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Abstract

We present a novel high-fidelity generative adversar-
ial network (GAN) inversion framework that enables at-
tribute editing with image-specific details well-preserved
(e.g., background, appearance, and illumination). We first
analyze the challenges of high-fidelity GAN inversion from
the perspective of lossy data compression. With a low bit-
rate latent code, previous works have difficulties in preserv-
ing high-fidelity details in reconstructed and edited images.
Increasing the size of a latent code can improve the accu-
racy of GAN inversion but at the cost of inferior editability.
To improve image fidelity without compromising editabil-
ity, we propose a distortion consultation approach that em-
ploys a distortion map as a reference for high-fidelity recon-
struction. In the distortion consultation inversion (DCI),
the distortion map is first projected to a high-rate latent
map, which then complements the basic low-rate latent code
with more details via consultation fusion. To achieve high-
fidelity editing, we propose an adaptive distortion align-
ment (ADA) module with a self-supervised training scheme,
which bridges the gap between the edited and inversion
images. Extensive experiments in the face and car do-
mains show a clear improvement in both inversion and edit-
ing quality. The project page is https://tengfei-
wang.github.io/HFGI/.

1. Introduction

Image attribute editing is the task of modifying de-

sired attributes of a given image while preserving other de-

tails. With the rapid advancement of generative adversar-

ial networks (GANs) [9], a promising direction is to ma-

nipulate images with the strong control capacity of Style-

GAN [19,20]. To enable real-world image editing, GAN in-

version techniques [40] have been recently explored, which

aim at projecting images to the latent space of a pre-trained

GAN generator.

Existing GAN inversion approaches either perform per-

image optimization [1, 17, 45] or learn a data-driven en-

coder [26, 34]. Optimization approaches achieve higher
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Figure 1. High-fidelity image inversion and editing (age, smile,

eyes, color, grass). Our method performs well on details preser-

vation in both inverted and edited results such as background,

makeup, beard/hair style, reflection and shadow.

reconstruction accuracy by over-fitting on a single image,

but the latent code may get out of GAN manifold, lead-

ing to inferior editing quality. In contrast, encoder-based

GAN inversion methods are faster and show better edit-

ing performance due to knowledge learned from numerous

training images. Nevertheless, their reconstruction results

are usually inaccurate and of low fidelity: these methods

can reconstruct a coarse layout (low-frequency patterns),

but the image-specific details (high-frequency patterns) are

often ignored. For example, the reconstructed face im-

ages typically possess averaged patterns that agree with the

majority of training images (e.g., normal pose/expression,
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occlusion/shadow-free), and the details that present minor-

ity patterns (e.g., background, illumination, accessory) in

training data are subject to distortion. It is highly desir-

able to preserve these image-specific details in reconstruc-

tion and editing with high fidelity.

Though some works tried to improve the reconstruction

accuracy of encoder-based methods, their editing perfor-

mance usually decreases [34]. To analyze the limitation of

existing approaches, we consider the GAN inversion prob-

lem as a lossy data compression system with a frozen de-

coder. According to Rate-Distortion theory [29], revers-

ing a real-world image to a low-dimensional latent code

would inevitably lead to information loss. As conjectured

by information bottleneck theory [33], the lost information

is primarily image-specific details as the deep compression

model tends to retain common information of a domain.

Based on these analyses and experimental observations, we

present the Rate-Distortion-Edit trade-off for GAN inver-

sion, which further inspires our framework.

According to this trade-off, the low-rate latent codes are

insufficient for high-fidelity GAN inversion. However, it

is non-trivial to improve the reconstruction accuracy by di-

rectly increasing the rate. A higher-rate latent codes can

easily achieve a low distortion by overfiting on the recon-

struction process, but would suffer a dramatic editing per-

formance drop. To achieve both accuracy and editability

(high-fidelity editing), we propose a novel framework that

equips low-rate encoder models with distortion consulta-
tion. The consultation branch serves as a ‘cheat sheet’

for generation that only conveys the ignored image-specific

information. Specifically, we leverage the distortion map

between source and low-fidelity reconstructed image as a

reference and project it to higher-rate latent maps. Com-

pared with high-rate latent codes inferred from a full image,

the distortion map only conveys image-specific details and

can thus alleviate the aforementioned overfitting issue. The

high-rate latent map and low-rate latent code are further em-

bedded and fused in the generator via consultation fusion.

Our scheme shows a clear improvement in reconstruction

quality, and no test-time optimization is involved.

For attribute editing, following previous works, we per-

form vector arithmetic [25] on the low-rate latent code,

while the consultation is desired to bring back lost details.

While the distortion consultation substantially contributes

to the inversion quality, it cannot directly apply the distor-

tion map observed on the inversion image for editing due

to the misalignment between inverted and edited images.

To this end, we additionally design an adaptive distortion
alignment (ADA) network to adjust the distortion map with

the edited images. To disentangle the alignment from the

consultation encoder and stabilize the training, we impose

intermediate supervision on ADA by proposing an align-

ment regularization with a self-supervised training scheme.

Extensive experiments show that our method signifi-

cantly outperforms current approaches in terms of details

preservation in both reconstructed and edited results. On

account of the high-fidelity inversion capacity, our approach

is robust to viewpoint and illumination fluctuation and can

thus perform temporally consistent editing on videos. Our

primary contributions can be summarized as follows.

• We propose a distortion consultation inversion scheme

that combines both high reconstruction quality and

compelling editability with consultation fusion.

• For high-fidelity editing, we propose the adaptive dis-

tortion alignment module with a self-supervised learn-

ing scheme. By alignment, the distortion information

can be propagated well to the edited images.

• Our method outperforms state-of-the-art approaches

qualitatively and quantitatively on diverse image do-

mains and videos. The framework is simple, fast and

can be easily applied to GAN models.

2. Related Work
2.1. GAN Inversion

Existing GAN inversion approaches can be categorized

into optimization-based, encoder-based, and hybrid meth-

ods. Optimization approaches can achieve high recon-

struction quality but are slow for inference. [45] used L-

BFGS, and I2S [1] adopted ADAM for solving the opti-

mization. [15] adopted Covariance Matrix Adaptation for

gradient-free optimization. Instead of per-image optimiza-

tion, [45] learned an encoder to project images. [44] pro-

posed an in-domain method on real images. pSp [26] and

GHFeat [41] proposed to embed latent codes in a hierar-

chical manner. Further, e4e [34] analyzed the trade-offs

between reconstruction and editing ability. [38] improved

the inversion efficiency by a shallow network with efficient

heads. ReStyle [4] projected the latent codes with itera-

tive refinements. These methods are more efficient but fail

to achieve high-fidelity reconstruction. Hybrid approaches

make a compromise. [45] initialize the optimization with

the encoder output for acceleration. [11] designed a collab-

orative learning scheme for encoder and optimization itera-

tor. [27] fine-tuned StyleGAN parameters for each image

after predicting an initial latent code, which takes a few

minutes for an image. Compared with previous methods,

our method considerably improves the reconstruction qual-

ity of encoder models without inference-time optimization.

GAN inversion approaches can also be classified by the

used latent space. Z space [19] is straightforward but suffers

from feature entanglement. W [19] and W+ [1, 2] space

in StyleGAN are more disentangled, where W+ space ex-

tends W space by using different W across layers. S
space [39] is proposed by transforming W+ through the

affine layers. P space [46] inverts images to the last ac-
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Figure 2. Rate-Distortion-Edit trade-off. “Rec” and “Edit” represent the reconstruction and editing results, respectively. (a) is a typical

low-rate framework for GAN inversion but suffers detail loss and distortion. (b) is a naive high-rate GAN inversion framework with nearly

perfect reconstruction but suffers inferior interpretability and editability. The proposed method (Fig. 3) combines both high details fidelity

and compelling editing performance with a fast inference speed.

tivation layer in the non-linear mapping network. Besides

StyleGAN, some works [10] also adopts multi-scale latent

codes for ProgressGAN [18]. Nevertheless, these latent

spaces would inevitably lose details in reconstructed images

due to limited bit-rate (Sec. 3.1). To perform a high-fidelity

inversion, we propose a distortion consultation branch to

convey high-frequency image-specific information.

2.2. Latent Space Editing

A number of supervised and unsupervised approaches

explored GAN latent space for semantic directions under

the vector arithmetic. The supervised methods need off-

the-shelf attribute classifiers or annotated images for spe-

cific attributes. InterfaceGAN [30] trained SVM to learn

the boundary hyperplane for each binary attribute. Style-

Flow [3] learned reversible mapping by normalizing flow

and off-the-shelf classifiers. Others [16,24] explored simple

geometric transformation via self-supervised learning. Un-

supervised approaches do not need pre-trained classifiers.

GANspace [13] performed PCA on early feature layers.

Similarly, SeFa [30] performed eigenvector decomposition

of the affine layers. Some [22,35,47] found distinguishable

directions based on mutual information. LatentCLR [42]

explored directions by contrastive learning.

3. Approach
Given a source image X and a well-trained generator G0,

GAN inversion infers the latent code W via an encoder E0,

which is expected to faithfully reconstruct X . In this sec-

tion, we first analyze the bottleneck of previous inversion

methods and describe our proposed distortion consultation

inversion strategy. To handle the features misalignment, we

present the adaptive distortion alignment modules with a

self-supervised training scheme. The whole framework is

illustrated in Figure 3.

3.1. Overview

Motivation. Currently, GAN inversion frameworks

lie in three categories, which are optimization-based,

encoder-based and hybrid methods. Despite more accu-

rate, optimization-based and hybrid approaches are time-

consuming and thus intolerable in real-time applications.

Existing encoder-based methods can be illustrated by Fig. 2

(a), where the decoder is a frozen well-trained generator

(e.g., StyleGAN) while the encoder learns a mapping from

the source image to the latent codes. As observed in many

existing works (e.g., results (a) in Fig. 2), the encoder ap-

proaches fail to faithfully reconstruct the input images, and

the inversion (and editing) results are of low fidelity in terms

of details. Noted the fact that the latent codes in previ-

ous methods are of (relatively) low dimension, we conjec-

ture that the low-rate latent codes are insufficient for high-

fidelity reconstruction. This conjecture is also supported by

the Rate-Distortion theory [5,7,29], which will be reviewed

in the Supplement.
To further analyze the effect of the latent rate in high-

fidelity GAN inversion, we formulate the encoder-based

GAN inversion as a problem of lossy data compression. In
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Figure 3. Overview of our high-fidelity image inversion and editing framework. The basic encoder E0 infers a low-rate latent code W
corresponding to a low-fidelity reconstruction image X̂o. The distortion map Δ̃ between X̂o and the source image X contains the lost

high-frequency image-specific details to improve the reconstruction fidelity. The red dotted boxes indicate the editing behaviour with

certain semantic direction Nedit, where W edit = W +αNedit corresponds to a low-fidelity editing image X̂edit
o . To achieve high-fidelity

image editing, we propose the distortion consultation branch to facilitate the generation. In the distortion consultation, Δ̃ is first aligned

with the low-fidelity edited image X̂edit
o by ADA and then embedded to a high-rate latent map C via the consultation encoder Ec. Latent

code W and latent map C are combined via the consultation fusion (see details in the right part) across layers of G0 to generate the final

edited image X̂edit.

this formulation, rate can be interpreted as the dimension

of latent codes (e.g., 18× 512), and distortion indicates the

reconstruction quality (fidelity). A compelling inversion

method is desired to produce high-fidelity images for both

inversion and editing (low distortion). Nevertheless, the

current dimension of latent codes is much smaller than that

of images (low rate). This implies a contradiction with

[29, 32], which shows the low-rate latent codes are insuf-

ficient for faithful reconstruction and some information is

inevitably lost. Therefore, we are motivated to design a

large-rate GAN inversion system.

Challenge. However, it is non-trivial to reduce the

distortion by simply increasing the latent rate. A naive

idea for faithful reconstruction is to adopt a higher-rate

latent code like Fig. 2 (b). This Unet-like structure is

adopted by some recent image restoration works [6,37] that

conveys latent maps (e.g., 18× 512×H ×W ) to decoder.

Benefited from the higher bit rate, the restoration quality is

gratifying (e.g., results (b) in Fig. 2). However, we cannot

apply this structure in our case since the high-dimensional

latent codes are difficult to interpret and manipulate for

attribute editing (e.g., results (b) in Fig. 2). Similarly, prior

work [34] also observed tradeoffs between the reconstruc-

tion and editability brought by over-fitting. The high-rate

latent code is easy to overfit on the reconstruction, thereby

compromising the edit performance. As the inversion is

just an intermediate step to achieve the goal of editing, it

is essential to balance the rate, reconstruction, and editing

quality, which we call the Rate-Distortion-Edit trade-offs

(Fig. 2). To this end, a delicate system design is needed.

Design. As analyzed above, with a (relatively) low-rate la-

tent code, the GAN inversion system is subject to inevitable

information loss. By analyzing the visual results of pre-

vious GAN inversion approaches (Fig. 1, Fig. 2, Fig. 4),

we found that these reconstruction results can successfully

preserve frequent patterns and principle attributes of the

source images. In contrast, the lost information is mostly

the image-specific details such as background, make-up and

illumination. This observation is consistent with the Infor-

mation Bottleneck theory [31–33], which hypothesizes the

deep models primarily learn common patterns in the dataset

while forgetting infrequent details for reconstruction.

Considering the Rate-Distortion-Edit trade-offs, now

that we have prioritized the editability (with a low-rate la-

tent code), the main concern is how to convey the lost infor-

mation to improve the fidelity (lower the distortion) with-

out compromising the edit performance. To this end, we

propose a distortion consultation branch that only conveys

image-specific details to enhance the reconstruction quality,

which avoids the trivial solution of a simple overfitting. For

editing, we still perform vector arithmetic on the low-rate

latent code for its high editability. By combining the best of

both worlds, the proposed approach achieves a high fidelity

in both reconstruction and editing (Fig. 2).

3.2. Distortion Consultation Inversion (DCI)

Basic Encoder. With a basic encoder E0, we can obtain

a low-rate latent code W = E0(X) and initial inversion

image X̂o = G0(W ). In this case, the generator G0 takes

W as the input in each layer to obtain the feature map:

Fi+1 = AdaIN(Fi, f
s
i (Wi), f

b
i (Wi)), (1)

where fs
i (Wi), f

b
i (Wi) are affine layers for scale and bias

in AdaIN [14]. X̂o is low-fidelity due to the information
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loss of low-rate latent codes, and the subscript o denotes an

(unsatisfactory) observation of source image X .

Consultation Encoder. To enhance E0 with higher fidelity,

we propose a distortion consultation branch to convey the

lost image-specific details. We refer it to Consultation,

since the network explicitly consults the image-specific

information as a reference for generation. Specifically, we

see the distortion map Δ̃ = X − X̂o between source X and

initial reconstruction X̂o as the lost details [36]. The distor-

tion map is projected to a high-rate latent map C = Ec(Δ̃)
via the consultation encoder Ec. Compared with prior

methods relying on W only, G0 additionally consults C
for lost details to achieve high-fidelity reconstruction as

X̂ = G0(W,C).

Consultation Fusion. To combine the consultation branch

with the basic encoder for image generation, we adopt a

layer-wise consultation fusion for latent codes W and latent

maps C, as shown in Fig. 3. As artifacts and inaccurate de-

tails introduced by W can degrade the generation quality,

we design a gated fusion scheme to adaptively filter out un-

desired features. In layer i of G0, Ci is embedded to a gate

map gi and a high-frequency details map hi:

gi = fgate
i (Ci), hi = fhf

i (Ci), (2)

where mapping functions fgate and fhf are convolution

layers. hi contains the image-specific details, and facili-

tates the low-fidelity features obtained from Wi (Eq. (2)) to

produce high-fidelity feature maps Fi+1 in StyleGAN1:

Fi+1 = gi ·AdaIN(Fi, f
s
i (Wi), f

b
i (Wi)) + hi. (3)

To avoid overfitting on the inversion result, we only perform

the consultation fusion in early layers of G0.

3.3. Adaptive Distortion Alignment (ADA)

For attribute editing, the low-rate latent code W would

be moved along certain semantic direction Nedit as

W edit = W + αNedit [30]. The initial edited image by

the basis encoder is denoted as X̂edit
o = G0(W

edit), which

suffers details distortion. So far, we have improved the fi-

delity of the inversion image X̂o with the proposed DCI,

where the distortion map Δ̃ = X−X̂o is calculated for X̂o.

However, X̂edit
o would be deformed from X̂o when editing

attributes such as age, pose and expression. This means

the observed Δ̃ may not align with the edited image X̂edit
o .

Applying DCI directly to X̂edit
o leads to obvious artifacts by

consulting misaligned details Δ̃ (see Sec. 4.3). To advance

DCI from inversion to editing, the observed distortion map

Δ̃ is supposed to be adaptively aligned with the edited im-

age X̂edit
o . We thus propose the ADA module, which is an

encoder-decoder-like structure for distortion alignment.

1For StyleGAN2 [20], the fusion layer would be Fi+1 = gi ·
ModulatedConv(Fi, f

s
i (Wi), f

b
i (Wi)) + hi.

Considering a misaligned pair of {I , Δ̃} where I is X̂o

for inversion and X̂edit
o for editing, ADA is to align the

distortion map Δ̃ with a target image I . For inversion,

ADA is ideally an identity mapping. For editing, the

distortion map is desired to be adaptively transformed

as Δ̂edit = ADA(X̂edit
o , Δ̃) that aligns with the initial

editing result X̂edit
o . With Cedit = Ec(Δ̂

edit) as a refer-

ence, X̂edit = G0(W
edit, Cedit) can preserve more details.

Self-supervised Training. To alleviate the entanglement

between distortion alignment and distortion consultation,

involving intermediate supervisions on ADA outputs in pre-

ferred. To this end, we need numerous misaligned pairs of

{I , Δ̃} and their ground-truth aligned maps Δ for train-

ing, but the data collection is labor-intensive. To conduct

a self-supervised training, we take X as the source image,

and the low-fidelity inversion X̂o as the target image I for

alignment, and the ground-truth aligned distortion is thus

Δ = X − X̂o. During the training, we augment Δ with

random perspective transformation to simulate misaligned

distortion maps Δ̃. We empirically observe these simu-

lated pairs work well on training and expect a better simu-

lation scheme in future works. The ADA module is encour-

aged to produce the aligned distortion Δ̂ = ADA(X̂o, Δ̃)
that approximates Δ. The alignment loss is defined as:

Lalign = ‖Δ̂−Δ‖1. See the Supplement for more details.

3.4. Losses

During the training, the generator G0 and basic encoder

E0 are frozen. For faithful reconstruction, we calculate L2

loss and LPIPS [43] between X̂ and X . We also calculate

the identity loss Lid = 1 − 〈F (X), F (X̂)〉, where F is

pre-trained ArcFace [8] or a ResNet-50 model for different

domains [34]. The reconstruction loss is

Lrec = L2 + λperLLPIPS + λidLid. (4)

We also impose adversarial loss to improve image quality:

LD = E[logD(X̂)] + E[log(1−D(X))], (5)

Ladv = −E[log(D(X̂))], (6)

where D is initialized with the well-trained discriminator.

In summary, the overall loss is a weighted summation of

Lrec, Ladv , and Lalign. Note that the training process

only involves the inversion images, and no editing direction

Nedit is needed. After training, the model can generalize to

diverse attribute editing explored by different methods.

4. Experiments
4.1. Settings
Datasets. For the human face domain, we use the

FFHQ [19] dataset for training and the CelebA-HQ [18]

dataset for evaluation. For the car domain, we use Stan-

ford Cars [21] for training and evaluation. For attribute
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Figure 4. Visual comparisons on Face inversion and editing. More results are shown in Appendix.
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Method MAE ↓ SSIM ↑ LPIPS ↓ Time ↓
I2S [1] .0636±.0010 .872±.005 .134±.006 156s

PTI [27] .0622±.0004 .877±.003 .132±.003 283s

pSp [26] .0789±.0006 .793±.006 .169±.002 0.11s

RestylepSp [4] .0729±.0005 .823±.004 .145±.002 0.46s

e4e [34] .0919±.0008 .742±.007 .221±.003 0.11s

Restylee4e [4] .0887±.0008 .758±.007 .202±.003 0.46s

Ourse4e .0617±.0004 .877±.002 .127±.001 0.24s

Table 1. Quantitative comparison for inversion quality on faces.

editing, we adopt InterfaceGAN [30] for face images and

GANSpace [13] for car images.

Implementation details. See the Appendix.

4.2. Evaluation

4.2.1 Quantitative Evaluation
We compare our method (with e4e as the basic encoder)

with state-of-the-art encoder-based GAN inversion ap-

proaches, pSp [26], e4e [34] and Restyle [4] (with pSp

and e4e as backbones, respectively). We report quantita-

tive comparisons of the inversion performance in Table 1.

The metrics are calculated on the first 1,500 images from

CelebA-HQ. We also compare the proposed method with

two optimization-based approaches [1, 27]. Our approach

substantially outperforms encoder-based baselines in terms

of reconstruction quality and is considerably faster than

optimization-based methods when inference.

4.2.2 Qualitative Evaluation
Encoder baselines. We show visual results of both inver-

sion and editing in Fig. 4. Compared with previous ap-

proaches, our method is robust to images with occlusion

and extreme viewpoints. For example, the first row in Fig. 4

gives a face image occluded by the hand, and the last row

demonstrates a car image with an out-of-range viewpoint.

Existing methods fail to reconstruct these challenging im-

ages faithfully. They generate distorted results and suffer

artifacts for both inversion and editing. In contrast, with

the proposed distortion consultation scheme, our method is

more robust with high-fidelity results. Besides the robust-

ness improvement, our approach also successfully preserves

more details in backgrounds (4th row), shadow (2nd row),

reflect (10th row), accessory (5th row), expressions (7th and

8th rows), and appearance (9th and 11th rows).

Optimization baselines. We also compare our method with

optimization-based methods [1, 20, 27] in Fig. 5. Note that

PTI [27] optimizes both latent codes and StyleGAN param-

eters, but we still report their results for better compari-

son. With ∼ 1000× faster inference, our method achieves a

comparable or even better reconstruction quality. Also, the

editing results produced by the proposed scheme success-

fully preserve the image-specific details of source images

without compromising the edit performance.

Ours > pSp Ours > e4e Ours > Restyle

Preference Rate 81.2% 84.4% 79.7%

Table 2. The results of the user study. The reported value indicates

the preference rate of Ours against a baseline.

4.2.3 User Study
To perceptually evaluate the editing performance, we con-

duct a user study in Table 2. We select the first 50 im-

ages from CelebA-HQ and perform editing on extensive at-

tributes. We collect 1,500 votes from 30 participants. Each

participant is given a triple of images (source, our editing,

baseline editing) at once and asked to choose the higher-

fidelity one with proper editing. The user study shows our

method outperforms baselines by a large margin.

4.3. Ablation Study

4.3.1 Effect of Distortion Consultation

As discussed before, the distortion consultation inversion

(DCI) scheme brings back ignored image details to com-

plement the low-rate basic encoder, thereby achieving the

high-fidelity reconstruction. To validate the effectiveness

of DCI, we show our inversion results in Fig. 6. With the

proposed distortion consultation branch, the model is more

robust to occlusion and extreme poses and keeps more de-

tails in the reconstruction results.

4.3.2 Effect of Adaptive Distortion Alignment

To analyze the effect of ADA, we show the editing results

with and without ADA in Fig. 7. Without the adaptive align-

ment, the distortion map fails to generalize to the edited im-

age and degrades the generated image quality. In the pro-

posed method, the aligned distortion map is embedded and

integrated into the feature space via consultation encoding

and consultation fusion. A naive alternative is to directly

add the distortion map Δ̃ to Xedit
o in the image space with

warping estimated by face landmarks [12]. As shown in

Fig. 7, performing warping and fusion in the image space

also leads to obvious artifacts, where the warping is imple-

mented by coordinates interpolation of facial landmarks.

4.4. Application on Video Editing
Compared with image inversion and editing, the key

challenge for the video counterpart is the temporal consis-

tency of details across frames. This puts a higher demand

for reconstruction fidelity since the distortion of every sin-

gle image would be magnified in a video in terms of con-

sistency and quality [23]. We show inversion and editing

results on a real video [28] in Fig. 8. Previous low-rate in-

version approaches lack robustness to pose variation, and

fail to preserve the identity of the original person and suf-

fer notable distortion in editing results. When the pose and

viewpoint change across video frames, their results show
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Figure 7. Effects of ADA. We integrate the distortion map in the

image and feature space respectively and show the editing results.

inconsistent details and abrupt identity discrepancy. In con-

trast, the proposed method is more robust to cross-frame

discrepancy (e.g., pose, viewpoint) and achieves higher fi-

delity for details preservation. More results in mp4 format
are given in the Supplement.

5. Conclusion
In this work, we propose a novel GAN inversion frame-

work that enables high-fidelity image attribute editing. With

an information consultation branch, we consult the ob-

served distortion map as a high-rate reference for lost in-

formation. This scheme enhances the basic encoder for

high-quality reconstruction without compromising editabil-
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Figure 8. Inversion and editing results on a real video.

ity. With the adaptive distortion alignment and distortion

consultation technique, our method is more robust to chal-

lenging cases such as images with occlusion and extreme

viewpoints. Benefiting from the additional information of

the consultation branch, the proposed method shows clear

improvements in terms of image-specific details preserva-

tion (e.g., background, appearance, and illumination) for

both reconstruction and editing. The proposed framework

is simple to apply, and we believe it can be easily general-

ized to other GAN models for future work.

Limitations. One limitation of the proposed method is the

difficulty in handling large misalignment cases. As the aug-

mented data used for ADA training in our experiments does

not cover extreme misalignment, ADA is possibly insuf-

ficient when editing images with large viewpoint changes

(see the Supplement for failure cases).
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