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High-fat diet alters gut microbiota physiology in mice
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The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-
calorie diets. However, changes affecting the ecosystem at the functional level are still not well
characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat
(HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput
16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform
infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-
resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and
altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy
revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota
composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and
Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct
differences in cellular composition of dominant phylotypes under different diets. Metaproteome and
metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites
revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid
and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed.
We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.
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Introduction

Over the last century, the field of clinical micro-
biology has been driven by the study of pathogens

(Raoult et al., 2004), but recently, the importance of
commensal microorganisms that colonize various
body habitats has been brought to light (Lepage
et al., 2013). In particular, the gut microbial
ecosystem has emerged as an important factor
regulating host health and the onset of chronic
diseases such as inflammatory bowel diseases,
allergies and obesity (Blaut and Clavel, 2007;
Delzenne and Cani, 2011; Kau et al., 2011;
Hörmannsperger et al., 2012).

A proof of the causative role of gut microbes in
influencing host metabolism was provided by the
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observation that transfer of gut microbiota from
obese donor mice to germfree mice fed a standard
diet promoted adiposity (Backhed et al., 2004;
Turnbaugh et al., 2009). Nonetheless, the quantita-
tive contribution of the gut microbiota to host energy
balance remains elusive. Jumpertz et al., (2011),
recently proposed that an increased energy
harvest of ca. 150 kcal is associated with an
increase of 20% in the sequence occurrence of
Firmicutes and a corresponding decrease in
the Bacteroidetes in humans, although the impact
of high inter-individual differences in the percent-
age of energy lost in stools have been discussed
(Heymsfield and Pietrobelli, 2011). Driven by
the popularization of DNA sequencing-based
approaches, many studies have described changes
in gut bacterial diversity and composition after
ingestion of high-energy diets (Cani et al., 2008;
Turnbaugh et al., 2008; Fleissner et al., 2010).
However, the consequences of such changes in
bacterial diversity on the function of the ecosystem
are still unclear. Major advances in the assessment
of microbial gene occurrence by large-scale meta-
genomic sequencing have shed light on the genomic
potential of the gut microbiota and have indicated
possible changes in microbial activity related to
diet and metabolic disorders (Turnbaugh et al.,
2006; Qin et al., 2012). Nonetheless, direct proofs
of changes in activity and function of the ecosystem
in response to dietary challenge are urgently
required. Therefore, in the present work, we used a
combination of high-resolution spectroscopic
and mass spectrometric techniques for in-depth
characterization of the cecal ecosystem in mice.
We thereby provide novel insights into biochemical
alterations of the gut microbiota in response to a
high-fat (HF) diet.

Materials and methods

Animals and samples
All procedures were conducted according to the
German guidelines for animal care and approved
by the state ethics committee (ref. no. 209.1/211-
2531-41/03). The design of mouse trials has been
described elsewhere (Desmarchelier et al., 2012,
2013). Details are given in the Supplementary
Methods. Male C57BL/6NCrl mice (n¼ 6 per group)
were fed an experimental carbohydrate (CARB) or
HF diet for 12 weeks (Table 1). The data presented
in this paper were obtained in the course of four
feeding trials with exactly the same design
(Supplementary Figure S1). In trial 1–3, after cecal
weight determination, the content was divided into
two portions that were snap frozen in liquid
nitrogen. In trial 4, cecal contents were used in
their entirety in order to obtain sufficient starting
material (metaproteome via LC-MS/MS, n¼ 4;
metabolome via Fourier-transform ion cyclotron
resonance mass spectrometry (FT-ICR-MS), n¼ 3).

Experiments with germfree mice were performed as
explained in the Supplementary Methods.

High-throughput sequencing
Cecal samples were analyzed by sequencing the V4
region (233 bp) of 16S ribosomal RNA (rRNA) genes
in paired-end modus using the MiSeq system
(Illumina, San Diego, CA, USA). Detailed instruc-
tions are given in the Supplementary Methods. The
first 10 and last 20 nucleotides of all reads were
trimmed using the NGS-QC toolkit (New Dehli,
India) (Patel and Jain, 2012) to avoid GC bias
and non-random base composition as well as low
sequence quality at 30-end. Reads were assembled
using Pandaseq with a minimum overlap of 35bp
(Masella et al., 2012). Sequences were further
analyzed using the open source software package
QIIME (Boulder, CO, USA) (Caporaso et al., 2010)
and the Ribosomal Database Project (East Lansing,
MI, USA) (Cole et al., 2003). Filtering parameters
were as follows: minimum Phred score, 20; minimum
number of high-quality calls, 0.65; maximum number
of consecutive low-quality base calls, 5. Operational
taxonomic units were picked against the Greengenes

Table 1 Diet composition

CARB HF

GE (MJ kg�1) 18.0 25.2
ME (MJ kg� 1) 15.0 21.4
% carbohydrate 66.0 21.0
% protein 23.0 19.0
% fat 11.0 60.0
Crude protein 20.8 24.1
Crude fat 4.2 34.0
Crude fiber 5.0 6.0
Crude ash 5.6 6.1
Starch 48.8 1.1
Sugar 10.8 8.2
Dextrins — 15.6
Sodium 0.2 0.2
Casein 24.0 27.7
Corn starch 49.8 —
Maltodextrin — 15.8
Glucose 10.0 —
Sucrose — 8.0
Cellulose 5.0 6.0
Vitamin premix 1.0 1.2
Mineral/trace elements 6.0 6.1
L-cystine — 0.4
Choline chloride 0.2 0.3
Salt (NaCl) — 0.1
Butylhydroxytoluol — o0.1
Beef tallow (premier jus) — 31.0
Soybean oil 4.0 3.0

Abbreviations: CARB, carbohydrate; GE, gross energy; HF, high-fat;
ME, metabolizable energy calculated with the Atwater factors.
Nutrient contents are given in percentages (g 100 g�1). All
experimental diets were ordered from Ssniff GmbH (Soest, Germany):
CARB, cat. no. E15000-04; HF, E15741-34. The composition of the
standard laboratory chow diet (Ssniff GmbH, cat. no. V1534) used for
2 weeks prior to dietary treatment was: dry matter, 87.7; crude protein,
19.0; crude fat, 3.3; crude fiber, 4.9; crude ash, 6.4; starch, 36.5; sugar/
dextrins, 4.7; GE, 16.3; ME, 12.8; % carbohydrate, 58; % protein,
33; % fat, 9.
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database (Berkeley, CA, USA) at a threshold of 97%
similarity and those occurring in less than three mice
and with a total number of less than three sequences
were excluded from the analysis.

Fourier-transform infrared spectroscopy
In Fourier-transform infrared (FT-IR) spectroscopy,
samples are excited by an infrared beam and trans-
mitted light is recorded, resulting in spectra showing
at which wavelengths samples absorb light, depend-
ing on the nature of covalent bounds. Thereby, FT-IR
spectroscopy gives information on the overall bio-
chemical composition of microbial cells, and can be a
useful tool for the identification of pure cultures
(Wenning et al., 2006). Saline solution (0.9% NaCl in
water) was used for sample preparation by centrifuga-
tion to obtain cecal microbial pellets (Supplementary
Methods). Re-suspended pellets in saline solution
(referred to as cecal suspensions hereon) were
analyzed by transmission using a TENSOR 27 spectro-
meter coupled with a HTS-XT high-throughput device
(Bruker Optics, Ettlingen, Germany). The spectrum of
each sample was computed from 32 scans. Spectral
similarities were assessed by hierarchical cluster
analysis using the OPUS software version 6.5 (Bruker).

Confocal Raman microspectroscopy
Fluorescence in situ hybridization (FISH) was used
to identify target populations for Raman microspec-
troscopic analysis, which utilizes the principle of
Raman scattering to chemically fingerprint indivi-
dual microbial cells (Huang et al., 2007). The probes
used in the present study were Bac-0303 50-CCA
ATG TGG GGG ACC TT-30 (Manz et al., 1996)
and Erec-0482 50-CGC GGC ATT GCT CGT TCA-30

(Franks et al., 1998) (Thermo Fisher Scientific,
Vienna, Austria). Cecal samples that had been fixed
in 4% paraformaldehyde were hybridized on alu-
minum slides using a previously described hybridi-
zation protocol (Berry et al., 2012). Spectra of cells
from target populations were acquired using
a LabRAM HR800 confocal Raman microscope
(Horiba Jobin-Yvon, Munich, Germany) equipped
with a 532nm Nd:YAG laser as described previously
(Haider et al., 2010). Raman spectra were baseline
corrected and mean normalized in R using the
package ‘baseline’ (Liland and Mevik, Norway)
(Lieber and Mahadevan-Jansen, 2003). Machine-
learning classification of spectra was performed
with the ‘randomForest’ package (Liaw and
Wieners (2002); Merck Research Laboratories,
Whitehouse Station, NJ, USA) in R and plotted
using non-metric multidimensional scaling.

Protein identification by liquid chromatography and
tandem mass spectrometry
Cecal samples were prepared by centrifugation as
for FT-IR spectroscopy and microbial pellets were
lysed mechanically in the presence of protease

inhibitors (Supplementary Methods). After reduction
with 10mM dithiothreitol (10min, 95 1C) and alkyla-
tion with 50mM iodoacetamide (30min, room tem-
perature), proteins were separated on 4–12% NuPAGE
Bis-Tris gels (Invitrogen, Darmstadt, Germany; cat. no.
NP0321BOX) and stained with colloidal Coomassie.
The complete protein separation lane of each sample
was cut into 12 equal gel pieces (Supplementary
Figure S2) and in-gel digestion was performed with
sequencing grade trypsin (Promega) (Shevchenko
et al., 1996). Peptides were measured using an
Eksigent nanoLC-Ultra 1D Plus (Eksigent, Dublin,
CA, USA) coupled to a LTQ Orbitrap Velos (Thermo
Scientific, Bremen, Germany), as described in detail in
the Supplementary Methods.

Metaproteome data analysis
Peak picking and processing of raw MS data was
performed as in the Supplementary Methods. To
minimize the number of hypothetical proteins, spectra
were first searched against a compiled database
comprising 81 well-annotated genomes recovered
from the Integrated Microbial Genomes website of
the Joint Genome Institute (Supplementary Methods).
Confounder proteins not expected to be present in the
cecal samples were added to the database to ensure
specificity. Unmatched spectra were subsequently
searched against the entire NCBI database (download
date 10/26/2011). For all eight samples (each 12 gel
pieces), matched spectra obtained from both database
searches were compiled using Scaffold version 3.3.1
(Proteome Software, Portland, OR, USA). Threshold
parameters were as follows: protein probability, 95%;
minimum number of peptides, 1; peptide probability,
95%. Protein abundances were estimated using NSAF
(normalized spectral abundance factor) values calcu-
lated from the spectral counts of each individual
identified protein (Zybailov et al., 2006). Briefly, in
order to account for the fact that larger proteins tend
to contribute more peptides or spectra, spectral
counts were divided by protein length to provide
spectral abundance factors. These factors were
normalized against the sum of all spectral abundance
factor values in the corresponding run, allowing
comparison of protein levels across different runs.
NSAF was used as quantitative measure of protein
abundances for subsequent statistical analyses.
UniProt accession numbers were obtained using the
ID mapping function at www.uniprot.org. Protein
sequences were downloaded via batch retrieval at
the Protein Information Resource website. Protein
sequences were assigned to Clusters of Orthologous
Groups (COG) by performing a BLASTP (Altschul
et al., 1990) against the COG database (Tatusov et al.,
2003). BLAST results were further parsed for best hit
with an e-value lower than 1e� 5.

High-resolution metabolomics
Cecal samples were prepared by solid-phase extrac-
tion as described in the Supplementary Methods.
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Ultrahigh resolution mass spectra were acquired
using a SOLARIX FT-ICR-MS (Bruker Daltonik
GmbH, Bremen, Germany), equipped with a 12
Tesla superconducting magnet and an Apollo II
ESI source. FT-ICR-MS settings are given in the
Supplementary Methods. Samples were measured
in parallel in positive and negative ESI mode due to
ionization and detection of different compounds.
Raw spectra were processed with Data Analysis
Version 4.0 SP2 (Bruker Daltonik GmbH). They were
calibrated internally using reference lists of known
masses with an error below 0.1 p.p.m. Calibrated
spectra were exported to .asc files with a signal-
to-noise ratio of 4. The acquired peak lists were
aligned by means of in-house software with an error
p.p.m. of 1. The aligned data matrix was filtered and
only masses detected in at least two of the three
biological replicates were kept for subsequent
data processing. The filtered matrix was analyzed
using Hierarchical Clustering Explorer (College
Park, MD, USA) (Seo and Shneiderman, 2002)
for unsupervised multivariate data analysis and
MultiExperiment Viewer (Saeed et al., 2006) for
calculation of significant masses by two-tailed
Student’s t-test (adjusted P-valueo0.01). Possible
metabolite identities of significant masses were
assigned using the MassTRIX web server (Suhre
and Schmitt-Kopplin, 2008) with a maximum error of
1p.p.m. for both ionization modes. Masses were
searched against the KEGG (Kyoto Encyclopedia of
Genes and Genomes) (Kanehisa and Goto, 2000),
HMDB (Human Metabolome Database) (Wishart
et al., 2007) and Lipid Maps (www.lipidmaps.org)
databases usingMus musculus as reference organism.

Statistics
Unless otherwise stated, statistical tests were done
using the R programming environment. For all tests,
the bilateral alpha risk was a¼ 0.05. Data were
expressed as mean±s.d. and tested for normal
distribution and equality of variances before statis-
tical testing. Non-parametric data were analyzed
using the Mann–Whitney U test. The Benjamini–
Hochberg procedure was used for multiple testing
corrections. For the metaproteomic NSAF data set,
the Bioconductor package PLGEM (Power Law
Global Error Model) (Pavelka et al., 2004) was used
to fit a PLGEM to the NSAF data set. It has been
shown that the use of PLGEM-based standard devia-
tions to calculate signal-to-noise ratios in a NSAF
data set improves determination of protein expres-
sion changes, as it is more conservative with pro-
teins of low abundance than proteins with high
abundance. The goodness-of-fit of the model to the
NSAF data and the relevant algorithmic details of
the PLGEM method are explained in detail else-
where (Pavelka et al., 2008). Principal component
analysis of exported normalized FT-IR spectra was
done using SIMCA-P 12.0.1.

Results

High-fat diet induced obesity and altered microbial
diversity and composition
The HF diet caused (i) an increase in body weight over
the 12-week-long feeding trial (CARB, 29.9±0.63g;
HF, 43.2±4.4 g) (Supplementary Figure S3), (ii) fasting
hyperglycemia (Supplementary Table S1) and
(iii) a marked reduction in mean cecal mass (tissue
plus content): CARB, 342±36mg; HF, 223±
37mg (Po0.001; t-test). To assess the impact of
experimental feeding on dominant bacterial commu-
nities, we sequenced V4 amplicons of 16S rRNA
genes. After trimming, assembly and quality filtering,
we obtained a total of 82698 sequences (6892±2419
per sample) of 233bp length. The HF diet did
not significantly affect taxa richness (Shannon diver-
sity index: CARB, 5.37±0.63; HF 4.96±0.67)
(Supplementary Figure S4). Beta-diversity analysis
(unweighted Unifrac) showed that samples clustered
according to diet, although intra-group variations were
high (Figure 1a). As expected, phylum-level composi-
tion was dominated by members of the Firmicutes (71
to 98% of total sequences) and Bacteroidetes (1–16%)
(Supplementary Table S2). Despite marked inter-
individual differences at the family level, sequence
proportions were significantly lower for Rumino-
coccaceae (phylum Firmicutes) and higher for Rike-
nellaceae (phylum Bacteroidetes) in HF mice
(Figure 1b and Supplementary Table S3). Lactobacilli
were detected in higher proportions in mice fed the
HF diet (4–29%), but one control mouse had also a
very high proportion (49%). Proportions of Erysipelo-
trichales were higher in three of six HF mice
compared with CARB mice, reaching up to 43% in
one HF mouse (Supplementary Table S3). The
occurrence of 19 dominant operational taxonomic
units (OTUs) was significantly affected by the HF
diet (Supplementary Table S4). Most of them
belonged to the order Clostridiales and their
sequence numbers were lower in HF mice. In
agreement with the aforementioned results, HF mice
were characterized by increased numbers of two
OTUs within the genus Alistipes (a genus in the
Rikenellaceae with up to 3.5% total sequences).
Other major OTUs with a higher prevalence in
HF mice included one dominant member of the
Clostridium cluster XIVa (0.01 vs 4.33% in HF mice)
and two Clostridium species.

In order to determine if the HF diet causes not
only alterations in the composition of the microbiota
but also changes to the biochemical environment
and microbiota activity in the gut, we performed
spectroscopic and mass spectrometric analyses of
cecal samples.

Cecal and single-cell chemical fingerprints were
diet-specific
To examine the effect of diets on chemical finger-
prints in the cecum, samples were analyzed using
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FT-IR spectroscopy. Cluster analysis of FT-IR spectra
revealed a clear separation of chemical fingerprints
according to the diet (Figure 2a). There was a
clear correlation between peak height and dietary
composition in region 2 and 4, which corresponds to
lipids and carbohydrates, respectively (Figure 2b).
The carbohydrate content was markedly reduced in
HF mice, accompanied by a reduced amount of
water probably related to reduction in hydration
water of carbohydrates and proteins. In spectral
region 3 (proteins), the amide I band at 1650 cm�1

was clearly reduced in HF samples. In contrast, we
observed four new peaks at 1580, 1540 and 1470 as
well as one additional peak at 725 cm� 1, the
absorption of which can be attributed to aromatic
rings and heteroaromatic nitro compounds (Colthup
et al., 1990). As a proof-of-concept for the impact of
bacterial colonization on cecal chemical finger-
prints, we compared samples from mice monocolo-
nized with Bacteroides thetaiotaomicron to those
from conventional mice. As illustrated by micro-
biota-specific clusters of mice after multivariate
analysis, cecal FT-IR spectra were dependent upon
the colonization status of mice (Figure 2c). The

ability to distinguish altered ecosystem composition
on the basis of FT-IR spectra was supported
in another mouse cohort by the observation that
cecal suspensions after antibiotic treatment
clustered distinctly from control samples (cecal
preparation from mice on water without antibiotics)
(Supplementary Figure S5). However, spectra were
overall most affected by the diet, that is, cluster
depth after average linkage clustering of samples
from conventional mice and gnotobionts on the
CARB or HF diet was about threefold higher for diet
vs colonization effects (data not shown).

We then aimed at refining the resolution of
analysis by comparing the biochemical composition
of cecal communities at the level of single cells.
Therefore, we used FISH to target members of the
abundant groups Bacteroidales and Lachnospira-
ceae and measured cellular chemical composition
by Raman microspectroscopy. These groups were
selected because they were abundant in all mice and
alterations in their phylotype composition were
observed due to diet. Using fixed cecal biomass
from duplicate mice from the CARB and HF group,
we acquired a total of 112 single-cell spectra, with
7–20 cells measured for each FISH-defined popula-
tion in each sample. Analysis with the Random
Forests classifier showed that single-cell spectra
from Bac-0303 and Erec-0482 groups were clearly
distinguishable from each other under both diets
(Figure 3a), due in large part to a much higher peak
in the Erec-0482 group at 480–482 cm� 1 (Figure 3b).
An effect of the two diets was also observed in the
single-cell spectra, especially in the case of Erec-
0482-positive cells (Figure 3a). No single peaks
alone had high discriminative power for the diet-
related differences (Figure 3b), but rather small
differences in the intensity of many wave numbers
in the spectra collectively allowed for discrimina-
tion with the machine-learning classifier.

High-fat diet altered the gut bacterial metaproteome
To corroborate the hypothesis that biochemical
changes observed using FT-IR and Raman spectro-
scopy reflect changes in microbial functions, we
further analyzed cecal microbiota from mice fed the
CARB and HF diet at the proteome level using
LC-MS/MS (n¼ 4 mice per diet). The majority
of identified proteins (94%) were of bacterial origin.
A total of 114 mouse proteins were identified
in the samples (Supplementary Results and
Supplementary Table S5). After iterative search,
74 553 out of 1 409 370 acquired spectra were
matched to 1760 microbial proteins with a false-
discovery rate of 0.6% at the protein level
(Supplementary Table S5). Of these 1760 proteins,
approximately 18% were hypothetical and 29%
were housekeeping proteins (ribosomal and chaper-
one proteins, polymerases, transcription and trans-
lation factors). The mean number of spectra and
proteins per mouse were as follows: CARB diet,
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Figure 1 Changes in dominant bacterial diversity and composi-
tion. Cecal samples from mice in the CARB and HF group (n¼6
each) were analyzed by Illumina sequencing of 16S rRNA gene
amplicons (V4 region; 233bp). Sequences were analyzed using
QIIME and the RDP. (a) Principal component analysis revealed
grouping of samples according to diet. (b) HF feeding was
associated with a significant reduction in the proportion of
sequences assigned to the family Ruminococcaceae and an
increase in the proportion of Rikenellaceae. Taxa were assigned
using the Greengenes Database (released October 2012).
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10 481±2445 and 816±68; HF diet, 5377±623 and
579±28. A proportion of 36 and 23% annotated
proteins occurred only in CARB and HF mice,
respectively (Figure 4a). A heat map including
342 proteins, the occurrence of which was signi-
ficantly different between the two groups, showed
homogenous metaproteome patterns between repli-
cate mice (Figure 4b). After principal component
analysis, the two groups of mice clustered very
distinctly along PC1, which explained 67% of the
variability within the data set (Supplementary Figure
S6). For each group, variables (differentially detected
proteins) that correlated with PC1 are given in
Supplementary Table S5. COG category assignment
showed that overall functional patterns were similar
in the CARB and HF groups (Supplementary Figure

S7) and were dominated by enzymes involved in
energy production from carbohydrate metabolism
originating from a variety of bacterial species
(Supplementary Results and Supplementary
Table S5). However, functional assignment of
differently detected proteins revealed significant
variations between the dietary groups (Figure 4c).
The prevalence of functional category C (energy
production and conversion), G (carbohydrate meta-
bolism and transport) and O (post-translational
modification, protein turnover, chaperone functions)
was higher in mice fed the CARB diet whereas the
prevalence of category E (amino-acid metabolism and
transport), J (translation) and S (unknown functions)
was higher in mice fed the HF diet (Supplementary
Results and Supplementary Table S5).
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mainly carbohydrate (920 to 1080 cm�1) wave numbers. These factors explain 58.5% and 21.0% of the quantitative variations within the
wave number span of the spectra, respectively. The mean body weight of mice monocolonized with B. thetaiotaomicron was 22.4±1.3 g
(CARB) and 26.2±1.9 g (HF) after 3 weeks of experimental feeding (P¼0.017; t-test). CARB, conventional mice on control diet (black
dots); HF, conventional mice on high-fat diet (gray triangles); BtCARB, mice monocolonized with B. thetaiotaomicron DSM 2079T on
control diet (circles); BtHF, monocolonized mice on high-fat diet (empty triangles).
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Non-targeted metabolome analysis revealed distinct
metabolite patterns
To further describe the cecal ecosystem at the
functional level, three cecal contents in each the
CARB and HF group were analyzed by FT-ICR-MS
to obtain high-resolution metabolite profiles.
The complete data set (filtered and significant
mass values with annotations) is provided in
Supplementary Table S6. The distribution of filtered
mass values between the two dietary groups showed
that most masses were discriminative (Figure 5a). HF
and CARB samples shared only 15 and 28% of
features in the negative and positive electrospray
ionization mode, respectively, underscoring that diet
has a profound impact on cecal biochemical compo-
sition and molecular diversity. Cluster analysis
resulted in a clear separation of CARB and
HF samples, that is, diet-induced effects on the
metabolome in cecal contents were much higher
than inter-individual differences between the three
mice in each group (Figure 5b). A total of 2534
features were significantly different between CARB
and HF mice (Po0.01). Using MassTRIX annotation
and KEGG reference pathways, 86 differently
detected metabolites were identified. We noted
the presence of fatty acids, steroid hormones,
anti-microbial substances (macrolides) and bacterial
products such as cis-2-carboxycyclohexyl-acetic acid,
cis-2,3-dihydroxy-2,3-dihydro-p-cumate, pravastatin
and urobilinogen. Among these metabolites, fatty
acids and urobilinogen were specific for the HF diet
(Table 2).

Discussion

The intestinal microbiota has been extensively
studied at both the phylogenetic and metagenomic
level in the context of metabolic disorders. The
novelty of the present work lies in the comparative
characterization of microbial communities in the
mouse cecum at the biochemical level after feeding a
HF diet.

We found that HF feeding alters the diversity and
composition of intestinal microbiota. Mice in the HF
group were characterized by increased relative
abundance of Rikenellaceae, which is in agreement
with other reports based on qPCR and FISH that
found no decrease in Bacteroidetes following HF
feeding (Cani et al., 2008; Duncan et al., 2008). The
presence of Alistipes, a genus within the Rikenella-
ceae, has also been recently associated with type-2
diabetes in humans (Qin et al., 2012). In addition,
we found that Ruminococcaceae (phylum Firmi-
cutes) were decreased, which makes sense in light of
the fact that ruminococci are major utilizers of plant
polysaccharides, the amount of which is substan-
tially decreased in HF diets (Flint et al., 2012;
Ze et al., 2012). Lactic acid bacteria have been
proposed to be key players in host metabolic balance
(Armougom et al., 2009; Delzenne and Reid, 2009;

Arora et al., 2012). Mean Lactobacillus relative
abundances were generally higher in the HF group
(12.5 vs 9.7%), but diet-associated differences were
not statistically significant due to marked inter-
individual variations. It is worth mentioning that,
when compared with studies showing rapid changes
in bacterial communities due to high-calorie diets,
the data obtained in the present work relate to
adaptation of the gut ecosystem and the host to long-
term feeding (12 weeks) (Desmarchelier et al., 2012,
2013), which may explain, together with differences
in HF diet composition, some of the variations

CARB HF

(+) mode

CARB HF

11187743194

27681283539

Low

High

(-) mode

(+) mode

CARB HF

(-) mode

Figure 5 Metabolomic data (a) Venn diagrams for positive and
negative ESI-FT-ICR-MS mode showing the number of mass
values discriminating cecal metabolite patterns from CARB and
HF mice (each n¼3). Most features specific for HF mice and
distinguishing the two diets were detected after measurement in
positive mode (b) Hierarchical cluster analysis using Average
Linkage (Unweighted Pair Group Method with Arithmetic Mean)
and Pearson correlation coefficient for groups and variables. For
each ionization mode, branches within the two main metabolite
clusters (y axis) appear in blue (e.g. high in CARB in (þ ) mode) or
red (high in HF). Centered and normalized peak intensities are
color coded from low (green) to high (red).
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observed as well as differences with data from the
literature (for example, regarding abundance
changes of Bacteroides or Erysipelotrichaceae).

The fact that a HF diet may alter cellular
composition of microorganisms is suggested by
in vitro studies showing that the addition of
cholesterol and fatty acids to growth media alter
lipid and cell membrane composition of lactic acid
bacteria (Dambekodi and Gilliland, 1998; Lye et al.,
2010). In the present work, we used FT-IR and
Raman spectroscopy to show that a HF diet induces
changes in chemical composition of the cecum and
single cells as a hint for changes in bacterial
physiology. The analysis of cecal samples from

mice mono-associated with B. thetaiotaomicron vs
conventional and from antibiotic-treated mice
revealed that, for a given diet, samples clustered
distinctly, testifying to the ability to discriminate
FT-IR spectra on the basis of microbial community
structure. However, spectral distances between
diet-dependent clusters were higher than micro-
biota-driven clusters. Thus, taking into account that
the monocolonized, antibiotic-treated and conven-
tional mouse models that we used represent extreme
cases, we concluded that diet alters spectra to a
higher extent than bacterial composition. It has been
shown that the excess of certain nutrients, including
lipids, can result in the formation of storage granules

Table 2 Identified features contributing to diet-specific FT-ICR-MS profiles

CARB intensity (n) HF intensity (n)

CARB diet-specific metabolites
Steroid hormone biosynthesis
Allotetra hydrodeoxycorticosterone 6,022,197 (3) 0 (0)
11beta,21-Dihydroxy-5beta-pregnane-3,20-dionea 12,256,770 (3) 0 (0)
Aldosteroneb 40,386,531 (3) 0 (0)
Cortolc 19,629,775 (3) 0 (0)
Testosterone glucuronide 3,626,084 (3) 0 (0)
Androsterone glucuronided 16,261,771 (3) 3,900,967 (2)

Microbial metabolism in diverse environments
cis-2-Carboxycyclohexyl-acetic acid 4,116,462 (3) 0 (0)
cis-2,3-Dihydroxy-2,3-dihydro-p-cumate 2,408,782 (3) 0 (0)

Biosynthesis of 12-, 14-and 16-membered macrolides
10-Deoxymethynolide 27,444,569 (3) 3,494,241 (2)
8,8a-Deoxyoleandolide 59,777,639 (3) 12,161,516 (3)
Oleandolide 93,629,776 (3) 18,567,187 (3)
6-Deoxyerythronolide B 32,516,089 (3) 3,925,532 (2)
Erythronolide B 63,863,133 (3) 3,720,904 (2)
3-O-alpha-Mycarosylerythronolide B 25,751,484 (3) 0 (0)

Bile acid biosynthesis and bile secretion
Pravastatin 40,424,347 (3) 9,377,244 (3)
3alpha,7alpha,12alpha,26-Tetra hydroxy-5beta-cholestane 4,727,224 (3) 0 (0)

HF diet-specific metabolites
Fatty acid biosynthesis
Decanoic acid 0 (0) 2,509,582 (3)
(6Z,9Z,12Z)-Octadecatrienoic acide 3,648,269 (2) 21,133,473 (3)
(9Z)-Hexadecenoic acid (¼palmitoleic acid) 5,110,652 (3) 34,486,283 (3)
Linoleatef 4,116,114 (2) 49,977,956 (3)
Tetradeca noic acid (¼myristic acid) 6,560,960 (3) 35,976,376 (3)
(8Z,11Z,14Z)-Icosatrienoic acid 7,386,592 (2) 72,601,368 (3)
(9Z)-Octadecenoic acid (¼ oleic acid) 42,947,039 (3) 1,164,910,976 (3)
Hexadecanoic acid (¼palmitic acid) 53,440,799 (3) 856,402,496 (3)
Octadecanoic acid (¼ stearic acid) 155,914,441 (3) 1,067,133,440 (3)

Porphyrin and chlorophyll metabolism
D-Urobilinogeng 0 (0) 4,375,615 (3)
L-Urobilinogen 1,633,985 (1) 88,861,815 (3)
I-Urobilinogen 31,249,205 (3) 592,250,379 (3)
L-Urobilin 26,692,537 (2) 422,294,496 (3)

FT-ICR-MS, Fourier-transform ion cyclotron resonance mass spectrometry;
Significant masses were annotated using MassTRIX searching against the KEGG, HMDB and Lipid Map databases. Values are mean peak
intensities in cecal samples from mice fed the carbohydrate (CARB) or high-fat (HF) diet. Numbers of positive mice are given in brackets.
Superscript letters refer to masses with several possible annotations:
a17alpha,21-Dihydroxypregnenolone, 3alpha,21-Dihydroxy-5beta-pregnane-11,20-dione.
bCortisone.
cCortolone.
dEtiocholan-3alpha-ol-17-one 3-glucuronide.
e(9Z,12Z,15Z)-Octadecatrienoic acid, Crepenynate.
f9-cis,11-trans-Octadecadienoate.
gI-Urobilin.
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or vesicles in the microbial cells (Bauchart et al.,
1990), which can have pronounced effects on FT-IR
fingerprints (Naumann, 2000) and may even mask
differences in microbial composition (Bosch et al.,
2008). Still, it is very likely that part of the spectral
differences that we observed were not of microbial
origin, that is, due to dietary constituents remaining
in the sample or adhering to bacteria. We therefore
tested the hypothesis that the differences in diet
would result in accumulation of storage compounds
by employing single-cell analysis with Raman
microspectroscopy. Surprisingly, we found no
evidence of increase in storage compounds under
either diet, though Erec-0482-positive cells had a
higher peak at 480–482 cm� 1 than Bac-0303-positive
cells. This peak is due to intracellular glycogen or
polyglucan storage (Movasaghi et al., 2007), which
likely reflects the presence of the clostridial-equiva-
lent of glycogen, granulose, a high molecular weight
polyglucan important for sporulation (Reysenbach
et al., 1986). Nonetheless, analysis of chemical
composition at the single-cell level confirmed that
the overall cellular composition of bacteria within
the abundant bacterial groups Bacteroidales and
Lachnospiraceae was altered by HF feeding, which
may be due to the shifting phylotype dynamics that
were observed within this group and possibly also
altered activity.

While many studies have shown that microbial
diversity is altered by dietary changes (Clavel et al.,
2005; Martinez et al., 2009; Jumpertz et al., 2011;
Kau et al., 2011), much less is known about the
impact of diet on the metabolic potential of gut
microbiota (Martin et al., 2010; McNulty et al., 2011;
Muegge et al., 2011). To our knowledge, this is the
first report on the adaptive response of the gut
metaproteome to dietary challenge. Since the first
gel-based metaproteome published in 2007
(Klaassens et al., 2007) and the state-of-the art
LC-MS/MS work by Verberkmoes et al. (2009), the
size of genomic databases has been rising exponen-
tially. Nevertheless, annotation of peptide spectra
remains challenging and functional interpretation
based on the occurrence of dominant proteins is
limited, that is, taking into account the high degree
of diversity of the intestinal microbial ecosystem, we
still profit only from a narrow window of analysis at
the proteome level (Rooijers et al., 2011; Haange
et al., 2012; Kolmeder et al., 2012; Perez-Cobas et al.,
2012). This challenge is reflected in the present
study by the fact that only 5% of all tandem MS
spectra acquired could be matched to protein
sequences from the databases. In contrast, up to
50% of all spectra can be commonly identified for
sequenced microorganisms.

The total number of proteins identified in the
mouse cecal samples that we analyzed (n¼ 1760) is
comparable to results obtained using human fecal
samples (n¼ 1500 to 1800 proteins) (Verberkmoes
et al., 2009; Kolmeder et al., 2012). After functional
category assignment of identified proteins, our data

confirmed that, regardless of diet, the dominant
mammalian gut metaproteome is involved in energy
production from carbohydrate metabolism. How-
ever, in the HF group, we observed a lower spectra
occurrence for proteins classified in COG category C
(energy production and conversion). These findings
suggest that (i) the microbial ecosystem is not well
prepared for efficient energy harvest when 60%
of dietary energy originates from fat. The HF
diet-induced increase in spectral abundance factors
related to category J (translation) may reflect
adaptation of microbial cells to meet their needs
for survival in a milieu with low energy originating
from carbohydrates. For example, in vitro studies
showed that levels of protein synthesis in marine
Sphingomonas during starvation were low but
preformed ribosomes and whole-cell proteins were
retained for at least 7 days in culture (Fegatella and
Cavicchioli, 2000). The authors proposed that in
starvation, the number of ribosomes is in large
excess relative to protein synthesis requirements,
which may corroborate increased signals for riboso-
mal proteins in our HF data sets; and (ii) the depth
of analysis (both in terms of biological replicates and
protein annotation) is still limiting, that is, only
most dominant proteins are detected, which likely
prevents better discrimination of the effect of the
two diets at the metaproteome level.

Bacterial response to the HF feeding included a
sharp decrease in the occurrence of proteins
involved in carbohydrate metabolism as well as a
reorganization of amino acid metabolism. Indeed,
among proteins that best characterized microbiota
from mice fed the HF diet, we noted the presence of
enzymes metabolizing amino acids (aminotrans-
ferases and proteases) that were not detected in
CARB mice. We thus propose that shifts in the
metabolism of amino acids such as histidine
(ammonia-lyase, glutamate formimidoyltransferase,
urocanate hydratase) and alanine (alanine and
glutamate dehydrogenase) as well as arginine and
proline coupled with the use of glutamate as a
source of pyruvate for energy production (acetylor-
nithine aminotransferase, glutamate dehydrogenase,
(R)-2-hydroxyglutaryl-CoA dehydratase, urease)
represent the most prominent metabolic adaptations
of the microbial ecosystem to the HF diet (Potrykus
et al., 2008). This may corroborate (i) the higher
protein to carbohydrate ratio in the HF vs CARB diet
(ca. 1:1 vs 1:3), and (ii) increased production of
branched-chain fatty acids from the amino acid
leucine, isoleucine and valine reported by others
after HF feeding in humans or protein fermentation
in vitro (MacFarlane et al., 1992; Russell et al.,
2011). The occurrence of only two of seven enzymes
involved in the metabolism of the aforementioned
branched-chain amino acids was higher in the HF
metaproteome. Of note, in contrast to the suggested
increase in the production of short-chain fatty acids
linked to higher prevalence of specific members
of the Firmicutes (for example, Erysipelotrichaceae)
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in diet-induced obesity (Turnbaugh et al., 2008),
evidence from human intervention studies
clearly indicates decreased short-chain fatty acids,
in particular butyrate, yet increased branched-
chain fatty acids concentrations after HF feeding
(Brinkworth et al., 2009; Russell et al., 2011).
Thus, the notion of increased capacity of the
microbiome for energy harvest in the context of
diet-induced obesity should be taken with caution,
although results may depend on diet composition
(for example, content of simple sugars or proteins)
and duration of feeding as well as the host
phenotype (lean or obese). Most recent metagenomic
data suggest that low-diversity (gene count) fecal
microbiomes, which seem to be associated with
adiposity and metabolic disturbances, are character-
ized by decreased capability of producing butyrate
(Le Chatelier et al., 2013).

The metaproteomic data set is also in agreement
with previously published transcriptome analysis
and functional prediction of metagenomic sequen-
cing reads (Turnbaugh et al., 2008, 2009). In the
aforementioned studies, the authors reported that the
cecal metagenome from mice fed a HF/high-sugar
Western diet was enriched in genes assigned to
glutamate metabolic pathways. They also proposed
that the microbiome adapted to the Western diet
by increasing transport and conversion of simple
sugars and host-derived glycoproteins, which agrees
with the higher occurrence of 2-dehydro-3-deoxyglu-
conokinase, 6-phosphofructokinase, N-acetylglucosa-
mine-6-phosphate deacetylase and two sugar-binding
proteins (gi:282600834 and gi:266619140) in the
present HF metaproteomic data set. Also consistent
with our results, Yatsunenko et al. (2012) recently
proposed that a Westernized diet is associated with
metagenomes enriched in amino acid- and simple
sugar-degrading enzymes when compared with
African populations on rural diets high in complex
carbohydrates. Finally, the cecal HF metaproteome
was characterized by three enzymes (glutaredoxin,
alkyl hydroperoxide and thioredoxin reductase)
involved in oxidative stress responses, which may
reflect adaptation to an environment with altered
redox potential (Xiao et al., 2010).

Holmes et al. (2012) have provided evidence that
the gut microbiome influences host metabolic
phenotypes, based primarily on NMR studies
(Claus et al., 2008; Calvani et al., 2010). However,
only few papers focused on the analysis of metabo-
lites in intestinal content (Martin et al., 2010).
In line with the pioneering work by Jansson et al.,
(2009), we used a non-targeted metabolomic appro-
ach based on ultrahigh resolution mass spectro-
metry to identify diet-derived, host and microbial
metabolites in cecal samples. Antunes et al. (2011)
have also recently used FT-ICR-MS to assess the
effect of antibiotics and Salmonella infection on the
metabolome in mouse feces. They found that both
treatments altered host hormone metabolism, for
example, production of steroids and eicosanoids. In

the present study, we detected prostaglandins,
thromboxanes and several steroids and conjugates
thereof, which were essentially absent in cecal
samples from mice fed the HF diet. This implies
that host steroid hormone homeostasis can also be
affected by a HF diet. Although literature data are
inconsistent, studies have demonstrated that HF
diets can influence, for instance, serum testosterone
levels in mice and humans (Reed et al., 1987;
Meikle et al., 1990; Whyte et al., 2007). Interestingly,
the absence of cholesterol-derived products like
steroids in the cecum of HF mice corroborates with
the finding that mice on the same HF diet were
characterized by lower intestinal and hepatic levels
of cholesterol in spite of plasma hypercholesterole-
mia, probably due to increased demand for lipid
absorption (Desmarchelier et al., 2012).

Samples from CARB mice were also characterized
by the identification of (i) metabolites involved in
naphthalene and xylene/cymene degradation by
bacteria, and (ii) pravastatin, a potent inhibitor of
hydroxymethylglutaryl-CoA reductase with choles-
terol-lowering effects, which can also be produced
by a variety of bacteria (Serizawa, 1996; Park et al.,
2003). In addition, the occurrence of various macro-
lides in CARB samples may partly explain distur-
bances in gut microbial composition after HF
feeding due to changes in the pool of anti-microbial
substances present in the cecum. In cecal samples
from mice fed the HF diet, fatty acid levels were
much higher than in CARB mice, reflecting the
proportion of major fatty acids in the HF diet (12%
oleic acid, 8% palmitic acid, 6% stearic acid, 2%
linoleic acid). We also noted the presence of a
ceramide (N-acylsphingosine), for which de novo
synthesis may be promoted by high levels of
palmitate in the HF diet. Ceramide production may
also be enhanced by hydrolysis of sphingomyelin,
which corroborates with the detection of a
secreted protein of the sphingomyelinase family
(sp|P58242|ASM3B_MOUSE) in the mouse cecal
proteome after HF feeding. Of note, ceramides have
been implicated in diet-induced insulin resistance
(Longato et al., 2011) and have cytotoxic and pro-
apoptotic properties (Haimovitz-Friedman et al.,
1997; Jarvis and Grant, 1998). Finally, the conver-
sion of bilirubin to urobilinogen is considered to be
a specific feature of the gut microbiota, especially
Clostridium spp. (Becker et al., 2011). Thus, higher
levels of urobilinogen and its oxidized product
urobilin in the cecum of HF mice (i) testify to diet-
induced functional alterations of the microbial
ecosystem, (ii) may be related to the observed HF-
induced increase in phylotypes within the Clostri-
diales, an order that includes known converters of
bilirubin, and (iii) could explain the appearance of
the FT-IR spectral features attributed to aromatic
and heteroaromatic ring vibrations in the cecum of
HF mice. Due to the relatively limited number of
samples analyzed and to the fact that data sets were
obtained from different mice and that a minor
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fraction of metabolite masses can be annotated, we
did not integrate data and extrapolate on functional
links between the metaproteome and metabolome.

In summary, we demonstrated that (i) diet can
alter the biochemical composition of the gut micro-
biota either by shifting phylotype composition or the
activity of bacterial cells, (ii) changes in bacterial
metaproteome after HF feeding are most pronounced
for pathways of amino acid metabolism, and
(iii) cecal metabolic pathways affected by HF feeding
include eicosanoid, steroid hormone, macrolide, bile
acid and bilirubin metabolism. These findings show
that a HF diet has a major impact on the mouse cecal
microbiota that extends beyond compositional
changes to major alterations in bacterial physiology
and metabolite landscape. Molecular mechanisms
underlying the conversion of steroids and amino
acids by specific gut bacteria in relation with the
onset of metabolic disorders appear to be of particular
relevance for future targeted experimental work.
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