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This paper focuses on the demonstration of an integrated aero-structural method for
the design of aerospace vehicles. Both aerodynamics and structures are represented us-
ing high-fidelity models such as the Euler equations for the aerodynamics and a detailed
finite element model for the primary structure. The aerodynamic outer mold line (OML)
and a structure of fixed topology are parameterized using a large number of design vari-
ables. The aero-structural sensitivities of aerodynamic and structural cost functions with
respect to both aerodynamic shape and structural variables are computed using an accu-
rate and efficient coupled-adjoint procedure. K-S functions are used to reduce the number
of structural constraints in the problem. Sample optimization results of the aerodynamic
shape and structure of a natural laminar flow supersonic business jet are presented to-
gether with an assessment of the accuracy of the sensitivity information obtained using
this procedure.

Introduction

A considerable amount of research has been con-
ducted on Multi-Disciplinary Optimization (MDO)
and its application to aircraft design. The survey
paper by Sobieski20 provides a comprehensive discus-
sion of much of the work in this area. The efforts
described therein range from the development of tech-
niques for inter-disciplinary coupling to applications
in real-world design problems. In most cases, sound
coupling and optimization methods were shown to
be extremely important since some techniques, such
as sequential discipline optimization, were unable to
converge to the true optimum of a coupled system.
Wakayama,21 for example, showed that in order to ob-
tain realistic wing planform shapes with aircraft design
optimization, it is necessary to include multiple disci-
plines in conjunction with a complete set of real-world
constraints.

Aero-structural analysis has traditionally been car-
ried out in a cut-and-try basis. Aircraft designers have
a pre-conceived idea of the shape of an “optimal” load
distribution and then tailor the jig shape of the struc-
ture so that the deflected wing shape under a 1-g load
gives the desired distribution. While this approach
is typically sufficient for traditional swept-back wing
designs, the complexity of aero-structural interactions
can be such that, in more advanced designs where lit-
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tle experience has been accumulated or where multiple
design points are part of the mission, it can result
in sub-optimal designs. This is the case in the de-
sign of both small and large supersonic transports,
where simple beam theory models of the wing can-
not be used to accurately describe the behavior of the
wing structure. In some cases, these aircraft must even
cruise for significant portions of their flight at different
Mach numbers. In addition, a variety of studies show
that supersonic transports exhibit a range of undesir-
able aeroelastic phenomena due to the low bending
and torsional stiffness that result from wings with low
thickness to chord ratio. These phenomena can only be
suppressed when aero-structural interactions are taken
into account at the preliminary design stage.3

Unfortunately, the modeling of the participating dis-
ciplines in most of the work that has appeared so far
has remained at a relatively low level. While use-
ful at the conceptual design stage, lower-order mod-
els cannot accurately represent a variety of nonlin-
ear phenomena such as wave drag, which can play
an important role in the search for the optimum de-
sign. An exception to this low-fidelity modeling is
the recent work by Giunta6 and by Maute et al.14

where aero-structural sensitivities are calculated using
higher-fidelity models.

The ultimate objective of our work is to develop
an MDO framework for high-fidelity analysis and op-
timization of aircraft configurations. The framework
is built upon prior work by the authors on aero-
structural high-fidelity sensitivity analysis.11,17 The
objective of this paper is to present the current ca-
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Fig. 1 Elliptic vs. aero-structural optimum lift
distribution.

pability of this framework and to demonstrate it by
performing a simplified aero-structural design of a su-
personic business jet configuration.

The following sections begin with the description of
the aircraft optimization problem we propose to solve.
We then introduce the adjoint method for the calcula-
tion of sensitivities and derive the sensitivity equations
for the aero-structural system. A detailed study of
the accuracy of the aeroelastic sensitivity information
is also presented for validation purposes. Finally we
present results of the application of our sensitivity
analysis method to two supersonic business jet design
cases.

Aircraft Optimization Problem
For maximum lift-to-drag ratio, it is a well know

result from classical inviscid aerodynamics that a wing
must exhibit an elliptic lift distribution. For aircraft
design, however, it is usually not the lift-to-drag ratio
we want to maximize but an objective function that
reflects the overall mission of the particular aircraft.
Consider, for example, the Breguet range formula

R =
V

c

CL

CD
ln

Wi

Wf
, (1)

where V is the cruise velocity and c is the specific fuel
consumption of the powerplant. CL/CD is the ratio of
lift to drag, and Wi/Wf is the ratio of initial and final
cruise weights of the aircraft.

The Breguet range equation expresses a trade-off be-
tween the drag and the empty weight of the aircraft
and constitutes a reasonable objective function to use
in aircraft design. If we were to parameterize a de-
sign with both aerodynamic and structural variables
and then maximized the range for a fixed initial cruise
weight, subject to stress constraints, we would obtain
a lift distribution similar to the one shown in Figure 1.

This optimum lift distribution trades off the drag
penalty associated with unloading the tip of the wing,
where the loading contributes most to the maximum
stress at the root of the wing structure, in order to
reduce the weight. The end result is an increase in

Fig. 2 Natural laminar flow supersonic business
jet configuration.

range when compared to the elliptically loaded wing
that results from an increased weight fraction Wi/Wf .
The result shown in Figure 1 illustrates the need for
taking into account the coupling of aerodynamics and
structures when performing aircraft design.

The aircraft configuration that is the focus of this
work is that of the supersonic business jet shown in
Figure 2. This configuration is being developed by
the ASSET Research Corporation and it is designed
to achieve a large percentage of laminar flow on the
low-sweep wing, resulting in decreased friction drag.9

The aircraft is to fly at Mach 1.5 and have a range of
5,300 nautical miles.

Detailed mission analysis for this aircraft has deter-
mined that one count of drag (∆CD = 0.0001) is worth
310 pounds of empty weight. This means that to opti-
mize the configuration we can minimize the objective
function

I = αCD + βW, (2)

where CD is the drag coefficient, W is the structural
weight in pounds and α/β = 3.1× 106.

We will parameterize the design using an arbitrary
number of shape design variables that modify the
Outer Mold Line (OML) of the aircraft (xA) and struc-
tural design variables that dictate the thicknesses of
the structural elements (xS). In this work, the topol-
ogy of the structure remains unchanged, i.e. the num-
ber of spars and ribs and their planform-view location
is fixed. However, the depth and thickness of the struc-
tural members is still allowed to change with variations
of the OML.

Among the constraints to be imposed, the most ob-
vious one is that during cruise the lift must equal
the weight of the aircraft. In our optimization prob-
lem we constrain the CL by periodically adjusting the
angle-of-attack within the aero-structural solution and
assume that the aircraft will adjust its altitude to ob-
tain the desired lift.

We also must constrain the stresses so that the yield
stress of the material is not exceeded at a number
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of load conditions. There are typically thousands of
finite-elements describing the structure of the aircraft,
and it can become computationally very costly to treat
these constraints separately. The reason for this high
cost is that although there are efficient ways of com-
puting sensitivities of a few functions with respect to
many design variables, and for computing sensitivi-
ties of many functions with respect to a few design
variables, there is no known efficient method for com-
puting sensitivities of many functions with respect to
many design variables.

For this reason, we lump the individual element
stresses using Kreisselmeier-Steinhauser (K-S) func-
tions. In the limit, all element stress constraints can
be lumped into a single K-S function, thus minimizing
the cost of a large-scale aero-structural design cycle.
Suppose that we have the following constraint for each
structural finite element,

gi = 1− σiV M

σyield
≥ 0, (3)

where σiV M
is the element von Mises stress and σyield

is the yield stress of the material. The corresponding
K-S function is defined as

KS (gi(x)) = −1
ρ

ln

[∑

i

e−ρgi(x)

]
. (4)

This function represents a lower bound envelope of all
the constraint inequalities and ρ is a positive parame-
ter that expresses how close this bound is to the actual
minimum of the constraints. This constraint lump-
ing method is conservative and may not achieve the
exact same optimum that a problem treating the con-
straints separately would. However, the use of K-S
functions has been demonstrated and it constitutes a
viable alternative, being effective in optimization prob-
lems with thousands of constraints.2

Having defined our objective function, design vari-
ables and constraints, we can now summarize the air-
craft design optimization problem as follows:

minimize I = αCD + βW

xA, xS ∈ Rn

subject to CL = CLT

KS ≥ 0
xS ≥ xSmin .

The stress constraints in the form of K-S functions
must be enforced by the optimizer for aerodynamic
loads corresponding to a number of flight conditions.
Finally, a minimum gage is specified for each structural
element thickness.

Analytic Sensitivity Analysis
When solving an optimization problem the goal is

typically to minimize an objective function, I, by care-
fully choosing the values of a set of design variables

and satisfying the constraints of the problem. In gen-
eral, the objective function depends not only on the
design variables, but also on the physical state of the
problem that is being modeled. Thus we can write

I = I(xj , yk), (5)

where xj represents the design variables and yk is the
symbol for the state variables.

For a given vector xj , the solution of the govern-
ing equations of the system yields a vector yk, thus
establishing the dependence of the state of the system
on the design variables. We will denote the governing
equations as

Rk′ (xj , yk (xj)) = 0. (6)

The first instance of xj in the above equation signals
the fact that the residual of the governing equations
may depend explicitly on xj . In the case of a structural
solver, for example, changing the size of an element has
a direct effect on the stiffness matrix. By solving the
governing equations we determine the state, yk, which
depends implicitly on the design variables through the
solution of the system.

Since the number of equations must equal the num-
ber of state variables, the ranges of the indices k and
k′ are the same, i.e., k, k′ = 1, . . . , nR. For a struc-
tural solver, for example, nR is the number of degrees
of freedom, while for a Computational Fluid Dynamics
(CFD) solver, nR is the number of mesh points mul-
tiplied by the number of state variables at each point
(four in the two-dimensional case and five in three di-
mensions.) For a coupled system, R′k represents all
the governing equations of the different disciplines, in-
cluding their coupling.

R =0

x

I
y

Fig. 3 Schematic representation of the govern-
ing equations (R = 0), design variables (x), state
variables (y), and objective function (I), for an ar-
bitrary system.

A graphical representation of the system of govern-
ing equations is shown in Figure 3, with the design
variables xj as the inputs and I as the output. The
two arrows leading to I illustrate the fact that the
objective function typically depends on the state vari-
ables and may also be an explicit function of the design
variables.

When solving the optimization problem using a
gradient-based optimizer, the total variation of the ob-
jective function with respect to the design variables,
dI
dxj

, must be calculated. As a first step towards ob-
taining this total variation, we use the chain rule to
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write the total variation of I as

δI =
∂I

∂xj
δxj +

∂I

∂yk
δyk, (7)

for k = 1, . . . , nR, j = 1, . . . , nx, where we use indicial
notation to denote the vector dot products. If we were
to use this equation directly, the vector of δyk’s would
have to be calculated for each δxj by solving the gov-
erning equations nx times. If there are many design
variables and the solution of the governing equations
is costly (as is the case for large coupled iterative anal-
yses), using equation (7) directly can be impractical.

We now observe that the variations δxj and δyk in
the total variation of the objective function (7) are not
independent of each other since the perturbed system
must always satisfy equation (6). A relationship be-
tween these two sets of variations can be obtained by
realizing that the variation of the residuals (6) must
be zero, i.e.

δRk′ =
∂Rk′

∂xj
δxj +

∂Rk′

∂yk
δyk = 0, (8)

for all k = 1, . . . , nR and j = 1, . . . , nx.
Since this residual variation (8) is zero we can add

it to the objective function variation (7) without mod-
ifying the latter, i.e.

δI =
∂I

∂xj
δxj +

∂I

∂yk
δyk+

ψk′

(
∂Rk′

∂xj
δxj +

∂Rk′

∂yk
δyk

)
, (9)

where ψk′ are arbitrary scalars we will call adjoint
variables. This approach is identical to the one used
in non-linear constrained optimization, where equality
constraints are added to the objective function, and
the arbitrary scalars are known as Lagrange multi-
pliers. The problem then becomes an unconstrained
optimization problem, which is more easily solved.

We can now group the terms in equation (9) that
contribute to the same variation and write

δI =
(

∂I

∂xj
+ ψk′

∂Rk′

∂xj

)
δxj+

(
∂I

∂yk
+ ψk′

∂Rk′

∂yk

)
δyk. (10)

If we set the term multiplying δyk to zero, we are left
with the total variation of I as a function of the design
variables and the adjoint variables, removing the de-
pendence of the variation on the state variables. Since
the adjoint variables are arbitrary, we can accomplish
this by solving the adjoint equations

∂Rk′

∂yk
ψk′ = − ∂I

∂yk
. (11)

These equations depend only on the partial deriva-
tives of both the objective function and the residuals
of the governing equations with respect to the state
variables. Since these partial derivatives can be calcu-
lated directly without solving the governing equations,
the adjoint equations (11) only need to be solved once
for each I and their solution is valid for all the design
variables.

When adjoint variables are found in this manner,
we can use them to calculate the total sensitivity of I
with the first term of equation (10), i.e.

dI

dxj
=

∂I

∂xj
+ ψk′

∂Rk′

∂xj
. (12)

The cost involved in calculating sensitivities using
the adjoint method is practically independent of the
number of design variables. After having solved the
governing equations, the adjoint equations are solved
only once for each I. The terms in the adjoint equa-
tions are inexpensive to calculate, and the cost of
solving the adjoint equations is similar to that involved
in the solution of the governing equations.

The adjoint method has been widely used for sin-
gle discipline sensitivity analysis and examples of its
application include structural sensitivity analysis1 and
aerodynamic shape optimization.8,15,16

Aero-Structural Sensitivity Analysis

We will now use the equations derived in the previ-
ous section to write down the adjoint sensitivity equa-
tions specific to the aero-structural system. In this
case we have coupled aerodynamic (RA) and struc-
tural (RS) governing equations, and two sets of state
variables: the flow state vector, w, and the vector of
structural displacements, u. In the following expres-
sions, we no longer use index notation and we split
the vectors of residuals, states and adjoints into two
smaller vectors corresponding to the aerodynamic and
structural systems, i.e.

Rk′ =
[

RA

RS

]
, yk =

[
w
u

]
, ψk′ =

[
ψA

ψS

]
. (13)

Figure 4 shows a diagram representing the coupling in
this system.

R =0

x

I

w
A R =0

u
S

Fig. 4 Schematic representation of the aero-
structural governing equations.
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Using this new notation, the adjoint equation (11)
for an aero-structural system can be written as

[
∂RA

∂w
∂RA

∂u
∂RS

∂w
∂RS

∂u

]T [
ψA

ψS

]
= −

[
∂I
∂w
∂I
∂u

]
. (14)

In addition to the diagonal terms of the matrix that
appear when we solve the single discipline adjoint
equations, we also have off-diagonal terms expressing
the sensitivity of one discipline to the state variables
of the other. The residual sensitivity matrix in this
equation is identical to that of the Global Sensitivity
Equations (GSE) introduced by Sobieski.19 Consider-
able detail is hidden in the terms of this matrix and
we will describe each one of them for clarity.

• ∂RA/∂w: This term represents the variation of
the residuals of the CFD equations due to changes
in the the flow variables. When a flow variable
at a given cell center is perturbed, the sum of
the fluxes on that cell is altered. Only that cell
and its neighbors are affected. Therefore, even
though ∂RA/∂w is a large square matrix, it is
also extremely sparse and its non-zero terms can
be easily calculated. In our solvers this matrix is
not stored explicitly.

• ∂RA/∂u: This derivative represents the effect
that the structural displacements have on the
residuals of the CFD solution through the pertur-
bation of the CFD mesh. When the wing deflects,
the mesh must be warped, resulting in a change
in the geometry of a subset of grid cells. Even
though the flow variables are kept constant, the
change in the geometry has an influence on the
sum of the fluxes, whose variation can be easily
obtained by re-calculating the residuals for the
warped cells.

• ∂RS/∂w: The linear structural equations can be
written as RS = Ku−f = 0, where K is the stiff-
ness matrix and f is the vector of applied forces.
The only term that the flow variables affect di-
rectly is the applied force, and therefore this term
is equal to −∂f/∂w, which can be found by exam-
ining the procedure that integrates the pressures
in the CFD mesh and transfers them to the struc-
tural nodes to obtain the applied forces.

• ∂RS/∂u: Since the forces do not depend directly
on the displacements and neither does K (for a
linear model), this term is simply the stiffness ma-
trix, K.

The right-hand side terms depend on the function of
interest, I. In our case, we have two different functions
we are interested in: the coefficient of drag, CD, and
the K-S function. When I = CD we have,

• ∂CD/∂w: The direct sensitivity of the drag coef-
ficient to the flow variables can be obtained ana-
lytically by examining the numerical integration
of the surface pressures that produce CD.

• ∂CD/∂u: This term represents the change in the
drag coefficient due to the displacement of the
wing while keeping the pressure distribution con-
stant. The structural displacements affect the
drag directly, since they change the wing surface
geometry over which the pressure distribution is
integrated.

When I = KS,

• ∂KS/∂w: This term is zero, since the stresses do
not depend explicitly on the loads.

• ∂KS/∂u: The stresses depend directly on the dis-
placements since σ = Su. This term is therefore
equal to [∂KS/∂σ] S.

Since the factorization of the full matrix in the sys-
tem of equations (14) would be extremely costly, our
approach uses an iterative solver, much like the one
used for the aero-structural solution, where the ad-
joint vectors are lagged and the two different sets of
equations are solved separately. For the calculation
of the adjoint vector of one discipline, we use the ad-
joint vector of the other discipline from the previous
iteration, i.e., we solve

[
∂RA

∂w

]T

ψA = − ∂I

∂w
−

[
∂RS

∂w

]T

ψ̃S , (15)

[
∂RS

∂u

]T

ψS = −∂I

∂u
−

[
∂RA

∂u

]T

ψ̃A, (16)

where ψ̃A and ψ̃S are the lagged aerodynamic and
structural adjoint vectors. The final result given by
this system, is the same as that of the original coupled-
adjoint equations (14). We will call this the Lagged-
Coupled Adjoint (LCA) method for computing sensi-
tivities of coupled systems. Note that these equations
look like the single discipline adjoint equations for
the aerodynamic and the structural solvers, with the
addition of forcing terms in the right-hand-side that
contain the off-diagonal terms of the residual sensitiv-
ity matrix. Note also that, even for more than two
disciplines, this iterative solution procedure is nothing
but the well-known Block-Jacobi method.

As noted previously, ∂RS/∂u = K for a linear
structural solver. Since the stiffness matrix is sym-
metric (KT = K) the structural equations (16) are
self-adjoint. Therefore, the structural solver can be
used to solve for the structural adjoint vector, ψS , by
using the pseudo-load vector given by the right-hand-
side of equation (16).
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Once both adjoint vectors have converged, we can
compute the final sensitivities of the objective function
by using

dI

dx
=

∂I

∂x
+ ψT

A

∂RA

∂x
+ ψT

S

∂RS

∂x
, (17)

which is the coupled version of the total sensitivity
equation (12). We will now describe the last two par-
tial derivatives in the above equation.

• ∂RA/∂x: The direct effect of aerodynamic shape
perturbations on the CFD residuals is similar to
that of the displacements on the same residu-
als, ∂RA/∂u, that we mentioned previously. The
structural thicknesses of the structural finite ele-
ments do not affect the CFD residuals.

• ∂RS/∂x: The design variables have a direct ef-
fect on both the stiffness matrix and the load.
Although this partial derivative is taken for a
constant surface pressure field, a variation in the
OML will affect the translation of these pressures
to structural loads. Hence this partial derivative
is equal to ∂K/∂x · u− ∂f/∂x.

For the ∂I/∂x term we have again two different cases:
I = CD and I = KS. For each of these cases:

• ∂CD/∂x: This is the change in the drag coefficient
due to wing-shape perturbations, while keeping
the pressure distribution constant. This sensitiv-
ity is analogous to the partial derivative ∂CD/∂u
that we described above and can be easily calcu-
lated using finite-differences. For structural vari-
ables that do not affect the OML, this term is
zero.

• ∂KS/∂x: This term represents the variation of the
lumped stresses for fixed loads and displacements.
When the OML is perturbed, the stresses in a
given element can vary under these conditions if
its shape is distorted.

As in the case of the partial derivatives in equa-
tions (14), all the terms can be computed without
incurring a large computational cost since none of
them involve the solution of the governing equations.

In order to solve the aircraft optimization problem
we proposed earlier on, we also need sensitivities of the
structural weight with respect to the design variables.
Since the aero-structural coupling does not involve the
weight, these sensitivities are easily computed.

Results
In this section we present the results of the ap-

plication of our sensitivity calculation method to the
problem of aero-structural design of a supersonic, nat-
ural laminar flow, business jet. Before describing the
results of our design experience, we present the aero-
structural analysis framework and the results of a sen-
sitivity validation study.

Fig. 5 Aero-structural model and solution of the
supersonic business jet configuration, showing a
slice of the grid and the internal structure of the
wing.

Aero-Structural Analysis

The coupled-adjoint procedure was implemented as
a module that was added to the aero-structural design
framework previously developed by the authors.11,17

The framework consists of an aerodynamic analysis
and design module (which includes a geometry engine
and a mesh perturbation algorithm), a linear finite-
element structural solver, an aero-structural coupling
procedure, and various pre-processing tools that are
used to setup aero-structural design problems. The
multi-disciplinary nature of this solver is illustrated
in Figure 5 where we can see the aircraft geometry,
the flow mesh and solution, and the primary structure
inside the wing.

The aerodynamic analysis and design module,
SYN107-MB,16 is a multiblock parallel flow solver for
both the Euler and the Reynolds Averaged Navier-
Stokes equations that has been shown to be accurate
and efficient for the computation of the flow around
full aircraft configurations.18 An aerodynamic adjoint
solver is also included in this package in order to per-
form aerodynamic shape optimization in the absence
of aero-structural interaction.

The structural analysis package is FESMEH, a finite
element solver developed by Holden.7 The package is
a linear finite-element solver that incorporates two ele-
ment types and computes the structural displacements
and stresses of wing structures. Although this solver
is not as general as some commercially-available pack-
ages, it is still representative of the challenges involved
in using large models with tens of thousands of de-
grees of freedom. High-fidelity coupling between the
aerodynamic and the structural analysis programs is
achieved using a linearly consistent and conservative
scheme.4,17

The structural model of the wing can be seen in
Figure 5 and is constructed using a wing box with six
spars evenly distributed from 15% to 80% of the chord.
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Ribs are distributed along the span at every tenth of
the semispan. A total of 640 finite elements were used
in the construction of this model. Appropriate thick-
nesses of the spar caps, shear webs, and skins were
chosen according to the expected loads for this design.

Aero-Structural Sensitivity Validation

In order to gain confidence in the effectiveness of the
coupled aero-structural adjoint sensitivities for use in
design optimization, we must ensure that the values
of the gradients are accurate. For this purpose, we
have chosen to validate the four sets of sensitivities
discussed below. The exact value of these sensitivities
is calculated using the complex-step derivative approx-
imation.

The complex-step is a relatively new method that
computes the sensitivities dI/dxj using the formula

dI

dxj
≈ Im [I (xj + ih)]

h
, i =

√−1 (18)

with second order accuracy. Details of this simple yet
powerful approximation can be found in earlier work
published by the authors.10,12,13 As in the case of
finite-differences, the cost of a full gradient calcula-
tion scales linearly with the total number of design
variables and therefore we do not use this method in
actual design. Unlike finite-differences, however, the
accuracy of the complex-step method is extremely in-
sensitive to the step size, h, making it much more
robust.

In this sensitivity study two different functions were
considered: the drag coefficient, CD, and the K-S func-
tion of the stresses. Sensitivities of these two quantities
with respect to both OML and structural variables
are computed. The OML design variables are shape
perturbations in the form of Hicks-Henne bump func-
tions,16 which not only control the aerodynamic shape
of the aircraft configuration, but also change the inter-
nal structure. For example, if a perturbation increases
the thickness of the wing at a specific location, the
height of the spars at that point will also increase.
The second set of design variables — the structural
variables — are the thicknesses of the triangular plate
elements that model the skin and spars of the wing.

The values of the aero-structural sensitivities of
drag coefficient with respect to shape perturbations
are shown in Figure 6. The ten shape perturbations
were chosen to be Hicks-Henne bumps distributed
chordwise on the upper surface of two adjacent air-
foils around the quarter span. The plot shows very
good agreement between the coupled-adjoint and the
complex-step results, the average relative error be-
tween the two being 3.5%.

Figure 7 also shows the sensitivity of the drag co-
efficient, this time with respect to the thicknesses of
five skin groups and five spar groups distributed along
the span. This time the agreement is even better; the

average relative error is only 1.6%.
The sensitivities of the K-S function with respect

to the two sets of design variables described above
are shown in Figures 8 and 9. The results show that
the coupled-adjoint sensitivities are extremely accu-
rate, with average relative errors of 2.9% and 1.6%.
In Figure 9 we observe that the sensitivity of the K-S
function with respect to the first structural thickness is
much higher than the remaining sensitivities. This is
because that particular structural design variable cor-
responds to the thickness of the top and bottom skins
of the wing bay closest to the root, where the stress is
the highest for this design case.

Note that all these sensitivities are total sensitivities
in the sense that they account for the coupling between
aerodynamics and structures. For example, a pertur-
bation of the shape of the wing results in changes in
the surface pressures and geometry that directly affect
the drag. Those changes in surface pressure create a
different displacement field which itself has an effect
on the flow field. This coupling is fully accounted for
in the coupled-adjoint method.

The cost of the sensitivity calculation using either
the finite-difference or complex-step methods is lin-
early dependent on the number of design variables in
the problem, whereas the cost of the coupled-adjoint
procedure is essentially independent of this number.
In more realistic design situations where the number
of design variables chosen to parameterize the surface
is much larger than 20, the computational efficiency of
the adjoint sensitivity calculation would become even
more obvious.

The cost of a finite-difference gradient evaluation
for the 20 design variables is about 15 times the cost
of a single aero-structural solution for computations
that have converged 5.5 orders of magnitude. Notice
that one would expect this method to incur a compu-
tational cost equivalent to 21 aero-structural solutions
(the solution of the baseline configuration plus one flow
solution for each design variable perturbation.) The
cost is lower than this because the additional calcu-
lations do not start from a uniform flow-field initial
condition, but from the previously converged solution.

The cost of the complex-step method is more than
twice of that of the finite-difference procedure since
the function evaluations require complex arithmetic.
We feel, however, that the complex-step calculations
are worth this cost penalty since there is no need to
find an acceptable step size a priori, as in the case of
the finite-difference approximations.

Finally, the coupled-adjoint method requires the
equivalent of 7.5 aero-structural solutions to compute
the coupled gradient. As mentioned previously, this
computational cost is practically independent of the
total number of design variables in the problem and
would therefore remain at a similar value, even in the
more realistic case of 200 or more design variables. In
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Fig. 6 Sensitivities of the drag coefficient with re-
spect to shape perturbations.
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Fig. 7 Sensitivities of the drag coefficient with re-
spect to structural thicknesses.

1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Shape variable, x
j

d 
C

D
 / 

d 
x A

Coupled adjoint       
Complex step          
                      
Avg. rel. error = 2.9%

Student Version of MATLAB
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to shape perturbations.
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Fig. 9 Sensitivities of the K-S function with respect
to structural thicknesses.

contrast, the finite-difference method would require a
computational effort of around 200

20 × 15 = 150 times
the cost of an aero-structural solution to compute the
same gradient, which is impractical within industrial
design environments, even with current state-of-the-
art parallel computing systems.

Aerodynamic Design

In order to establish an upper limit for the po-
tential improvements that can be realized with the
use of the aero-structural design framework, we first
carried out an aerodynamic shape optimization that
assumes a rigid configuration. For the natural lam-
inar flow supersonic business jet, the total inviscid
drag at CL = 0.1 is CD = 0.0074. Of this total
inviscid drag, with an aspect ratio A = 3.0 and a
span efficiency factor of 0.95, the lift-induced drag
is CDi = 0.0011. The remaining amount of drag

(∆CD = 0.0063) arises from the volume- and lift-
dependent contributions of the wave drag. Using linear
theory, the lift-dependent portion of the drag turns out
to be CDlift−dep

= 0.0047, and the volume-dependent
part is the remaining CDvol−dep

= 0.0016. Our aero-
dynamic optimization cannot decrease the CDi sig-
nificantly, since the spanload distribution is nearly
optimal. If the volume of the wing-fuselage combina-
tion remains constant, CDvol−dep

will not change. The
only other option to reduce drag in an inviscid set-
ting is to redistribute the total lift in such a way that
CDlift−dep

is minimized by arriving at a lift distribu-
tion that is roughly elliptic in the streamwise direction.
For these reasons, reductions in drag as small as one
count are quite significant in supersonic design. In
general terms, a one count reduction corresponds to
approximately 1% of the total drag of the airplane.

In order to parameterize the shape of the aircraft, we
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Fig. 10 Wing pressure distributions for rigid baseline and aerodynamic optimized cases.

have chosen sets of design variables that apply to both
the wing and the fuselage. The wing shape is modified
by the design optimization procedure at six defining
stations uniformly distributed from the side-of-body
to the tip of the wing. The shape modifications of
these defining stations are linearly lofted to a zero
value at the previous and next defining stations. On
each defining station, the twist, the leading and trail-
ing edge camber distributions, and five Hicks-Henne
bump functions on both the upper and lower surfaces
are allowed to vary. The leading and trailing edge cam-
ber modifications are not applied at the first defining
station. This yields a total of 76 design variables on the
wing. Planform modifications are not allowed in this
parameterization. In order to prevent the optimizer
from thinning the wing to an unreasonable degree, 5
thickness constraints are added to each of the defining
stations for a total of 30 linear constraints. The shape
of the fuselage is parameterized in such a way that its
camber is allowed to vary, but the total volume and
cross-sectional shape remain constant. This is accom-
plished with 9 bump functions evenly distributed in
the streamwise direction starting at the 10% fuselage
station. Fuselage nose and trailing edge camber func-
tions are added to the fuselage camber distribution in
a similar way to what was done with the wing sections.

The complete configuration is therefore parameter-

ized with a total of 87 design variables and 30 linear
constraints. As mentioned in an earlier section, the
cost of aero-structural gradient information using our
coupled-adjoint method is effectively independent of
the number of design variables: in more realistic full
configuration test cases that we are about to tackle,
500 or more design variables are often necessary to
describe the shape variations of the configuration (in-
cluding nacelles, diverters, and tail surfaces.)

The objective in this optimization is to minimize the
value of CD of the configuration at constant CL = 0.1
while maintaining the thickness of the wing. All op-
timization work was carried out using the non-linear
constrained optimizer NPSOL.5 Euler calculations are
performed on a 36-block multiblock mesh that is con-
structed from the decomposition of a 193×33×49 C-H
mesh. During the process of the optimization, all flow
evaluations are converged to 5.5 orders of magnitude
of the average density residual and the CL constraint
is achieved to within 10−6.

Figure 10 shows a comparison of the pressure distri-
butions of the baseline (rigid) geometry and those of
the optimized design after 10 design iterations. The
coefficient of drag of the complete aircraft has de-
creased by 5.8% from CD0 = 0.00743 to CD = 0.0070.
This decrease in the drag of the configuration is par-
tially achieved by streamwise redistribution of the lift
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at all spanwise stations. The thickness distribution
is maintained due to the imposition of the thickness
constraints. Interestingly, the angle of attack of the
optimized configuration has increased by almost 0.7◦

which is an indication that the original wing mounting
angle, along the axis of the fuselage, was not opti-
mal. A substantial portion of the decrease in drag
is obtained from the fuselage camber modifications.
In fact, from the results of two separate design cal-
culations where the fuselage and wing were modified
while keeping the shape of the other fixed, it is clear
that nearly one-half of the drag decrease results from
fuselage camber modifications alone. The streamwise
redistribution of lift achieved with these modifications
is quite effective in spreading the lift along the length
of the aircraft. The final shape of the fuselage (for a
different test case) can be seen in Figure 14.

The exact same optimization was also carried out
while allowing the configuration to undergo aeroelas-
tic deformations. The sensitivities of CD with respect
to the aerodynamic design variables are now computed
using the coupled structural adjoint procedure. Notice
that while no structural design variables are present in
this test case, the depths of the ribs and spars follow
the shape of the OML of the aircraft. Figure 11 shows
the resulting pressure distributions after 9 design it-
erations. Notice that an almost identical reduction in
CD was obtained in this case. This fact is an indirect
validation of the coupled-adjoint sensitivity analysis
procedure since the optimization is able to recover a
very similar solution to the rigid case in the presence of
aeroelastic deformations. For an aircraft that operates
at a single cruise point, the typical approach would be
to consider the outcome of the first design case the 1-g
shape and to construct a jig shape that would deflect
to this geometry under cruise loads.

Aero-Structural Design

The initial application of our design methodology to
the aero-structural design of a supersonic business jet
is simply a proof-of-concept problem meant to validate
the sensitivities obtained with our method. Current
work is addressing the use of multiple, realistic load
conditions, proper imposition of non-linear stress con-
straints, and the addition of diverters, nacelles, and
empennage.

As an intermediate step before we include non-linear
constraints based on load cases that result from a num-
ber of different flight conditions, we decided to restrict
ourselves to the cruise condition and test the sensitiv-
ities of the lumped stress function, KS, by using the
following objective function,

I = αCD + βW + γ max(0,−KS)2. (19)

In the results to be presented, the values α = 104,
β = 3.226×10−3, and γ = 103 are used. Note that the
scalars that multiply the structural weight, W , and the
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Fig. 12 Iteration history for the aero-structural
optimization.

coefficient of drag, CD, reflect the correct trade-off be-
tween drag and weight that was previously mentioned,
i.e. that one count of drag is worth 310 pounds of
weight. Notice also that instead of imposing the stress
constraints as separate non-linear constraints (which
the optimizer is able to handle), we have initially opted
for adding them as a large positive penalty function
to the objective of the optimization. Due to the na-
ture of the KS function, it was necessary to zero out
the contribution of this penalty when the stress con-
straints were not violated. This functional dependence
makes the curvature of the penalty function discontin-
uous near the fully stressed condition and can therefore
confuse the optimizer. This would not be the case had
the constraints been properly imposed.

For this design case we use the same aerodynamic
variables we used for the previous design cases with
the addition of 20 structural design variables. The first
10 are related to the skin thicknesses of the top and
bottom surfaces of the wing. Each group consists of
the plate elements located between two adjacent ribs.
The remaining structural variables are the thicknesses
of the plate elements that model the spars of the wing.
Again, each group is composed of the plates between
two adjacent ribs. All structural design variables are
constrained to exceed a pre-specified minimum gage
value.

Notice that given the construction of the cost func-
tion, I, the incentive on the part of the optimizer is in
decreasing the drag and weight of the structure in ap-
propriate combinations. The large penalty imposed on
the violation of the stress constraints effectively pre-
vents further weight reductions by decreasing the size
of the structural variables. However, optimum designs
may not be those with minimum drag (if the weight
can be reduced significantly at the expense of a small
increase in CD) or minimum weight (if a slightly higher
weight can allow for a lower overall CD).

Figure 12 shows the evolution of this aero-structural
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Fig. 11 Wing pressure distributions for aero-structural baseline and optimized cases, OML design vari-
ables only.

design case for successive design iterations. In the fig-
ure, we can see the values of the coefficient of drag (in
counts), the wing structural weight (in lbs), and the
value of the composite cost function. Notice that at it-
eration 2, the stress constraint is violated, resulting in
a large increase in the penalty function and the overall
objective function. As the iterations progress, the CD

decreases from 74.1 counts to 71.7 counts, while the
weight of the structure also decreases from 4511 lbs to
3150 lbs. In the last iteration the drag goes up but this
is offset by a substantial decrease in the weight of the
structure in such a way that the overall objective func-
tion also decreases. Notice that the pitching moment
coefficient is practically unchanged, and, therefore, no
trim drag penalty needs to be taken into account.

Since the loads for this simplified case are specified
at the cruise condition, the optimizer attempts to de-
crease the structural thicknesses to the point where
the structure is nearly fully stressed. A close look at
the maximum stress of the structure reveals that this
is the case: the element with the largest von Mises
stress achieves 95% of the yield stress of the material.

Figure 13 shows the resulting pressure distributions
compared to the baseline aeroelastic analysis. Notice
that the loading has changed substantially, particu-
larly in the trailing edge region of the outboard portion

of the wing. We believe this is a consequence of the
fact that our structural box only extends to the 80%
chord location and the loading in the trailing edge sec-
tion is creating a rapid change in camber in that area.

Finally, Figure 14 shows a comparison of the geome-
tries and the corresponding surface Mach number dis-
tributions of the baseline aero-structural analysis and
the aero-structural optimized configuration. In this
view the fuselage camber is obvious, but the changes
in the wing shape and twist, as well as the aeroelastic
deflections are difficult to notice. In fact, the tip deflec-
tions for this design case are on the order of 0.5% of the
total span. The wing has thinned down considerably
and is prevented from further decreases in thickness by
the associated increase in structural weight that would
result due to the stress constraints.

Conclusions
A methodology for coupled sensitivity analysis of

high-fidelity aero-structural systems was presented.
The sensitivities computed by the lagged-coupled ad-
joint method were compared to sensitivities given by
the complex-step derivative approximation and shown
to be extremely accurate, having an average relative
error of 2%.

In realistic aero-structural design problems with
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Fig. 13 Wing pressure distributions for aero-structural baseline and optimized designs, OML and struc-
tural design variables with K-S penalty function.

hundreds of design variables, there is a considerable re-
duction in computational cost when using the coupled-
adjoint method as opposed to either finite-differences
or the complex-step. This is due to the fact that the
cost associated with the adjoint method is practically
independent of the number of design variables.

Sensitivities computed using the presented method-
ology were successfully used to optimize the design of a
supersonic business jet that was parameterized with a
large number of aerodynamic and structural variables.

Future work in the development of our aero-
structural design framework is expected to add further
capability such that more realistic aircraft design prob-
lems can be solved. To achieve this we plan to add
multiple flight conditions each one involving the cal-
culation of a separate KS function coupled adjoint to
enforce the various structural constraints. We also in-
tend to add even more shape and wing planform design
variables to the design cases as well as increase the ge-
ometric complexity of the configuration to include the
presence of diverters and nacelles, as well as the em-
pennage.
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