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ABSTRACT

High recoverable energy density (W.. ~ 2.1 J/cm®) was obtained in (0.7-x)BiFe0;-0.3BaTiOs-
xBi(ZnsNbi3)03 + 0.1wt% Mn,O3 (BF-BT-xBZN, x = 0.05) lead-free ceramics at < 200 kV/cm. Fast
discharge speeds (< 0.5 ps), low leakage (~ 107 A/cm?) and small temperature variation in W (~ 25%
from 23 to 150 °C) confirmed the potential for these BiFeOs based compositions for use in high energy
density capacitors. A core-shell microstructure composed of a BiFeOs-rich core and BaTiOs-rich shell
was observed by scanning and transmission electron microscopy which may contribute to the high value
of energy density. In addition, for x = 0.005, a large electromechanical strain was observed with Spos =
0.463% and effective ds3" ~ 424 pm/V, suggesting that this family of ceramics may also have potential

for high strain actuators.
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INTRODUCTION

The current research into new energy storage materials is mainly driven by concerns regarding the
continued use of fossil fuels for automotive applications. Therefore, low cost, sustainable and
environmentally-friendly energy storage materials with high energy densities are required.!* Among
current energy storage devices, ceramic capacitors are emerging as promising technological alternatives
to fuel cells and batteries, because of their high power densities combined with fast charge-discharges
rates, which are favoured in advanced pulse power applications.*’ This drives the search for dielectrics
exhibiting both high energy and power densities, to satisfy for power supply components incorporated

into portable electronics, electric vehicles and other high power and energy storage applications.®1

To attain high recoverable energy density (W...) and efficiency (#), a polarization maximum (Ppax), @
small remnance (P,) and an optimised breakdown strength (BDS) are simultaneously required.
Furthermore, the stability of devices in a range of temperature is also a critical parameter. For example,
for hybrid electric vehicles these devices are expected to operate at temperatures ranging from -40 °C
to 140 °C. ! Consequently, ferroelectrics (FE) and antiferroelectrics (AFE) are promising candidates
due to their high P, and Curie temperature (7¢c). The total energy density (W), W, and 5 of FE and

AFE ceramics is given by:

W= [ EdP, (1)
Pmax

Wree = [, " EdP, )

n= Wied W (3)

where P, Puq and P, are the polarization, polarization maximum and remnance, respectively.

Although there are commercial energy storage devices based on La doped lead zirconate titanate,
concerns over the toxicity of PbO have led to a large body of recent research on lead free replacements
such as BaTiOs (BT), (KosNays)NbO; (KNN) and (BigsNaos)TiO; (BNT) based ceramics.'*?* Oxide
additives such as ALLO;, SiO,, MgO enhance both W,.. and BDS in BT-based ceramics'?>'* but BT-

Bi(M,N)O; (M = Li, Mg, Zn, N = Nb, Ti, Zr) ceramics show greater promise, with W,.. up to 2.5 J/cm3.!>-



2! In addition, BipsNag sTiO3-BaTiO;-KNbO; (BNT-BT-KN) and Big sNag sTiO3;-BaTiO3;-NaTaO; (BNT-
BT-NT) also exhibit large W, of 1.72 and 1.2 J/cm?, respectively.?>? In a recent study, Du et al. showed
a commensurate improvement in W, to ~ 4 J/cm® in KNN-ceramics due to an enhancement of BDS
(300~400 kV/cm), which was achieved by a careful control of grain growth.?*** BiFeO;-BaTiO; (BF-
BT) ceramics are characterised by high values of Curie maximum (7¢) and Py (> 40 uC/cm?) 2632, but
because their dielectric tand and P, are relatively large, their energy storage characteristics have been
seldom studied. Recently, Nb,Os, La(Mgi2Ti12)03, Ba(Mgi3Nb23)O3 and Nd>O3; have been used as
either dopants in, or in solid solution with, BF-BT with W, of 0.71, 1.66, 1.56, and 1.82 J/cm?,
respectively, reported®*~*¢ Nd doped BF-BT multilayers showed particular promise with both high W,

~6.74 J/cm? and 5 ~ 77%, from RT to 125 °C.%¢

Wu et al. theoretically predicted that FE ceramics with core-shell microstructure could achieve
enhanced energy density and reduced energy loss.” However, to our knowledge, up to now the energy
storage characteristics of BF-based ceramics featuring a core-shell microstructure remain elusive, as no
experimental evidence has been provided. Also Bi(Zn,sNbi3)O; (BZN) doped BF-BT materials were
recently reported to have excellent piezoelectric properties®’ but their energy storage performance is yet
to be determined, despite each effect relying on a large remanent/induced polarisation. In this work, a
unique core-shell microstructure was induced by the substitution of BZN into BF-BT, its impact on the

structure-property relationships, in particular on the energy storage characteristics, evaluated.

EXPERIMENTAL SECTION

Ceramic synthesis and characterisation: (0.7-x)BiFeO3-0.3BaTiO3-xBi(Zn2;3Nbi3)0s3 + 0.1wt% Mn,03
(BF-BT-xBZN, x = 0, 0.005, 0.01, 0.02, 0.05, 0.08) ceramics were fabricated using solid state
reaction.?®3¢ In order to increase the resistivity of ceramics, 0.1 wt% Mn,Os was added into the calcined
powder of BF-BT-xBZN.?*¢-?836 Mn-ions are considered to form defect dipoles with oxygen vacancies
and decrease their mobility. Densities of ceramics were determined by the Archimedes immersion
method and were typically >95%. The phase structure of sintered ceramics was determined at RT by

X-ray powder diffraction (XRD) using a Bruker D2 Phaser. Grain and sub-grain structures were



evaluated by scanning electron microscope (SEM) and transmission electron microscopy (TEM) using
an FEI Inspect F50 equipped with a backscattered (BSE) detector and a Tecnai G2-F20, respectively.
For SEM, ceramics were ground/polished to a mirror finish using wet abrasive paper and diamond paste
(MetPrep Ltd.). For TEM, BF-BT-0.05BZN ceramics were ground to 120 um, 3 mm disks
ultrasonically cut and their centers dimpled down to 10 pm. Prior to Ar-ion milling to achieve electron

transparency, samples were annealed at 650 °C/0.5 h to ensure that residual stresses were removed.

Electrical properties. Fired-on gold paste electrodes were applied to both surfaces of the ceramics.
100-120 °C was used to pole the electroded ceramics at fields of 40 ~ 60 kV/cm. A ferroelectric tester
(aixACCT TF 2000E) was employed to measure the polarization and the electric-field induced strain
from -50 °C to 150 °C using a 1 Hz triangular signal at provided by a TREK power supply. Leakage
current density was also measured using the aixACCT TF 2000E. The dielectric properties as a function
of temperature were evaluated from RT to 650 °C using an LCR meter (Agilent 4184A). AC impedance
spectroscopy was carried out at 400 °C using a second LCR Meter (Agilent E4980A). Charging-
discharge characteristics were determined using a capacitor discharge circuit.!®* A Tektronix DPO
4104 oscilloscope together with a Pearson 6585 coil were employed to obtain the discharge current
waveforms. The discharge energy was then measured using ceramics connected in series with a load

resistor (RL).

RESULTS AND DISCUSSION

Room temperature XRD data in the 20°~70° 26 range for BF-BT-xBZN ceramics are illustrated in Fig.
1(a). Reflections are ascribed to either a single-phase perovskite or a mixture of perovskite phases,
without any detectable secondary impurity phases for x < 0.08. Secondary peaks however, were
observed for x = 0.08, denoting the solid solubility limit for Zn;3/Nbas self-compensated doping in BF-
BT. The average ionic radii, R, of (ZnsNby;3)*" ions is given by R = 2/3R(Zn?") + 1/3R(Nb>") = 0.707
A (0.74 A and 0.64 A are the respective ionic radii of Zn>* and Nb>"),* which is larger than that of Fe**
and Ti*" (0.645 A and 0.605, respectively) and consistent with the diffraction peaks shifting to lower

diffraction angle with increasing BZN concentration (Fig.1). The likely crystal symmetry is often



determined by (021)/(110) peak splitting at ~20 = 32°. In the present case, expanded XRD patterns
reveal an apparent coexistence of rhombohedral (R) and pseudocubic (PC) symmetries at room
temperature in BF-BT-xBZN ceramics, as corroborated by broad multiple peaks. To confirm the phase
assemblage, Rietveld refinement of BF-BT-0.05BZN was carried out using a two-phase refinement
method (R3c + Pm3m) in the GSAS+EXPGUI package.’**° Observed and calculated patterns were in
good agreement for BF-BT-0.05BZN as demonstrated in Fig. 1(b) (R,= 7.6%, R., = 9.7% and chi-

squared (x?) = 2.3), corroborating the presence of PC (Pm3m) and R (R3c) symmetries.

The relative permittivity (¢;) and dielectric loss (tan J) for BF-BT-xBZN ceramics from RT to 550 °C
measured at 100 kHz are illustrated in Fig. 1(c). BF-BT and BF-BT-0.005BZN exhibit a relatively sharp
peak in & at 476 °C and 480 °C, respectively, associated with a ferroelectric to paraelectric transition
(Tc) on heating but with increasing BZN concentration, two broad dielectric maxima are observed, each
at lower temperatures. Furthermore, compared with BF-BT and BF-BT-0.005BZN, the maximum
dielectric permittivity (em) of BF-BT-xBZN (x > 0.005) decreases significantly and is accompanied by
the emergence of broad frequency-dependent dielectric peaks (Fig. 1c¢). These two modifications are a
manifestation of polar coupling disruption brought in by replacement of (Zn,;Nby3)* for Fe**. Despite
these changes, tan J remains < 0.15 at < 230 °C, and then increases greatly (Fig. 1c), presumably due
to a rise in dc conductivity. To evaluate the electrical homogeneity, impedance spectroscopy (IS)
analysis was performed at 400 °C, Fig. 1(d) and Fig. S1. Indeed, electrical homogeneity can be
qualitatively assessed from Z’” and M’ spectroscopic plots constructed from IS data.*'*? It is evident
that the peak positions of Z” and M” are almost coincident for BF-BT (Fig. Sla of ESI), however a
frequency offset between the Z” and M” peak is observed for BF-BT-0.02BZN and BF-BT-0.05BZN
(Fig. 1d and Fig. S1b of ESI). This shows the latter compositions to be electrically heterogeneous, which

we interpret on balance of evidence as arising from compositional inhomogeneity.

The SEM images of as-sintered and polished surface for BF-BT-xBZN are illustrated in Fig. S2 and

Fig. 2(a-c), respectively. All samples present a single modal grain size distribution around an average



of ~4 um (Fig. S2 of ESI). Except for BF-BT and BF-BT-0.005BZN ceramics, there is evidence of core
shell microstructure for BF-BT-xBZN (Fig. 2a-c), with dark and light contrast relating to BaTiOs-rich
and BiFeOs-rich regions according to energy dispersive X-ray spectroscopy (EDS) mapping (Fig. 2d-
k). The EDS elemental maps of polished BF-BT-0.05BZN samples are shown in Fig. 2(d-k). The Ba
and Ti signals are weaker in the brighter regions of the SEM image, associated with the grain cores (Fig.
2d and e). Conversely, Bi and Fe exhibit a slightly increased intensity in the brighter areas (Fig. 2f, g).
These results indicate that the observed core-shell microstructure in BF-BT-xBZN are associated with
the micro-segregation of Ba and Ti into the shell, while Bi and Fe are concentrated in the core regions.*!"
47 Murakami et al. investigated the role of composition and quenching on core-shell formation in
BiMg:3Nb,305 doped BF-BT ceramics.**? They concluded that the major influence was the onset of
immiscibility on cooling from the sintering temperature, driven by the electronegativity difference of

the dopant species. Effectively, the more covalent the dopants, the greater the tendency for immiscibility.

To examine the core-shell microstructure, TEM was conducted on BF-BT-0.05BZN ceramics. For
further data on undoped systems the reader is referred to ref. 36. Fig. 3a is bright-field (BF) TEM image
of a grain close to a <211>p. zone axis. The dark spherical region in the grain center corresponds to the
bright regions in the SEM images in Figure 2 and is thus BiFeOs rich. <211>,. zone axis diffraction
patterns (Fig. 2a) from the BiFeOs rich core have {¥22%2} superstructure reflections arising from
antiphase O-octahedral tilting consistent with an R3c phase.’® These superstructure reflections are
absent in the shell regions which are BaTiOs-rich, suggesting that they are PC. The weak aligned
contrast in the shell region is consistent with relaxor-like phases in which there is nano- rather than
micro- or meso-range correlation of dipoles, commensurate with the diffuse frequency dependent Curie
maxima, Fig. 3(b). The core and shell structures shown in Fig 3(a) and in Fig. 2 have been tentatively

assigned to the high (BiFeOs-rich) and low (BaTiOs-rich) temperature broad Cure maxima in Fig. 3(b).

Field-induced polarization (P-E), bipolar strain (S-E) and unipolar strain curves for BF-BT-xBZN
ceramics measured at 100 kV/cm are illustrated in Fig. 4(a-c) (no field-induced strain for BF-BT-

0.08BZN was detected). P;, coercive field (Ec) and electric-field induced positive (Spos) and negative



strain (Sneg) as a function of x are summarized in Fig. 4(d,e). The large signal piezoelectric strain
coefficient (ds3") and hysteresis (SH) are calculated by

d33” = Smax/Emax (5)

SH = Hemax/2/Smax, (6)
where Smax, Emax and Hemax2 is the average electric field induced maximum strain obtained from the
unipolar strain loops, the maximum electric field and the width of the loop at half the applied field,
respectively.”® BF-BT and BF-BT-0.005BZN ceramics exhibit saturated polarization loops and
butterfly-shaped strain loops at 100 kV/cm (Fig. 4a,b), which also corroborate the high electrical
resistivity of these ceramics. With increasing BZN content, the P-E and S-E loops become slimmer and
are no longer saturated (Fig. 4a,b), along with P, Ec, d33 and Sy, continuously decreasing (Fig. 4d,e),
suggestive of relaxor-like behavior, which is commensurate with both the broad en (Fig. 1c) and
nanodomain structure (Fig. 3). The largest Py~ 24.6 uC/cm?, Ec ~ 32.8 kV/cm, ds3 ~ 180 pC/N, Spee ~
0.079% values and smallest HS ~ 18.4% value are exhibited by BF-BT ceramics (Fig. 4d.e,f), due to
coexistence of R3¢ and PC symmetries (Fig. 1).%3¢ On the other hand, the largest Spos ~ 0.463% and
ds3” ~ 424 pm/V values are exhibited by BF-BT-0.005BZN ceramics (Fig. 4e,f), which arises from a
field-induced transition from short- to long-range dipolar order at the transition from a normal to a

relaxor ferroelectric (Fig. 4a,b and Fig. 1¢).2%%

Because of their slim P-E loops (Fig. 4a), BF-BT-0.05BZN and BF-BT-0.08BZN exhibit a greater
potential for energy storage and were selected for further characterization. Unipolar P-E loops are
illustrated in Fig. 5(a,b), with corresponding values of Puax, Pr and AP (Pmax - Pr) at different electric
fields given in Fig. S3. As the increase of electric field, Pmax and AP are found to increase linearly with
a marginal improvement of P, for both samples (Fig. S3). The highest values of Pmax and AP are 36.7
and 32.8 pC/cm? for BF-BT-0.05BZN at 180 kV/cm, 26.4 and 24.5 uC/cm? for BF-BT-0.08BZN at 190
kV/cm, respectively. Equations 1-3 are employed to calculate W, Wi and # , Fig. 5(c,d). As field
increases, W and W, increase, reaching 3.7 and 2.06 J/cm?® for BF-BT-0.05BZN at 180 kV/cm, and 2.9

and 1.98 J/cm® cm? for BF-BT-0.08BZN at 190 kV/cm, respectively. The # values, however, decrease



for both compositions to 53% for BF-BT-0.05BZN at 180 kV/cm and 68% for BF-BT-0.08 BZN at 190

kV/cm.

The discharge behaviour, leakage current and temperature stability are critical for high power
capacitors. The discharge behaviour of BF-BT-0.05BZN and BF-BT-0.08BZN as a function of
applied field is given in Fig. 6. The current increases as the electric field increases from 40
kV/cm to 70 kV/cm and all discharge processes occur within ~0.5 ps, as shown in Fig. 6(a,b).
The time for the discharge energy in the load to achieve 90% of the final value (t99), is obtained
from the W, curves (Fig. 6¢,d). 709 of both composition under different electric fields is less

than 0.1 ps.

In-situ temperature dependence of leakage current density (J) and unipolar P-E loops at 120
kV/cm for BF-BT-0.05BZN are shown in Fig. 7(a,b). The corresponding values of J, Pmax, P:
and AP are given in Fig. 7(c) and Fig. S4. W, W;.. and # are also calculated and plotted in Fig.
7(d). The value of J below 50 °C is of the order of 10”7 A/cm? in the high field region (Fig. 7a,c),
~ one order magnitude less than reported for BF-based ceramics at RT.***° From -50 °C to 150
°C, J consistently increases (Fig. 7a,c), indicating increased conductivity at high temperatures.
As temperature increases, saturated P-E loops are obtained at ~150 °C, giving increased values
of Pmax and P; (Fig. S4), which is attributed to lower activation energy of the transition from
relaxor to ferroelectric.?6*¢ W increases with temperature, while W;ec and # increase before
decreasing from a maximum of 1 J/cm® and 59% at 75-100 °C, Fig. 7(d). The variation in Wyec
is ~ 25% between RT and 150 °C, which is attractive for commercial applications.

8.12:25,26-36, 4892 W .. generally increases

A comparison of W and strain for ceramics is plotted in Fig.
with electric field but lead-based ceramics still exhibit larger Wrec values compared to the lead-free
ceramics (Fig. 8a). To our knowledge, BF-BT-0.05BZN has one of the highest value of Wiec ~ 2.1 J/cm?

among current lead-free FE ceramics with an electric field < 220 kV/cm, which is ascribed to the high



BDS ~ 190 kV/cm, Puax ~ 36.7 pC/cm? and AP ~ 32.8 uC/cm?. In Fig. 8(b), BF-BT-0.005BZN has one
of the highest values of strain ~ 0.463% amongst ferroelectric ceramics, with a medium value of ds3™ ~
424 pm/V and a low value of strain hysteresis ~38% (in comparison with BNT),#% which is attractive
for actuator applications. Core-shell structures in FE ceramics are reported to alleviate inhomogeneity
of local electric fields and weakens dielectric nonlinearity, resulting in slimmer hysteresis loops.’’
Although the work presented does not conclusively prove the arguments presented by the authors of ref.
37, enhanced energy storage is observed for core-shell BT-BF-xBZN compositions. Furthermore, we
note that recent multilayering of Nd doped BF-BT ceramics improved Wi from 1.82 to 6.74 J/cm? and
5 from 50 to 77%.¢ Similar improvements for multilayers of BF-BT-xBZN whose bulk ceramics have
superior energy storage properties would suggest that they have potential for commercialization should
lead based systems fail to gain exemption from future environmental legislation. Moreover, BT-BF-
xBZN compositions are rare-earth (RE)-free, lowering their cost and enhancing their potential for

sustainable manufacturing.

CONCLUSIONS

Dense BF-BT-xBZN lead-free ceramics were fabricated using solid state reaction. R and PC phases
coexisted in all studied BF-BT-xBZN compositions at RT. As BZN concentration increased, a core-
shell microstructure was observed with a BaTiOs-rich shell and BiFeOs-rich core, confirmed by SEM,
EDS, IS, TEM and LCR measurements. With the increase of BZN concentration, relaxor-like behaviour
dominated with P, Ec, d33 and Syee decreasing. The highest values of P;~24.6 uC/cm?, Ec~ 32.8 kV/cm,
dsz3 ~ 180 pC/N, Sneg ~ 0.079% and HS ~ 18.4% were achieved for the undoped BF-BT. The highest
value of Spos ~ 0.463% and ds3” ~ 424 pm/V was obtained for BF-BT-0.05BZN. For energy storage
properties, with increasing electric field, W and W, increased from 3.7 and 2.06 J/cm® for BF-BT-
0.05BZN at 180 kV/cm, and 2.9 and 1.98 J/cm® cm? for BF-BT-0.08BZN at 190 kV/cm, respectively. 5
decreased however, to 53% for BF-BT-0.05BZN at 180 kV/cm and 68% for BF-BT-0.08 BZN at 190
kV/cm, respectively. A fast discharge speed (less than 0.5 ms), leakage current ~ 107 A/cm? and a small
temperature variation in W, (~25% in a temperature range between RT and 150 °C) were also obtained,

suggesting that the BF-BT-xBZN is a potential lead-free candidate for pulsed power capacitors and



electromechanical actuators.
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Figure Captions:

Fig. 1. a) Room temperature XRD patterns of BF-BT-xBZN from 20°~70° 26. b) Rietveld refinement
analysis of BF-BT-0.05BZN using the GSAS+EXPGUI package. ¢) Temperature dependence of &; and
tano for BF-BT-xBZN; (d) Spectroscopic plots of Z’* and M’ for BF-BT-0.05BZN.

Fig. 2. SEM images of polished surfaces for BF-BT-xBZN (a) BF-BT, (b) BF-BT-0.02BZN and (c)
BF-BT-0.05BZN. EDS elemental mapping results of polished BF-BT-0.05BZN samples (d) Ba, (e) Ti,
(®) Bi, (g) Fe, (h) O, (i) Zn, (j) Nb and (k) elemental layered image.

Fig. 3. a) Bright field TEM image of a grain in BF-BT-0.05BZN, illustrating a BiFeOs rich core and
BaTiOs rich shell; <211> zone axis diffraction patterns reveal the absence of ¥2{ooo} superstructure
reflections in the shell (up) compared with core regions (down). b) The BiFeOs and BaTiO; core-shell
regions are tentatively ascribed to the high and low temperature dielectric anomalies.

Fig. 4. High electric field (a) bipolar P-E, (b) bipolar S-E and (c) unipolar S-E loops of BF-BT-xBZN
samples at 100 kV/cm. (d) P; and Ec as a function of BZN concentration. () Spos and Sy as a function
of BZN concentration. (f) ds;* and SH as a function of BZN concentration. ds; as a function of BZN
concentration is in the inset of (d).

Fig. 5. Unipolar P-E loops under different electric fields for (a) BF-BT-0.05BZN and (b) BF-BT-
0.08BZN. W, W, and # as a function of electric field for (c) BF-BT-0.05BZN and (d) BF-BT-0.08BZN.
Fig. 6. Time dependence of the pulsed discharge current for (a) BF-BT-0.05BZN and (b) BF-BT-
0.08BZN. Time dependence of Wi for (¢) BF-BT-0.05BZN and (d) BF-BT-0.08BZN.

Fig. 7. In-situ temperature dependence of (a) J and (b) unipolar P-E loops for BF-BT-0.05BZN at an
electric field of 120 kV/cm. (c) J as a function of temperature at different electric fields. (d) W, W and
n as a function of temperature.

Fig. 8. Comparison of (a) Wi vs electric field and (b) strain vs ds;" among lead-based and lead-free

ceramics ‘12-25, 26-36, 48-92
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Figure S1. Spectroscopic plots of Z’* and M’ for (a) BF-BT and (b) BF-BT-0.02BZN.
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Figure S2. SEM images of BF-BT-xBZN (a) x = 0, (b) x = 0.005, (c) x = 0.01, (d) x = 0.02, (e) x = 0.05 and (f)

x =0.08.
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Figure S3. Pmax, Pr and AP as a function of electrical field for (a) BF-BT-0.05BZN and (b) BE-BT-0.08BZN.

S-4



.
-

L
=
T
|
(O
(.
N
E
&

P (uC/em’)

|
[
I
R

\

At
!
\EI

%
\
N

O
O0—0—0—Q——O0—0""
0 »

L L Il L 1 L L " 1

-50 0 50 100 150
Temperature (°C)
Figure $4. Piax, Pr and AP of BF-BT-0.05BZN as a function of temperature at 120 kV/cm.

S-5



:L::FE Capacitor —

DC High C\/) R,
Voltage Source

Charge | Disharge

1! &2 N

High Voltage Y__ %

Switch

oscilloscope

Figure Sb. the schematic diagram of the discharge circuit.
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