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Abstract— This paper describes the stereo vision near-field
terrain mapping system used by the Legged Squad Support
System (LS3) quadruped vehicle to automatically adjust its gait
in complex natural terrain. The mapping system achieves high
robustness with a combination of stereo model-based outlier
rejection and spatial and temporal filtering, enabled by a
unique hybrid 2D/3D data structure. Classification of sparse
structures allows the vehicle to traverse through vegetation.
Inference of negative obstacles allows the vehicle to avoid steep
drop-offs. A custom designed near-infrared illumination system
enables operation at night. The mapping system has been
tested extensively with controlled experiments and 72km of field
testing in a wide variety of terrains and conditions.

I. INTRODUCTION

Terrain mapping from stereo and LIDAR sensors is com-

monly used for autonomous navigation of wheeled vehicles.

Typically, these terrain maps are sufficient to identify obsta-

cles and compute a cost of traversable paths for use in vehicle

motion planning. However, for highly capable vehicles that

can traverse complex terrain, such as steep, rocky slopes,

or dense vegetation, the resolution and accuracy of maps

generated using existing techniques is not sufficient. Using a

sensor-based terrain map to adjust the desired foot placement

of a legged robot requires mapping with a fidelity that is

higher than the foot size. Furthermore, terrain that can or

cannot be stepped over or through must be classified.

We have developed a stereo-vision-based terrain mapping

system that enables closed-loop gait adjustment of a dynamic

walking robot. The mapping system is used during nominal

operations by the Boston Dynamics Legged Squad Support

System (LS3) quadruped vehicle (Figure I), developed under

the DARPA LS3 program. While the LS3 vehicle is highly

capable and robust without any vision feedback, the map

produced by the stereo vision system enables the vehicle to

predict the need for gait adjustments, leading to even higher

levels of robustness. In addition to the classification of terrain

step height, detection of sparse vegetation enables the robot

to traverse through terrain that would otherwise appear as

obstacles. Similarly, detection of lethal negative obstacles

could allow the vehicle to avoid areas with very steep

slopes. The mapping system operates with no modifications

during night-time operations by using near-infrared (NIR)
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illuminators. The illumination system is designed as a set of

independently controllable illuminators configured to provide

uniform illumination over the stereo camera field-of-view.

Our near-field mapping system is designed to achieve a

terrain map fidelity of better than 5cm (1/3 of the 15cm foot

size) out to 5m. Stereo cameras are used because they are the

only sensor that can provide the angular resolution required

for producing a map of this fidelity within the system’s

size, weight, and power constraints. They are advantageous

because they produce a full frame of range data, and can be

acquired at high rate. On the other hand, dense stereo adds

computation time and produces noisy data and artifacts in

the range data. When used for vision in-the-loop adjustment

of gaits, inaccuracies in the map are unacceptable because

they can directly cause the vehicle to destabilize or fall. The

mapping system uses a unique hybrid 2D/3D data structure

and stereo modeling to enable computationally efficient

methods of rejecting outliers and temporally and spatially

filtering the range data to produce robust and accurate maps.

The map is effective in dynamic environments, including

moving objects and conditions such as rain and snow, and

handles degraded data, such as at night or when walking

through tall vegetation.

(a) (b)

(c) (d)

Fig. 1. (a) and (b) show the LS3 vehicle walking up and down a set of
stairs on a forest trail; (c) shows the 2D terrain map color coded by step
height (from flat (blue) to moderate (green) to high (red)), with the foot
traces in magenta; and (d) shows the backprojection of the map overlaid on
the left stereo image.
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A. Related Work

Occupancy grids have historically been the most com-

mon representation for terrain maps [1], [2]. They have

been successfully used for autonomous wheeled vehicles

operating in urban [3], cross-country [4], [5], and indoor

[6] environments. For outdoor environments, a 2D elevation

map is typically used, while for indoor or more complex

environments, a 3D voxel map is used. For efficiency, most

3D maps only store occupancy information [6], [7] and have

mainly used LIDAR data with spatial filtering [8] and ray

constraints for eliminating dynamic obstacles. As a result,

these maps are typically too low resolution for computing

footstep locations. LIDAR and stereo have been used for

building maps for legged locomotion [9], [10], [11], [12],

but none have been tested or fielded to the extent of the

approach described here.

More recently, structured light depth sensors have been

used to build accurate local [13] and extended [14] maps of

registered point clouds. These approaches have been focused

on producing visually realistic models, but do not result

in a map that can be used for efficient motion planning.

Furthermore, these methods do not address the noise and

artifacts caused by stereo, which is typically much less for

structured light systems. Finally, structured light systems can

currently only be used indoors or in low-light environments.

Filtering noisy stereo data to produce higher fidelity maps

has been performed in a standard height map [15], as well

as in a representation that accounts for stereo range error

[16]. This has been extended to 3D representations such

as occupancy maps [17], with data structures that allow

efficient nearest neighbor queries [18], or in other similar

representations [19]. However, most of these approaches are

considerably slower than the approach described here and do

not handle dynamic environments or outliers. Another way

to improve stereo mapping is to improve the stereo matching

algorithm itself. While there are many techniques for doing

this, none are fast enough for use on a real-time system.

Detecting negative obstacles in maps has been performed

using image space techniques, thermal imagery [20], LIDAR

and map classification [21], and ray tracing [22] methods.

The latter is similar to our approach, although we build the

map first and walk along the 2D map rather than explicitly

tracing rays, making it significantly more efficient. Vege-

tation detection has typically focused on the multi-spectral

signature of green vegetation [23], [24] and the geometry

from LIDAR. We do not explicitly detect green vegetation,

but rather detect sparse structures. This works on green and

non-green vegetation, but could be confused by structures

such as chain link fence.

II. APPROACH

Our mapping system produces a high fidelity terrain map

that includes the surface elevation, local statistics such as

slope and roughness, and discrete classes such as positive and

negative obstacles. The system can operate in dynamic envi-

ronments and labels and tracks moving (positive) obstacles,

while properly mapping terrain over where the objects travel.

The output of the system is represented as a 2D structure of

map cells, tiled into blocks that are sent to the planning

and control modules, which are running concurrently on

the robot. Each cell contains the geometry statistics and

classification labels.

A standard dense local correlation stereo matching algo-

rithm [25] is used to produce the input range data for the

system. The vehicle pose is estimated accurately using visual

odometry combined with an IMU and leg odometry in a

Kalman filter framework [26]. A hybrid 2D/3D structure

of voxels is populated with the dense stereo range data.

The voxels are filtered temporally and vertically to reject

geometric artifacts common in stereo data. The resulting map

of ground elevations, statistics, and classifications is used to

adjust parameters of the vehicles movement on approaching

terrain, such as lifting the feet higher to avoid an obstacle.

Vegetation classification is used to label locations in the map

as areas containing sparse geometry. Negative obstacles, such

as ditches, are detected and marked. Finally, a custom NIR

illumination system is used to enable range-limited night

operation with no change of software or parameters.

A. Data Structure

The mapping system outputs a 2D map of cells to the vehi-

cle control module. Internally, the mapping system maintains

a representation using a hybrid framework of dense 2D and

sparse 3D voxels. The 3D representation primarily handles

dynamic, complex environments and the inherently noisy

stereo data, while the 2D representation efficiently computes

local statistics.

The map data structure is comprised of a set of tiles. Each

tile contains a 2D array of voxel column pointers, with each

column bounded to a fixed height above and below the tile

origin, as well as 2D statistics, accumulated and then filtered

for each cell. A fixed number of voxels and tiles are allocated

onto a local heap and used and returned as necessary. When

range data is first projected into a tile and voxel, the pointers

are populated with a new tile and/or voxel from the heap.

The tile origin is set to an estimated ground plane below

the vehicle (based on the foot location). Because the map

is only used for terrain classification, any data that projects

above the vehicle height is not considered, allowing the data

structure to be kept as a single layer of tiles. Once a voxel

is allocated, any new range data that falls into that voxel

is added, and sums of first and second order statistics are

maintained, and the voxel and tile are marked as “dirty”.

B. Error Modeling and Filtering

The key to being able to use a stereo-vision map in a

closed-loop system that adjusts gait parameters and footsteps

is producing a map that is geometrically accurate and free of

false positives and artifacts. Typically, spatial and temporal

filtering is used to abate noise in stereo range data. However,

we have found it necessary to also use explicit outlier

rejection based on stereo error modeling to produce very

high quality maps.
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After projecting the range data for a single stereo frame

into voxels, the mapping system collapses all dirty voxel

columns in the tiles to a single 2D tile cell, rejecting spatial

and temporal outliers. After the initial projection into a

voxel column, the algorithm can estimate the ground surface

elevation of that column. Once this elevation is known,

individual fixed-height floating voxels are no longer needed.

A minimum number of projected stereo ranges must be

reached by a given voxel to be valid. The standard stereo

error model [27] is used to set this minimum number to be

the expected point count on a virtual ground plane at the

range of each voxel. The model is conservative because a

vertical obstacle will have significantly more hits than the

ground plane due to the angle of incidence. This technique

is effective in eliminating the “streamer” or “spike” artifacts

commonly seen in stereo data. Otherwise, small numbers

of overhanging range points contaminate the ground surface

estimation, particularly at longer range where fewer points

are already available.

(a) (b)

Fig. 2. (a) shows the map color coded by step height without age-weighted
filter and outlier rejection, which results in artifacts (lighter regions) due to
spatial filter; (b) shows the same map with age-weighted filtering and outlier
rejection, which eliminates the artifacts.

If stereo range data from the current frame projects to a

voxel, that voxel is used in maps containing its associated

column. If a voxel is not observed in the current stereo frame,

then based on its last observation time, its total observations,

and the number of observations in its associated column, it is

rejected as a temporal outlier. Voxels, both used and unused,

are kept so that data may accumulate over time. Because

of the stereo model-based outlier rejection, this leads to

more aggressive elimination of higher variance data that was

observed in the far-field, which is replaced by more accurate

data in the near-field. It also allows dynamic objects to be

eliminated after they move.

After the voxel data is accumulated into a 2D represen-

tation, the dirty tile cells are spatially filtered with an age-

weighted 2D separable, running sum filter. Using weights

that are a function of age allows the filter to be applied over

regions where there is overlap between new and old data that

may be inconsistent due to pose drift. Figure 2 illustrates the

difference between standard and age-weighted filtering.

While the technique is capable of eliminating dynamic

obstacles from the scene, it takes at least one frame to do so.

The vehicle can occasionally see its own feet, which results

in a single frame of false positive obstacles (the knees are not

a problem because they always fall nearer than the minimum

stereo range). In this case, because the feet positions are

known, they are explicitly removed before projecting data

into the map by masking out the range data in the image

(Figure 3).

(a) (b) (c)

Fig. 3. (a) Shows the stereo disparity on an image where the foot enters
the field of view, and causes a false obstacle detection, as seen in (b) which
shows the back projected map; (c) shows the stereo disparity with the foot
being masked out.

C. Gait Adjustment

As a vehicle operates over changing terrain, parameters

controlling the way it moves (i.e. its gait) need to change. For

example, legged vehicles may elect to lift their feet higher

to step over trip hazards, adjust their pose to match terrain

shape, or speed up or slow down to navigate upcoming

terrain. The robustness and accuracy of the stereo map

enables it to be used to continuously adjust the parameters of

the vehicle’s gait. While the vehicle already has the ability

to proprioceptively sense rough or sloped terrain and adjust

its gait in response to the terrain, using vision “in-the-loop”

allows the vehicle to predict the need to adjust its gait. This

allows the vehicle to avoid disturbances caused by obstacles,

rather than needing to recover from them.

The primary parameter that is automatically adjusted based

on the map is the gait’s swing height, which is the peak

height above the ground that a foot reaches while moving

between footholds. This can be calculated for the gait as

a whole, or for each foot individually. One approach to

computing an overall gait height is to compute roughness

statistics over a region in front of the robot. Alternatively, by

examining the map cells along the path of each leg’s swing

trajectory, the swing height can be adjusted for each leg as

a function of the maximum expected step height. Another

approach would be to adjust the target footstep location based

on the map data. However, this approach reduces the system’s

natural ability to react to disturbances, and remains an area

of ongoing research.

Of the multiple approaches considered, we found that

adjusting only the swing height of each leg independently

produced the most robust and effective results. Adjusting the

swing height of all the legs when rough terrain is detected

results in excessive motion and unnecessary efficiency loss.

Simply adjusting the swing height of each leg independently

increases robustness to obstacles, while maintaining the

overall stability and efficiency of the vehicle. As a result,

during normal operation, only the individual leg swing height

is adjusted.

D. Vegetation Detection

With a highly capable legged vehicle, elevation geometry

statistics alone can be insufficient to adjust its gait parame-
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ters. For example, when walking in ankle or knee high grass,

the vehicle should not step as high as it might when walking

through a rocky field or over steps of similar height variance.

To address these situations, we added a classification mode

to the mapping system that classifies terrain that does not

present a hazard to the robot, but has similar statistics to

something that would.

Our key observation is that obstacles that do not present

a hazard to the vehicle tend to be thin structures, such as

grass or sparse bushes, as opposed to trees or rocks. These

objects tend to have a large number of depth discontinuities

or poor, but non-zero stereo coverage. Furthermore, they

typically also have high texture, implying that they should

have dense stereo coverage. We exploit this phenomenon in a

computationally efficient manner by processing the disparity

and rectified image directly, and then projecting occurrences

into the map to accumulate their statistics. Note that we do

not explicitly detect vegetation, but rather collections of thin,

sparse structures.

First a simple and fast texture measure is computed using

a running-sum filter of horizontal pixel differences over the

size of the stereo correlation window. The average sum over

all pixels that have stereo data is kept as well. Then each

pixel that is not saturated and has a texture value greater

than the average is considered. For each of these pixels, if

the horizontal and vertical neighbor pixels are a fixed range

away, the central pixel is then only classified as a depth

discontinuity if any of these range deltas is beyond a fixed

value, or has no disparity. Only data that is within a fixed

range of the vehicle is processed, as stereo error would make

the range test invalid at longer range, and a delta disparity

check is less informative.

The depth discontinuity count is projected into the map

and accumulated both temporally and spatially in the map.

The accumulated value can be thought of as a crude approx-

imation of an object’s sparseness or density. Then a simple

classifier using the discontinuity count and the geometry

statistics can be used to determine if the filtered map cell

should be considered a reliable and solid obstacle or not.

E. Negative Obstacle Detection

When operating near large negative obstacles, the vehicle

can become stuck, fall large distances, or entrap its legs.

Detection allows the vehicle to avoid these hazards. However,

negative obstacles must be distinguished from traversable

downslopes and visually confounding phenomena.

For stereo systems, negative obstacle detection can be

performed in the image or map. Higher fidelity detection

requires walking rows and running a classifier in the image,

but can be prone to false positives due to stereo noise. Since

we are only interested in detecting relatively large lethal

negative obstacles with high reliability, and computation time

is critical, we use an efficient map-based approach.

After each stereo frame is projected into the map and the

2D filtered map is computed, we walk 2D rays from the

projection of the camera to the ground plane, out within the

bounds of the camera field of view. For each ray walked,

(a) (b)

(c) (d)

Fig. 4. (a) Shows the stereo image for a controlled experiment for
vegetation detection; the cyan boxes are sparse detected obstacles, while the
magenta boxes are dense detected obstacles; (b) shows the stereo disparity;
(c) shows the continuous classification of sparse vs. dense obstacles; and
(d) shows accumulated map with cyan/magenta boxes for sparse/dense
obstacles.

an existing ground surface cell indicates a minimum slope

(or maximum elevation) beyond that cell based on the ray

from the camera. Cells that do not have data and that are not

saturated are then labeled with a maximum elevation based

on the ray. For empty cells, the next valid cell along the

ray (if there is one) provides an indication of the minimum

elevation. If there is no valid cell beyond the missing data, the

ray extended out to a fixed distance is used to compute the

minimum elevation. The difference between the maximum

and minimum elevation is then used as an estimate of the

negative step height.

To make computing the negative step height efficient,

portions of the ray that overlap with an already processed ray

are reused. Because the ray is being traced in a 2D structure

of fixed size cells, rays near the robot will be reused more

often and save considerable computation. While not strictly

correct since a ray hitting a cell may have approached it from

a slightly different angle, the approximation is sufficient for

computing coarse geometry. Similarly, for each ray the next

valid cell along the ray is only computed as necessary, and

reused along the ray until it needs to be recomputed, saving

significant computation time.

Because negative obstacles are identified based on the

terrain geometry, regions behind tall obstacles will have a

negative step height. Furthermore, since the vehicle can op-

erate in high slope environments, negative obstacles can exist

well above the vehicle’s feet (i.e. the back side of a sloped

surface). Consequently, to eliminate negative obstacles from

behind positive obstacles, we explicitly detect a fixed size

positive obstacle and do not label any negative obstacles for

rays that pass over the obstacle. Finally, to eliminate small

false positive negative obstacles, which are considered lethal

and cause incorrect deviations in the planner, we apply an
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angular filter to adjacent negative obstacle cells. This requires

that negative obstacles span a fixed minimum angle (of 5

degrees), as seen by the camera. In particular, this filter helps

to remove artifacts on the edge of the field-of-view, where a

valid ray exists, but the cells have not been observed many

times yet (as the robot is rotating) and so are all invalid.

(a) (b)

Fig. 5. (a) Shows the stereo image of a large ditch, with the map overlaid,
and (b) shows the detection of the negative obstacle (blue to red is the
severity of negative obstacle, and yellow are regions that are not classified).

F. Illuminator Design

The Legged Squad Support System vehicle has a re-

quirement to operate during both the day and night. While

thermal infrared cameras were considered for near field

mapping, visible cameras were chosen for resolution, cost,

and performance reasons. To operate at night, near-infrared

(NIR) LEDs are used to illuminate the terrain in front of the

robot, and the mapping algorithms are used unchanged.

While the visible camera CCDs used have reasonable NIR

sensitivity, it is still approximately 1/10th the sensitivity of

that in the visible spectrum. Coupled with the requirement

to see from 1 meter to 5 meters away, the camera does not

have the dynamic range to operate with a single uniform

light source. Consequently, we designed a tiled illuminator

system with multiple light power levels and lenses to achieve

uniform lighting at varying distance. The power level of the

individual illuminators are also independently controllable,

which means that as the vehicle approaches a large obstacle,

the illuminators can be used to prevent saturation in the

image.

We used a model-based approach to designing the illu-

minator system. We collected illumination data for several

combinations of NIR illuminators and lenses, which we

then used to compute an illumination model for each one.

We then computed the expected illumination pattern on a

flat ground plane for combinations of different illuminators

and pointing angles (Figure 6). To balance performance and

system complexity, we ultimately selected a single LED type,

used in a two row pattern, with one lens type for all the far-

field illuminators (top row), and another lens type for all the

near-field illuminators (bottom row). The final design uses

10 8 Watt NIR (810nm) LEDs with 30 FOV and 60 FOV

type lenses. The LEDs are triggered along with the cameras

and so only operate when the cameras are exposing, and are

limited to a 10ms exposure time. They are PWM throttled

to control the total illumination output level. This not only

reduces the total power required, but makes the illuminators

eye safe at approximately 0.3m. Operational protocols are

used to ensure people keep the required distance when the

illuminators are on.

(a)

(b)

Fig. 6. (a) shows the predicted model of the illuminator design on flat
ground; (b) shows the LS3 vehicle with the illuminators on at night, shot
with a night vision camera.

(a) (b)

Fig. 7. (a) Shows the stereo coverage of a uniform illuminator design; (b)
shows the stereo coverage of our new, multi-illuminator design.

III. EXPERIMENTAL RESULTS

The basic mapping system described here has been fielded

in incremental fashion as part of the DARPA LS3 program,

starting in 11/2010 on the BigDog vehicle, and then since

1/2012 on the LS3 vehicle. Since early in the program,

the map was used for basic robot level path planning and

obstacle avoidance. Even when the vehicle was not operating

in a mode that required the map, the map was being gener-

ated. However, only with the use of the filtering and outlier

rejection techniques recently developed and described in this

paper, has the map been robust enough to be used in closed-

loop fashion to adjust the vehicle’s gait. The vegetation and

negative obstacle detection are still experimental features and

have only been tested in controlled experiments.
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On the LS3 vehicle, during 9 official field tests, over 23

different days, and 245 distinct runs, the mapping system has

seen approximately 28 hours of data, covering 72km, and

620K frames. This does not include any controlled testing

or experiments not performed during official field testing.

The system is running the mapping system while running

under normal operation, and all input (imagery, IMU, etc.)

and output (pose, maps, etc.) data is logged. In total, this

consists of approximately 5TB of data, dominated primarily

by (uncompressed) imagery data.

Quantitatively evaluating the mapping performance in nat-

ural terrain is difficult. We have used simulated imagery of

known scenes to evaluate the accuracy of the map in simple

scenarios, but this does not reflect real-world scenarios well.

As a result, we tend to initially evaluate the mapping per-

formance in controlled experiments, with known objects in

specific configurations, and then test the system extensively

in the field under natural conditions. After every field test is

complete, the log data of every run is used to visually inspect

the map quality. The planning team reports any case where

the plan or robot acts in a way it shouldn’t, and the map

is inspected at that point to understand why the decision

was made. Similarly, the controls team reports when the

gait is adjusted from nominal, and reports cases that appear

incorrect.

A. Computation Time

The average computation time for a stereo frame for a

typical run in a forest environment is shown in Figure 8.

The stereo and vegetation detection processes are constant

time; visual odometry and negative obstacle detection vary

only slightly as a function of the environment; and mapping

varies as a function of vehicle speed and the amount of 3D

structure in the scene. For the run shown, dynamic obstacle

detection and tracking is disabled.

B. Controlled Experiments

Controlled experiments in a parking lot augmented with

different terrains are used to validate the system before field

tests. The standard test includes urban positive obstacles,

such as trash cans and cars, potted plants, steps and logs,

a rock field, and a grassy sloped hill. The quality of the

map is validated offline in two ways. The first method

compares the quality of the map generated online to one

that is generated offline using stereo computed at a higher

resolution, and only in the very near-field. Local statistics

of the maps are computed for regions under the robot and

compared. For example, Figure 9 (a) shows the difference in

elevation variance computed with full resolution (1024x768)

stereo data, out to varying ranges, with that computed at

the resolution used onboard (512x384) without using model-

based filtering. This illustrates how noisy far field data can

corrupt the map. When using the model-based filtering, the

elevation variance of the full 5m map is the same quality as

the 2m map, for data out to 2m.

The second method of evaluating the map quality involves

manually ground truthing the times at which the robot

Algorithm Avg. Time

Stereo 31ms

Visual Odometry 9ms

Mapping 19ms

Fig. 8. The computation time for a typical run through a forest trail; the
system does not run on a real-time operating system, which results in the
spikes in processing time. The system runs on a 2.66GHz Intel Core i7
CPU.

enters and exists different terrain conditions, such as entering

the rock field, or stepping over a log. The map statistics

during the different terrain conditions are then examined

for discernability. Figure 9 (b) shows the elevation variance

under the robot using model-based filtering for a typical run,

showing hills, steps, and a rock field, with asphalt in between.

Since the map is used to adjust the gait swing height on

these terrains, they must be distinguishable from the nominal

conditions. Without the model-based filtering, the elevation

variance over the asphalt is significantly noisier, and difficult

to distinguish from the rock field.

Specific terrain conditions are tested by creating obstacles

that simulate the real scenarios. For example, to test vege-

tation detection, sparse potted plants are placed in between

a set of barriers and the vehicle is commanded to a goal

location on the opposite side. When vegetation detection is

enabled, the robot is expected to walk through the vegetation.

Similarly, a ramp leading to a drop-off was constructed to

test negative obstacle detection.

C. Field Tests

Throughout the LS3 program, field tests are being con-

ducted approximately every 6 weeks. Earlier in the program,

field tests were conducted locally at various sites in the

northeast region of the United States. These included mostly

forest environments, with and without vegetation, and of

varying density of rocks, trees, mud, puddles, and slopes.

Tests are conducted both on trails and roads of varying size,

as well as cross-country. Tests are also conducted in almost

any weather, including rain and snow. A paintball site was

also used to test operation in more urban environments. Table

I summarizes the locations, distances, and run time of the

various sites used for testing.
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(a)

(b)

Fig. 9. (a) Shows the map elevation variance for full and half stereo
resolution, with data out to varying maximum distances projected into the
map, with no outlier rejection; (b) shows the elevation variance features
computed under the robot for a typical run with ground-truth labels for
different terrains.

(a) (b)

(c) (d)

Fig. 10. An example of vegetation detection in natural conditions; (a)
shows the stereo image with cyan boxes representing sparse obstacles; (b)
the stereo disparity; (c) the back projected map with blue to green indicating
sparseness; (d) the map, with blue to gree indicating spareness and cyan
boxes around sparse obstacles.

Location Time Distance

Forest (MA, winter) 3.2hrs 10.4km

Forest (MA, spring) 3.7hrs 4.7km

Vegetated fields/trails (MA, summer) 1.8hrs 4.9km

Paintball site (MA, summer) 0.5hrs 1.0km

Vegetated fields/trails (NH, fall) 1.1hrs 3.5km

Paintball site (MA, fall) 1.2hrs 2.3km

Vegetated fields/trails (NH, winter) 1.2hrs 4.2km

Paintball site (MA, winter) 1.3hrs 2.9km

Sparse/dense forest, fields (VA, winter) 15.0hrs 39.6km

Total: 27.9hrs 73.5km

TABLE I

LIST OF SITES WHERE THE LS3 MAPPING SYSTEM HAS BEEN TESTED.

While field tests are mostly used to assess performance of

the system over typical operating conditions, they also serve

to collect data of more difficult terrain and test specific terrain

cases. For example, Figure I shows a specific run in a park in

Waltham, MA, where the vehicle was following a leader up a

makeshift staircase on a trail. Like all other runs during this

field test, the stereo map was being used to automatically

adjust the gait parameters, but it provided a run in which

analyzing the impact of the vision system was easy. On this

run, of the 368 steps taken, 28 were automatically adjusted

by the vision system. This same run has been performed

without the vision system, but required manual adjustment

of the robot’s step height which in turn reduced the robot’s

efficiency.

As the LS3 program continues and the vehicle matures,

the vehicle is being tested in longer (generally two week)

tests throughout the United States. The first of these tests

was conducted at Fort Pickett, VA and included sparse and

dense forests with fallen logs (Figure 12), fields with tall

and short grass and other vegetation, long gravel and dirt

roads, day and night operations, and an urban MOUT site

(Figure 11). During this test, the mapping system was run

over 40km, with the vehicle walking an average speed of

1m/s. The vehicle successfully navigated most of the terrain.

Fig. 11. An example of the terrain mapping system being used in a MOUT
site
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Fig. 12. An example of the terrain mapping system being used in a forest
with fallen logs.

IV. CONCLUSIONS

We have developed a stereo vision system capable of

mapping natural terrain to the fidelity required for automati-

cally adjusting a legged vehicle’s gait. Spatial and temporal

filtering, along with stereo model based outlier rejection,

is used to make the terrain maps accurate and robust.

The system works in a wide variety of environments and

conditions, including rain and snow, as well as in dynamic

environments. A near-infrared illuminator system is used to

enable night-time operation. The system explicitly detects

sparse vegetation and negative obstacles to enable the full

mobility capability of the vehicle.

As LS3 testing continues, the mapping system will be

tested on increasingly difficult terrain and conditions. We

expect to add the ability to handle standing water and

puddles, which can create reflections that appear as negative

obstacles. We also plan to continue developing the automatic

gait, posture, and footstep adjustments to make the system

more robust. To make the system more effective during night

operations, we intend to automatically adjust the illuminators

to adapt to the terrain geometry. We are also investigating

the use of multiple image exposures to increase the dynamic

range of the system.
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