the increase of BZN concentration, relaxor-like behaviour 

dominated with Pr, EC, d33 and Sneg decreasing. The highest values of Pr ~ 24.6 ȝC/cm2, EC ~ 32.8 kV/cm, 

d33 ~ 180 pC/N, Sneg ~ 0.079% and HS ~ 18.4% were achieved for the undoped BF-BT. The highest 

value of Spos ~ 0.463% and d33
*  ~ 424 pm/V was obtained for BF-BT-0.05BZN. For energy storage 

properties, with increasing electric field, W and Wrec increased from 3.7 and 2.06 J/cm3 for BF-BT-

0.05BZN at 180 kV/cm, and 2.9 and 1.98 J/cm3 cm2 for BF-BT-0.08BZN at 190 kV/cm, respectively. Ș 

decreased however, to 53% for BF-BT-0.05BZN at 180 kV/cm and 68% for BF-BT-0.08BZN at 190 

kV/cm, respectively. A fast discharge speed (less than 0.5 ms), leakage current ~ 10-7 A/cm2 and a small 

temperature variation in Wrec (~ 25% in a temperature range between RT and 150 °C) were also obtained, 

suggesting that the BF-BT-xBZN is a potential lead-free candidate for pulsed power capacitors and 



electromechanical actuators. 
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Figure Captions: 

Fig. 1. a) Room temperature XRD patterns of BF-BT-xBZN from 20°~70° 2ș. b) Rietveld refinement 

analysis of BF-BT-0.05BZN using the GSAS+EXPGUI package. c) Temperature dependence of İr and  

tanį for BF-BT-xBZN; (d) Spectroscopic plots of Z’’ and M’’ for BF-BT-0.05BZN. 

Fig. 2. SEM images of polished surfaces for BF-BT-xBZN (a) BF-BT, (b) BF-BT-0.02BZN and (c) 

BF-BT-0.05BZN. EDS elemental mapping results of polished BF-BT-0.05BZN samples (d) Ba, (e) Ti, 

(f) Bi, (g) Fe, (h) O, (i) Zn, (j) Nb and (k) elemental layered image.  

Fig. 3. a) Bright field TEM image of a grain in BF-BT-0.05BZN, illustrating a BiFeO3 rich core and 

BaTiO3 rich shell; <211> zone axis diffraction patterns reveal the absence of ½{ooo} superstructure 

reflections in the shell (up) compared with core regions (down). b) The BiFeO3 and BaTiO3 core-shell 

regions are tentatively ascribed to the high and low temperature dielectric anomalies. 

Fig. 4. High electric field (a) bipolar P-E, (b) bipolar S-E and (c) unipolar S-E loops of BF-BT-xBZN 

samples at 100 kV/cm. (d) Pr and EC as a function of BZN concentration. (e) Spos and Sneg as a function 

of BZN concentration. (f) d33
* and SH as a function of BZN concentration. d33 as a function of BZN 

concentration is in the inset of (d). 

Fig. 5. Unipolar P-E loops under different electric fields for (a) BF-BT-0.05BZN and (b) BF-BT-

0.08BZN. W, Wrec and Ș as a function of electric field for (c) BF-BT-0.05BZN and (d) BF-BT-0.08BZN. 

Fig. 6. Time dependence of the pulsed discharge current for (a) BF-BT-0.05BZN and (b) BF-BT-

0.08BZN. Time dependence of Wrec for (c) BF-BT-0.05BZN and (d) BF-BT-0.08BZN. 

Fig. 7. In-situ temperature dependence of (a) J and (b) unipolar P-E loops for BF-BT-0.05BZN at an 

electric field of 120 kV/cm. (c) J as a function of temperature at different electric fields. (d) W, Wrec and 

Ș as a function of temperature. 

Fig. 8. Comparison of (a) Wrec vs electric field and (b) strain vs d33
* among lead-based and lead-free 

ceramics.12-25, 26-36, 48-92 
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Figure S1. Spectroscopic plots of Z’’ and M’’ for (a) BF-BT and (b) BF-BT-0.02BZN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S-2 



 
Figure S2. SEM images of BF-BT-xBZN (a) x = 0, (b) x = 0.005, (c) x = 0.01, (d) x = 0.02, (e) x = 0.05 and (f) 

x = 0.08. 
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Figure S3. Pmax, Pr and P as a function of electrical field for (a) BF-BT-0.05BZN and (b) BF-BT-0.08BZN.  
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Figure S4. Pmax, Pr and P of BF-BT-0.05BZN as a function of temperature at 120 kV/cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S-5 



 

Figure S5. the schematic diagram of the discharge circuit. 
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