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Abstract

Pose and expression normalization is a crucial step to

recover the canonical view of faces under arbitrary condi-

tions, so as to improve the face recognition performance.

An ideal normalization method is desired to be automat-

ic, database independent and high-fidelity, where the face

appearance should be preserved with little artifact and in-

formation loss. However, most normalization methods fail

to satisfy one or more of the goals. In this paper, we

propose a High-fidelity Pose and Expression Normaliza-

tion (HPEN) method with 3D Morphable Model (3DMM)

which can automatically generate a natural face image in

frontal pose and neutral expression. Specifically, we first-

ly make a landmark marching assumption to describe the

non-correspondence between 2D and 3D landmarks caused

by pose variations and propose a pose adaptive 3DMM fit-

ting algorithm. Secondly, we mesh the whole image into a

3D object and eliminate the pose and expression variation-

s using an identity preserving 3D transformation. Finally,

we propose an inpainting method based on Possion Editing

to fill the invisible region caused by self occlusion. Exten-

sive experiments on Multi-PIE and LFW demonstrate that

the proposed method significantly improves face recogni-

tion performance and outperforms state-of-the-art methods

in both constrained and unconstrained environments.

1. Introduction

During the past decade, face recognition has attracted

much attention due to its great potential value in real world

applications, such as access control, identity verification

and video surveillance. However, in unconstrained envi-

ronment the performance of face recognition always drops

significantly because of large variations caused by pose, il-

lumination, expression, occlusion and so on. Among them
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pose and expression have always been important challenges

because they can dramatically increase intra-person vari-

ances, sometimes even exceeding inter-person variances.

To deal with the two challenges, many promising works

have been developed, which can be divided into two cat-

egories: feature level normalization and image level nor-

malization.

The feature level normalization aims at designing face

representations with robustness to pose and expression vari-

ations [21, 32, 44, 35, 42]. For instance, the Pose Adap-

tive Filter [48] adjusts its filter according to pose conditions

and extracts features on semantic consistent positions. The

High-dim LBP [21] concatenates many local descriptors to

a high-dim form and demonstrates robustness to global and

local distortions. Besides hand crafted features, discrimi-

native features can also be learned from data. Fisher vec-

tor [41], Learning Based Descriptor [17] and Probabilistic

Elastic Matching [32] use unsupervised learning techniques

to learn encoders from training examples. Convolutional

Neural Network (CNN) provides a framework to learn face

representations in a supervised form, and has achieved sig-

nificant improvements in recent years [44, 46].

The image level normalization aims to synthesize a vir-

tual canonical-view and expression-free image from one un-

der arbitrary conditions. The advantage of this category is

that it can be easily incorporated into traditional face recog-

nition framework as a pre-processing procedure. There are

2D and 3D methods. One type of 2D methods estimates a

spatial mapping (a flow), either pixel-wise or patch-wise, to

simulate the geometry transformation in 3D space, such as

Stack Flow [4], Markov Random Field [3] and Morphable

Displacement [34]. In these methods, although the face pix-

els are rearranged to the frontal view, the shape and consis-

tency are not well preserved. Another type of 2D methods

tries to learn the appearance transformations between dif-

ferent poses, such as Local Linear Regression [18] and Tied

Factor [39]. These methods use linear models to approxi-
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Figure 1. Overview of the High-Fidelity Pose and Expression Normalization (HPEN) method

mate the highly non-linear pose variations and thus cannot

always retain the identity information. Recently, FIP [50]

and SPAE [29] train high-dimensional non-linear appear-

ance transformations with deep models, achieving state-of-

the-art performance. However, it is necessary to prepare a

very large and carefully designed database, where a gallery

image under neutral condition is provided for each subject.

This requirement is not always satisfied in real application.

Since pose variations are caused by 3D rigid transfor-

mations of face, 3D methods are inherently more intuitive

and accurate. 3D methods estimate the depth information

with a 3D model and normalize faces through 3D trans-

formations. A representative method is the 3D Morphable

Model (3DMM) [10], which constructs its 3D shape and

texture model with PCA and estimates model parameters

by minimizing the difference between image and model ap-

pearance. Although proposed a decade before, 3DMM still

has competitive performance [29]. However, this method

suffers from the amazing one-minute-per-image time cost.

An alternative method is the landmark based 3D face model

fitting [5, 1, 46, 13, 12, 38], which estimates the model pa-

rameters with the correspondence between 2D and 3D land-

marks. This method is very efficient but suffers from the

problem that the semantic positions of face contour land-

marks differ from pose to pose. Besides, most 3D normal-

ization methods do not fill the invisible region caused by

self-occlusion, leading to large artifacts and non face-like

normalization results [5, 23].

In this paper, we present a pose and expression normal-

ization method to recover the canonical-view, expression-

free image with “high fidelity”, which indicates preserving

the face appearance with little artifact and information loss.

The contributions are as follows: Firstly, we make a “land-

mark marching” assumption to describe the movement of

3D landmarks across poses and propose a landmark based

pose adaptive 3DMM fitting method (Section 2). Secondly,

we propose a identity preserving normalization by mesh-

ing the whole image into a 3D object and normalizing it

with 3D transformations (Section 3). Finally, we propose

a “Trend Fitting and Detail Filling” method to fill the in-

visible region with poisson editing, leading to smooth and

natural normalization result. Based on the well develope-

d landmark detector [47], the entire normalization system

does not contain any learning procedure, leading to good

generalization performance to different environments. The

proposed method is briefly summarized in Fig. 1. The code

can be downloaded from http://www.cbsr.ia.ac.

cn/users/xiangyuzhu.

2. Pose Adaptive 3DMM Fitting

In this section, we firstly introduce the 3D Morphable

Model (3DMM) and then describe our pose adaptive 3DM-

M fitting method.

2.1. 3D Morphable Model

3D Morphable Model is one of the most successful meth-

ods to describe the 3D face space. Constructed by linear

combinations of face scans, 3DMM can approximate arbi-

trary face shape to a considerable extent. Recently, Chu et

al. [23] extend 3DMM to contain expressions as the offset

to the neutral face.

S = S +Aidαid +Aexpαexp (1)

where S is the 3D face, S is the mean shape, Aid is the

principle axes trained on the 3D face scans with neutral ex-

pression and αid is the shape weight, Aexp is the princi-

ple axes trained on the offset between expression scans and

neutral scans and αexp represents the expression weight. In

this work, we merge two popular face models with Non-

rigid ICP [2] to construct our 3DMM. The identity shape

Aid comes from the Basel Face Model (BFM) [36] and the

expression Aexp comes from the Face Warehouse [14].

To fit 3DMM to a face image, we project the face model

onto the image plane with the Weak Perspective Projection:

s2d = fPR(α, β, γ)(S + t3d) (2)

http://www.cbsr.ia.ac.cn/users/xiangyuzhu
http://www.cbsr.ia.ac.cn/users/xiangyuzhu


where s2d is the 2D positions of 3D points on the image

plane, f is the scale factor, P is the orthographic projection

matrix

(

1 0 0
0 1 0

)

, R(α, β, γ) is the 3× 3 rotation ma-

trix constructed with pitch(α), yaw(β) and roll(γ) and t3d is

the translation vector. The fitting process needs to search the

ground truth 2D coordinates s2dt of 3D points and estimate

the model parameters by minimizing the distance between

s2d and s2dt:

arg min
f,R,t3d,αid,αexp

‖s2dt − s2d‖ (3)

2.2. Landmark Marching

Benefit from the current breakthrough of face alignment

algorithm [47, 16], robustly detecting face landmarks in un-

constrained environment has become possible. If we mark

the corresponding 3D landmarks on the face model, a sparse

correspondence between 3D and 2D space can be construct-

ed. Then 3DMM can be fitted with Eqn. (3), where the s2dt
and s2d are the 2D and projected 3D landmarks respectively.

However, this fitting framework has a big problem that the

landmarks on the cheek boundary are not consistent across

poses. When faces deviate from the frontal pose, the land-

marks on the contour will “move” to the face silhouette and

break the correspondence, see Fig. 2 for example.

Figure 2. The landmark marching phenomenon. The blue points

on the 3D face are standard landmark positions. The red and ma-

genta points are moved landmarks, which are also plotted on the

frontal face.

To solve the problem, Lee et al. [31] and Qu et al. [40]

detect and discard moved landmarks. This method cannot

make full use of landmark constrains. Asthana et al. [6]

build a look up table containing 3D landmark configurations

for each pose. This method depends on pose estimation and

needs a large table in unconstrained environment. In this

paper, we intend to localize the moving contour landmark-

s and rebuild the correspondence automatically. We make

an assumption called “landmark marching” to describe the

phenomenon: When pose changes, if a contour landmark

is visible, it will not move; or it will move along the par-

allel to the visibility boundary. The parallels are shown in

Fig. 3(a). In the assumption, we restrict the landmark paths

to the parallels and give clear definition of their positions.

Note that in the fitting process, pose and landmark configu-

ration depends on each other and should be estimated in an

iterative manner. To improve efficiency, we propose an ap-

proximation method to avoid iterative visibility estimation.

Observing that human head is roughly a cylinder [43] and

for a cylinder in any out-of-plane rotation (yaw and pitch),

the visibility boundary always corresponds to the generatrix

with extreme x coordinates (minimum in left and maximum

in right), see Fig. 3(b). Thus in landmark marching, if a par-

allel crosses the visibility boundary, the point with extreme

x will be the marching destination. Inspired by this obser-

vation, we first project the 3D face with only yaw and pitch

to eliminate in-plane rotation:

Sα,β = R(α, β, 0)S (4)

Then, for each parallel, the point with extreme x coordi-

nate will be chosen as the adjusted contour landmark, see

Fig. 3(c)3(d).

(a) (b)

(c) (d)

Figure 3. (a) The parallels on the mean face, the red points are

the standard landmark positions. (b) The landmark marching on a

cylinder. The left one is the frontal view, the right one is rotated

with yaw and pitch. The red lines are the generatrix corresponding

to the visibility boundary, the blue line is a parallel. (c)(d) Project

3D face with only yaw and pitch and get adjusted landmark posi-

tions. The 3D shape of (c) and (d) come from the first and third

column of Fig. 2 respectively.

With the landmark marching, the correspondence be-

tween 2D and 3D landmarks is rebuilt, and the 3DMM fit-

ting can be summarized as solving the equation:

s2d land = fPR[S +Aidαid +Aexpαexp + t3d]land (5)

where s2d land is the 2D landmarks and the subscript land

means only the adjusted 3D landmarks are selected. Pa-

rameters needed to be solved are the shape αid, expression

αexp, pose f,R, t3d and landmark configuration land. Each

group of parameters can be solved when the other three



are fixed. In detail, firstly the αid and αexp are initial-

ized to zero and pose is coarsely estimated with only facial

feature landmarks using Weak Perspective Projection [11],

then landmark marching is conducted to update landmark

configuration land. After initialization, the parameters are

estimated by solving Eqn. (5) in an iterative manner (4 times

in this work). Since all steps are linear problems and are on-

ly related with landmarks, the fitting is very efficient, which

can always finish in less than 0.2s.

3. Identity Preserving Normalization

In this section, we demonstrate how to normalize pose

and expression while preserving the identity information.

As we know, the shape and texture of a face contain the

main identity information and should be kept constant when

normalizing. With a fitted 3DMM, we can directly mapping

pixels as the face texture and retain the shape parameters

during normalization. Besides, the appearance surrounding

the face region also contain discriminative information for

face recognition [30, 19]. However, most previous works

either only keep the internal face region and dropping the

information around the face [5, 23, 50, 29] or warp the pix-

els of surrounding region to the fixed positions so that some

shape information is lost [9]. In this work, we propose to

estimate the depth information of the whole image and thus

the pose and expression can be easily corrected by 3D trans-

formation to preserve as much identity information as pos-

sible.

(a) (b) (c) (d)

Figure 4. 2D and 3D view of 3D-meshing. (a) The boundary an-

chors. (b) The surrounding anchors. (c) The background anchors.

(d) Triangulation and better view of depth information.

3.1. 3D Meshing and Normalization

In order to ensure the smooth transition from the face

region to its background after pose normalization, except

face region, we also estimate the depth of the external face

region and the background. Specifically, we estimate the

depth of anchors from three groups (shown in Fig. 4). One

is the boundary anchors which are located on the face con-

tour and adjusted by landmark marching (Fig. 4(a)). The

second group is the surrounding anchors which enclose a

larger region containing headback, ear and neck (Fig. 4(b)).

The depth of these anchors can be approximately estimated

by enlarging the 3D face with increasing the scale param-

eter f and translating the nosetip to the original position.

The third is the background anchors located on the image

boundary (Fig. 4(c)), and their depth is set to the same as

the closest surrounding anchor. Once all anchors are de-

termined, we apply the delaunay algorithm to triangulate

anchors and obtain the 3D meshed face object, shown in

Fig. 4(d).

After 3D-meshing, the pose can be corrected with the

inverse rotation matrix R−1.

Simg rn = R−1Simg (6)

where Simg is the meshed face object containing 3D face

model and anchors, see Fig. 4(c), R is the estimated rotation

matrix in 3DMM fitting and Simg rn is the rigidly normal-

ized mesh, see Fig. 5(a). For expression normalization, we

set the αexp to the neutral expression weight αexp neu [23],

see Fig. 5(b). Note that the shape parameters are kept un-

changed to preserve identity information.

Figure 5. (a) The rigidly normalized mesh, the magenta points are

the boundary anchors. (b) The result of pose and expression nor-

malization. There generates a hollow region below the chin due

to expression change. We also make mesh transparent to demon-

strate the face region occluded by background mesh. (c) The result

of anchor adjustment. The boundary anchors move to the prede-

fined face contour positions and all anchors are adjusted. (d) The

normalized image where the black region is the invisible region.

3.2. Anchor Adjustment

From Fig. 5(b), one can see that after pose and expres-

sion normalization, the semantic of boundary anchors does

not correspond to the face contour due to landmark march-

ing and expression change, needing to be further adjusted.

Since anchors are related, all the anchors need to be adjust-

ed to preserve the image structure.



We propose a graph to represent the relationships of the

anchors with the rigidly normalized mesh such as Fig. 5(a),

in which the vertices are the anchor points and the edges

are the lines connecting the vertices in the mesh. Each edge

represents an anchor-to-anchor relationship:

xa − xb = δx ya − yb = δy (7)

where (xa, ya) and (xb, yb) are two connecting anchors, δx

and δy are the offsets in x and y coordinates. In anchor ad-

justment, we move the boundary anchors to the pre-defined

positions on 3D face model and try to keep the spatial dis-

tance (δx, δy) unchanged:

xa con−xb new = xa−xb ya con−yb new = ya−yb (8)

where (xa con, ya con) is the predefined face contour posi-

tion corresponding to a boundary anchor a, (xb new, yb new)
is the new position of a connecting anchor b, which needs to

be solved, (xa, ya) and (xb, yb) are the coordinates before

adjustment. We can adaptively obtain the adjusted positions

of the other two groups of anchors by solving the equations

for each connecting a and b, which forming an equation list.

The solution can be obtained by least squares, see Fig. 5(c).

Afterwards, the normalized image can be rendered by the

correspondence between the source image and the normal-

ized image provided by the triangles, see Fig. 5(d).

4. Invisible Region Filling

If the yaw angle of face is too large, there may be some

regions become invisible due to self-occlusion. Bad fill-

ing of the occluded region will lead to large artifacts after

normalization and deteriorate recognition performance. In

recent works, Asthana et.al [5] and Chu et.al [23] leave the

occluded region unfilled, Ding et.al [24] and Li et.al [34] in-

paint the region with the mirrored pixels and the gallery face

respectively. They cannot generate a coherent face image

just like taken under frontal view. Generally, the basic idea

of dealing with self-occlusion is utilizing the facial symme-

try. However, due to the existence of illumination, facial

symmetry cannot always hold. Directly copying pixels will

lead to non-smoothness and weird illumination [24]. In this

paper, we propose a new way to deal with the invisibility:

Fitting the trend and filling the detail, which deals with

illumination and texture components separately.

4.1. Facial Trend Fitting

We define the facial trend as the illuminated mean face

texture, which represents the large scale face appearance. It

can be estimated in an efficient manner. For a 3D lambertian

object under arbitrary illumination, its appearance can be

approximated by the linear combinations of spherical har-

monic reflectance bases [49]. These bases are constructed

from the surface normal n and albedo λ, which are deter-

mined by the 3DMM and the mean face texture (Fig. 6(a))

respectively in this paper. By minimizing the difference

between the original image and the spherical harmonic re-

flectance, we can get the illumination parameters:

γ∗ = argmin
γ

‖I −Bγ‖ (9)

where I is the image pixels corresponding to 3D points as

in Fig. 6(b), B is the spherical harmonic reflectance bases

and γ is a 9-dimensional illumination vector. Then the fa-

cial trend can be represented as Bγ∗, see Fig. 6(c).

(a) (b) (c)

Figure 6. (a) The mean texture. (b) The source image and the

projected 3D face. (c) The facial trend.

4.2. Facial Detail Filling

The difference between the image pixel and the facial

trend can be seen as the illumination-free facial detail,

which roughly satisfies the symmetry assumption and can

be estimated with mirroring. In order to further keep the

smoothness of filling boundary, we copy gradients instead

of pixels. Perez et al. [37] propose an image editing method

based on the poisson equation, which can insert a source

object into an image seamlessly. The key of poisson im-

age editing is the poisson partial differential equation with

Dirichlet boundary condition:

∆f = w over Ω, s.t f |∂Ω = f0|∂Ω (10)

where f is the edited image to be solved, ∆ is the Laplacian

operator, w is the Laplacian value of the inserting object, Ω
is the editing region, ∂Ω is the boundary of the region and

f0 is the original image. Setting f0 as the original detail,

w as the laplacian of the mirrored detail, and Ω as the in-

visible region, the poisson editing can automatically fill the

invisible region with great consistency which is guaranteed

by the Dirichlet boundary condition. In the end, the facial

trend and facial detail are added to form the final result.

Fig. 7 demonstrates the process of facial detail filling.

5. Experiments

We evaluate the effectiveness of proposed normaliza-

tion method in the case of unconstrained (LFW) and con-

strained (Multi-PIE) face recognition problems, compared

with state-of-the-art methods. More normalization results

can be found in supplemental material.
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Figure 7. The flowchart of facial detail filling. Step 1: the differ-

ence between the face appearance and facial trend is calculated as

the detail. Step 2: The facial detail is mirrored to form the insert-

ing object. Step 3: The mirrored detail is inserted into the invisible

region (marked with black) with poisson image editing, generating

the full facial detail. Step 4: The facial trend and facial detail are

added to generate the final result.

5.1. LFW

Labeled Faces in the Wild (LFW) [28] is the most com-

monly used database for unconstrained face recognition.

There are 13223 images from 5729 subjects with variations

of expression, pose, occlusion etc. Both “Image restricted”

and “Image unrestricted” protocols are adopted in this part.

The face recognition performance is reported as the mean

accuracy on “View 2” ten splits. During evaluation, we on-

ly use the outside data to construct 3DMM (BFM [36] and

FaceWarehouse [14]) and train the landmark detector (LFP-

W [8]). For face recognition, we only use the LFW samples

strictly and no outside data is used.

Given a face image, we firstly locate the facial land-

marks automatically [47]. The proposed HPEN is then ap-

plied to eliminate the pose and expression variations. In

HPEN, we conduct invisible region filling only on samples

with yaw larger than 10◦ and directly mirror faces with yaw

larger than 40◦. For face recognition, we employ the over

complete high-dim features [22] including high-dim Gabor

(HD-Gabor) and high-dim LBP (HD-LBP) as face repre-

sentation. The discriminative deep metric learning (DDM-

L) [26] and the joint Bayesian (JB) [20] are used for restrict-

ed and unrestricted settings, respectively. The entire nor-

malization process takes about 0.8 seconds on a 3.40GHZ

CPU with matlab code.

5.1.1 Performance Analysis

Most of 3D normalization methods [5, 34, 23] only keep the

face region and cannot well deal with the invisibility. In this

section, we evaluate the benefits from the invisible region

and the background. We conduct recognition experiments

on three types of images with different level of complete-

ness. The first type “Visible” only keeps visible face region

(Fig. 8(b)), the second type “Face” contains complete face

region with invisible region filling (Fig. 8(c)) and the last

type “Full” is the fully normalized image (Fig. 8(d)).

(a) (b) (c) (d)

Figure 8. (a) The original image, (b) “Visible”, (c) “Face”, (d)

“Full”.

Table 1. The recognition accuracy on three types of images in

LFW with different protocols and features.

Setting Features Visible Face Full

Restricted
HD-LBP 91.47 92.18 92.57

HD-Gabor 90.73 92.33 92.80

Unrestricted
HD-LBP 93.43 94.25 94.87

HD-Gabor 93.58 94.73 95.25

Table 1 shows the recognition accuracy on both restricted

and unrestricted settings with different features. It is shown

that with invisible region filling, the accuracy is improved

by 1.38% with Gabor and 0.77% with LBP averagely. Con-

sidering there are only 3323 of 6000 testing pairs need invis-

ible region filling, the improvement is significant. Besides,

if we further preserve the background, there will be a stable

0.5% improvement for each feature and classifier, indicat-

ing that the external face region takes identity information

helpful for face recognition.

5.1.2 Results and Discussions

In this part, we evaluate the performance of the proposed

method following image-restricted protocol. Table 2 shows

the face recognition accuracy of different methods and

Fig. 9 shows the corresponding ROC curves.

We firstly list the results with the unsupervised learn-

ing PCA and demonstrate a 3.67% improvement by HPEN.

Note that both as 3D normalization methods followed by

high-dim feature and PCA, the HPEN outperforms the PAF

by 1.38% since we explicitly normalize the face appear-

ance. By applying DDML, the HPEN help improve the per-

formance of HD-LBP and HD-Gabor by 1.79% and 1.85%,

respectively. Although DDML can effectively learn dis-

criminative metric [26], the HPEN preprocessing is able to

further enhance the face recognition performance by sim-

plifying the learning task with normalization.



Table 2. Mean classification accuracy and standard error on LFW

under restricted, label-free outside data protocol.

Methods Accuracy (µ± SE)

PAF [48] 0.8777± 0.0051

Convolutional DBN [27] 0.8777± 0.0062

Sub-SML [15] 0.8973± 0.0038

DDML + Fusion [26] 0.9068± 0.0141

VMRS [7] 0.9110± 0.0059

HD-Gabor + PCA (Ours) 0.8548± 0.0032

HD-LBP + DDML (Ours) 0.9078± 0.0048

HD-Gabor + DDML (Ours) 0.9095± 0.0040

HPEN + HD-Gabor + PCA 0.8915± 0.0033

HPEN + HD-LBP + DDML 0.9257± 0.0036

HPEN + HD-Gabor + DDML 0.9280± 0.0047

Figure 9. ROC curves under the LFW restricted, label-free outside

data protocol.

We further examine the effectiveness of HPEN in un-

constrained setting. Table 3 shows the mean accuracy and

Fig. 10 shows the corresponding ROC curves.

Table 3. Mean classification accuracy and standard error on LFW

under unrestricted, label-free outside data protocol.

Methods Accuracy (µ± SE)

Joint Bayesian [20] 0.9090± 0.0148

ConvNet-RBM [45] 0.9175± 0.0048

High-dim LBP [22] 0.9318± 0.0107

Aurora [33] 0.9324± 0.0044

FCN [51] 0.9438

HD-LBP + JB (Ours) 0.9347± 0.0059

HD-Gabor + JB (Ours) 0.9322± 0.0043

HPEN + HD-LBP + JB 0.9487± 0.0038

HPEN + HD-Gabor + JB 0.9525± 0.0036

The results show that HPEN improves the recognition re-

sults by 1.4% and 2.03% with HD-LBP and HD-Gabor re-

spectively, where the the combination of HPEN, HD-Gabor

and joint Bayesian reaches the state-of-the-art in unrestrict-

Figure 10. ROC curves under the LFW unrestricted, label-free out-

side data protocol.

ed setting. Besides, the performance of HPEN is competi-

tive with the facial component deep network (FCN), which

is also an image level normalization method. Different from

FCN, the proposed HPEN is learning-free, therefore good

generalization performance can be expected.

5.2. Multi­PIE

The CMU Multi-PIE Face Database (MultiPIE) [25]

contains images of 337 subjects collected under controlled

environment with variations in pose, illumination and ex-

pression. Since Multi-PIE is highly organized and most of

normalization methods are reported on this database, we

can further analyze the robustness of HPEN to pose and

expression. We conduct experiments on Multi-PIE with t-

wo setttings: Setting-1 [50, 34, 5, 29] concentrates on pose

variations. It uses images from all the 337 subjects at 7 pos-

es (−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦), with neural ex-

pression and frontal illumination (marked as 07) in all 4

sessions. The first 200 subjects are used as training set and

the rest 137 subjects are used as testing set. During eval-

uation, the frontal images of each subject from the earliest

session are used as gallery images and all remaining images

are used as probe images. To further evaluate the robustness

to simultaneous pose and expression variations, we propose

the Setting-2 which contains all the expressions including

neutral, smile, surprise, squint, disgust and scream under

poses of 0◦,−15◦,−30◦ and −45◦ in frontal illumination.

Other configurations are the same as Setting-1. This pro-

tocol is a extended and modified version of [23]. For each

setting, the rank-1 recognition rates are reported, compared

with the state-of-the-art methods.

In Setting-1, we demonstrate the robustness of our

method to pose variations. Table 5 shows the comparison

results with different normalization methods including a 3D

method of Asthna11 [5] and four 2D methods of MDF [34],

LE [17], FIP [50] and SPAE [29], all methods are conduct-

ed automatically. In this part, we sort methods into three



Table 4. Rank-1 recognition rates for MultiPIE in Setting-2 with simultaneous pose and expression variations, the results in the brackets

are the recognition results without normalization. The expression “Smile” contains samples from both session 1 and session 3.

Expression/

Pose
Smile Surprise Squint Disgust Scream Avg

05 1(0◦) 99.31 (97.24) 98.44 (98.44) 98.44 (95.31) 95.83 (93.75) 89.01 (84.62) 96.21 (93.87)

14 0(−15◦) 98.62 (97.93) 98.44 (95.31) 98.44 (95.31) 95.83 (92.17) 90.11 (80.22) 96.29 (92.30)

13 0(−30◦) 96.55 (95.86) 95.31 (93.75) 95.31 (90.63) 94.79 (91.67) 83.52 (72.53) 93.10 (88.89)

08 0(−45◦) 93.79 (93.10) 84.38 (79.69) 95.31 (92.19) 85.42 (87.50) 70.33 (61.54) 85.85 (82.80)

Avg 97.07 (96.03) 94.14 (91.80) 96.88 (93.36) 92.97 (91.41) 83.24 (74.73) 92.86 (89.46)

level of database dependence according to the data assump-

tion they used. SPAE explicitly make the assumption that

poses are sparse and discrete, thus it is of strong database

dependence and as a result has difficulty in generalizing

to unconstrained environment. Asthna11, LE and FIP do

not utilize the data configuration, but their normalization

models are trained on the same database with the testing

set. Namely these methods make the assumption that the

testing set shares the same pose variations with the train-

ing set, thus they have weak database dependence. MDF

and HPEN do not have any assumption about the testing

set, thus are database independent. In the experiment, we

adopt the high-dim Gabor feature [22] as the feature extrac-

tor, and for better comparison we list the recognition results

with both supervised classifier (LDA) which corresponds

to SPAE, FIP, MDF, LE and unsupervised classifier (PCA)

which corresponds to Asthna11.

Table 5. Rank-1 recognition rates for Multi-PIE in Setting-1, with

the first and the second highest rates highlighted. The last colum-

n represents the database dependence, where “⋆⋆” means strong

dependence, “⋆” means weak dependence and “-” means non de-

pendence

Methods
Pose

Dep
−45◦ −30◦ −15◦ 15◦ 30◦ 45◦ avg

2D

SPAE [29] 84.9 92.6 96.3 95.7 94.3 84.4 91.4 ⋆⋆

LE [17]1 86.9 95.5 99.9 99.7 95.5 81.8 93.2 ⋆

FIP [50] 95.6 98.5 100.0 99.3 98.5 97.8 98.3 ⋆

MDF [34] 84.7 95.0 99.3 99.0 92.9 85.2 92.7 -

3D

Asthna11 [5] 74.1 91.0 95.7 95.7 89.5 74.8 86.8 ⋆

HPEN+PCA 88.5 95.4 97.2 98.0 95.7 89.0 94.0 -

HPEN+LDA 97.4 99.5 99.5 99.7 99.0 96.7 98.6 -

In this setting, the HPEN demonstrates competitive re-

sults especially for large poses (±45◦). Among geome-

try based normalization method, the HPEN outperforms the

3D Asthna11 and 2D MDF by 7.2% and 5.9% respectively,

which may come from the good treatment for the invisible

region and background. Compared with appearance trans-

formation methods SPAE and FIP, HPEN also demonstrates

competitive results and is believed to have better generaliza-

tion ability due to the database independence. The improve-

ments from the HPEN is demonstrated in Table 6.

Table 6. The average rank-1 recognition rates across poses (from

−45◦ to 45◦ except 0◦) on the original images and the normalized

images with unsupervised and supervised classifiers.

Classifier Original Normalized Error Reduced

PCA 86.5 94.0 55.5%

LDA 97.0 98.6 53.3%

In Setting-2, we evaluate the robustness of our method

to simultaneous pose and expression variations. Table 4

shows the recognition results on both normalized and o-

riginal images to demonstrate the improvement from our

method. With HPEN, the average error of all the expres-

sions and poses is reduced by 32.26%. However, the perfor-

mance of HPEN deteriorates greatly when pose and expres-

sion are both far from the neutral condition, such as surprise

and scream in −45◦. The main reason is that landmark de-

tector always fails in extreme conditions where many land-

marks are too close and some are even invisible, which leads

to inaccurate 3DMM fitting and bad normalization results.

6. Conclusion

In this paper, we propose a learning-free High-Fidelity

Pose and Expression Normalization (HPEN) algorithm

which could recover canonical-view, expression-free im-

ages of good quality. With HPEN, state-of-the-art perfor-

mance is achieved in both constrained and unconstrained

environments. However, there exist disadvantages of our

method. Since HPEN fills the invisible region based on fa-

cial symmetry. If faces are occluded, the occluded region

will be also mirrored, leading bad normalization results.

This drawback will be improved in our future work.
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