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Abstract

An unsteady Euler flow solver is developed for subsonic and supersonic duct flows. A

linearized solver is derived from the nonlinear set of equations. Results show the ac-

curacy of both formulations. Arnoldi-based model order reduction is reviewed. Both

single and multiple frequency point Arnoldi methods are presented. An orthogonal

reduced-order basis is generated by iterating system matrices on the input vector at

a set of selected points. The full-order system is then projected onto the reduced

space. The resulting reduced-order model obtained matches moments of the original

model transfer function at each frequency point selected. A specific implementation

procedure is presented for a system with singular descriptor matrix, which arises from

boundary conditions. A state space system is extracted from the algebraic system

and boundary conditions are accounted for in the output via a feedthrough term.

Results are presented for linearized analysis of a started supersonic diffuser. Both

single point and multiple point Arnoldi methods are applied. The size of the reduced-

order models is decreased by two orders of magnitude over the computational fluid

dynamics model, while preserving accuracy of the relevant dynamics. Moreover, mul-

tiple point Arnoldi outperforms the single point method, and allows a further re-

duction in the number of states while offering a balance between model size and

computational cost. The reduced-order models are used for active shock position

control via bleed. The derived controller is shown to be effective for the full-order

model, and the dynamics of interest are accurately captured.

Thesis Supervisor: Karen E. Willcox

Title: Assistant Professor
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Chapter 1

Introduction

Computational fluid dynamics (CFD) has reached a considerable level of maturity

and is now routinely used in many applications for both external and internal flows.

Methods based on the discretization of the Euler and Navier-Stokes equations enjoy

widespread use for aerodynamic design and analysis, and provide accurate answers

for a variety of complex flows. However, ensuring model accuracy requires that the

flow domain is finely discretized, especially in regions where the flow characteristics

undergo rapid variations. Despite ever increasing computational power, nonlinear

unsteady problems are computationally very expensive and time-consuming. At each

time step, several matrix inversions need be performed to solve the set of nonlinear

equations via Newton's method. More efficient methods for time-varying flow can be

obtained if the disturbances are small, and the unsteady solution can be considered to

be a small perturbation about a steady-state flow [12]. In this case, a set of linearized

equations is obtained which can be time-marched to obtain the flow solution at each

instant. Since most of the computing cost involved by nonlinear flow solvers lies in

matrix inversions, a substantial gain is obtained from linearized method as the system

Jacobian only needs to be evaluated and inverted once.

Even under the the linearization assumptions, any CFD-based technique will gen-

erate models with a prohibitively high number of states. For this reason, CFD mod-

els are not appropriate for many applications where model size and cost are issues.

Coupling the aerodynamic solver with another disciplinary model is sometimes not

13



practicable. For example, in aeroelastic analysis [25], a common approach is to simul-

taneously march the fluid dynamics and the structural dynamics equations. Such a

method couples two high-order dynamical systems and becomes computationally very

expensive. Low-order models that approximate the full-order dynamical system with

good accuracy are of great interest. Another application which requires low-order

models is control design.

The concept of using active control to enhance the stability properties of an un-

steady flow has been addressed for several applications, such as stabilization of com-

pressor surge in jet engines [7, 19]. In order to derive control models that will be

effective, it is vital that the relevant unsteady flow dynamics are captured accurately.

A model is required that will capture not only the dynamics of the disturbance to be

controlled, but also the visibility offered by the sensing and the effect on the flow of

the actuation mechanism. A high-fidelity CFD code can offer the degree of flow reso-

lution required. However, applying modern control theory becomes a real challenge.

Optimal control design involves solving the Riccati equations of dimension n, where

n is the dimension of the dynamical system. The cost of computing these solutions is

order n3. Therefore, it is imperative that the flow model have a low number of states.

One approach to creating more efficient flow models is to make a set of physically-

based simplifying assumptions about the flow. The flow is typically assumed to be

two-dimensional and potential. In the context of aeroelastic simulations, efficient

semi-analytic models for lightly loaded thin blades have been developed for subsonic

flow [26], and for supersonic flow [1]. These models prove to be useful near design

conditions. However, they yield reduced fidelity results for off-design conditions, as

blade loading effects become important [25]. Moreover the validity of such models

does not extend to all flow regimes. In particular, the modeling of transonic flows

poses a difficulty.

Model reduction is one approach to obtaining efficient, low-order models while

retaining the high-fidelity flow dynamics of CFD. The basic idea is to project the

high-fidelity CFD solutions onto a set of basis functions which span the flow solution

space efficiently. Models are obtained which retain the high-fidelity aerodynamics
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of the CFD analysis, but which have only a few states. One possibility for a basis

is to compute the eigenmodes of the system [13]. However, typical problem sizes

are on the order of tens of thousands of degrees of freedom even in two dimensions,

and solution of such a large eigen-problem is in itself a very difficult task. The

proper orthogonal decomposition technique (POD) has been developed as an alternate

method of deriving the basis functions [24, 4]. Based on selected snapshots of the

flow, the POD-generated reduced basis aims at describing the flow solution with high

accuracy over the frequency range of interest. These snapshots can be obtained from

time domain simulations [22] or, less expensively, derived in the frequency domain

by exploiting the linearity of the governing equations [15]. Frequency domain POD-

based reduced order model have been developed to compute the aeroelastic behavior

of transonic airfoils and turbomachinery [11, 28]. Active control models have also been

derived using POD for vortex shedding [8, 9]. Reduced-order modeling applications

for linear flow problems using eigenmodes and POD are reviewed by Dowell et al. [5].

Krylov subspace based methods are an alternative to the POD method for gen-

erating a reduced-order basis. The Arnoldi algorithm can be used to generate a set

of vectors which forms an orthonormal basis for the Krylov subspace. The resulting

reduced-order models match moments of the CFD system transfer function. One

can liken the moment-matching techniques to matching the transfer function and its

derivatives at a particular frequency (usually zero). If q basis vectors are included in

the reduced-order model, then q moments of the transfer function will be matched.

Arnoldi-based reduced-order models have been developed for RLC circuits [23] and

compressor aeroelastic models [27]. Arnoldi-based reduced-order models have been

used also in active control design, for the sensor/actuator placement problem [2].

Because the vectors are derived at a single frequency point, the Arnoldi approach

is computationally much cheaper than the POD. Multiple frequency point Arnoldi

methods have also been developed [10] and applied to circuit simulations [20]. The

idea here is to select multiple frequency points about which to match moments. Once

again, multiple vectors are evaluated at each frequency point, and the number of

moments matched at each point is equal to the number of vectors included in the
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basis. The computational expense of deriving the model increases with the number

of frequency points used, however using several interpolation points typically reduces

the size of the resulting reduced-order model. The multiple-point Arnoldi method

therefore provides a way to trade computational expense of model derivation and size

of reduced-order model.

All of the model order reduction techniques described so far are limited to lin-

ear time invariant (LTI) systems. Nonlinear effects are neglected, which restricts

the range of validity of the reduced models to small perturbations about steady

state. Some approaches have been investigated to model nonlinear effects but most

of them still require evaluation of the full-order nonlinear residual, which makes them

computationally expensive. For example in [16], POD is used to derive a nonlinear

reduced-order model for aeroelastic analysis of a panel in a transonic flow. However,

piecewise-linear reduced order models have been recently developed [21]. A 'training'

input is given as input to the nonlinear system and Arnoldi reduced-order models are

constructed at successive points of the nonlinear trajectory. This method has been

applied successfully to highly nonlinear systems, such as micromachined beams and

nonlinear electrical circuits [21].

In this work, linear Arnoldi-based reduced-order models will be generated to simu-

late flow variations in an actively-controlled started supersonic diffuser. Such diffusers

are designed to decelerate the incoming supersonic flow to subsonic speed. This mech-

anism enables compression of the air before it enters the compressor of a jet engine.

Depending on the design, a normal shock may form right behind the throat: in this

case, the supersonic diffuser is started. A started supersonic diffuser is sketched in

Figure 1-1.

The incoming flow is subject to perturbations due to atmospheric disturbances,

which can cause expulsion of the normal shock towards the inlet. This mechanism

is also known as unstart. An unstart results in a loss of propulsive efficiency and

a dramatic increase in the drag undergone by the airplane. One-dimensional linear

analysis procedures have been developed and used to analyze inlet unstart [17] and

have shown that the tolerance to unstart can be increased by increasing the rate of
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Incoming supersonic flow Supersonic flow Engine compressor

Shick

Subsonic flow

Mach

I - - - - - - - - -

X

Figure 1-1: Top: Started flow in supersonic diffuser. A shock forms behind the throat.

Bottom: Sketch of average Mach number against streamwise coordinate, x.

throat bleed (mass flow dumping between the throat and the normal shock). However,

to correctly model the influence of mass flow dumping, 2-D effects need be accounted

for, as bleed is a relevant actuation mechanism for unstart control.

In order to derive an effective control model, reduced-order models are needed

that capture the dynamics associated to the atmospheric disturbances and the effect

of bleed. The two-dimensional linearized Euler equations will be considered here,

however the approach could be extended to three-dimensional and viscous models if

the underlying CFD model were available. This study could also extend to nonlinear

using the piecewise-linear approach. Frequency domain calculations will be used to

derive the reduced-order basis efficiently. However, the reduced-order model will be

developed in the time domain and cast in state-space form, which allows for ease of

coupling to the active control model.

Chapter 2 will present an Euler unsteady flow solver. This CFD model will be used

to simulate subsonic and supersonic duct flows with second order accuracy. Validation

results will show the high-fidelity of the model. A linearized CFD model will then be

derived from this nonlinear flow solver. Validation results will be performed that show
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agreement between the nonlinear and the linear flow solver for small perturbations.

Examples will be presented which demonstrate the limits of the linearized solver as

nonlinear effects become important in the flow.

Chapter 3 will review the basics of Arnoldi-based model order reduction tech-

niques. We will present both single point and multiple point Arnoldi methods. Two

algorithms will be derived to make implementation of the methods systematic. In

order to enable application of these algorithms to the CFD model, we will generalize

the methods to singular descriptor matrix systems.

Chapter 4 will present applications of Arnoldi-based order reduction techniques to

a supersonic diffuser. Single and multiple point Arnoldi methods will be applied and

two post-processing procedures will be investigated in order to generate the reduced

basis. The resulting reduced-order models will be used to design a simple controller.

Results will be presented which demonstrate the effectiveness of the controller on the

full-order system.

Finally, in Chapter 5, we will present conclusions and directions of future work.
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Chapter 2

Computational Model

This chapter will describe an unsteady formulation to simulate subsonic and super-

sonic flows in an engine inlet. This inlet is designed to provide a compressor with air

at the required conditions. Although the formulation to be explained has subsonic

capability, most of the work will focus on supersonic inlet flows. Ultimately, this com-

putational tool will be used for active shock control design, in order to prevent inlet

unstart. Figure 2-1 shows the physical representation of the problem. A supersonic

inlet flow is decelerated from the inlet plane to the throat, behind which a shock

forms. Downstream of the shock, the flow is subsonic.

We will describe an inviscid two-dimensional unsteady formulation based on a

finite volume method developed on the computational domain showed showed in

Figure 2-1. This code is an enhancement of MSES, a steady potential flow solver

designed by Mark Drela [6]. This steady solver generates a structured grid, whose

streamwise gridlines are unknowns of the numerical scheme and are constrained so

that they approximate the flow streamlines. This steady solver therefore specifies the

flow velocity with knowledge of the gridline direction and the streamtube mass flow,

which is constant in steady flows. Streamwise gridlines and streamtubes can be seen

in Figure 2-1.

We make use of MSES to grid our computational domain and initialize the flow

quantities. However, the grid computed with the steady solver is frozen for unsteady

computations and is no longer an unknown. In the unsteady formulation, the flow

19



Incoming flow

Engine compressor
Shock

ances Upstream bleed

Wall: slip condition

Outlet BCs

/ _ Streamwise gridline

Figure 2-1: Presentation of physical system. Top: supersonic flow with shock at the

throat (started inlet). Bottom: computational domain for finite-volume formulation.

velocity is specified via its projections on both the streamwise gridline and the normal-

to-gridline direction, as seen on Figure 2-2.

2.1 Discretization of Unsteady Euler Equations

2.1.1 Unsteady Euler Equations

The discrete Euler equations are derived from the integral form of the unsteady,

two-dimensional equations, which are the usual statements of mass, momentum, and

energy:

ffpdV + fdm = 0

pQdV + fQdm+fpdA=0

ffpEdV + fHdm = 0

(2.1)

(2.2)

(2.3)

where the flow variables are defined as follows:

20
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p density

Q total velocity vector

p pressure

H total enthalpy

E energy

and dm = p Q dA is the mass flux element across the moving conservation cell

boundary . dA dAnt where dA is a surface element and h a unit vector pointing

outward the control volume.

The discrete Euler equations approximate the integral form of the continuous

Euler equations on small control volumes or control cells. The flow velocity is fully

specified with the knowledge of the q's and q's, which are the projections of Q on

the streamwise gridline and the normal-to-gridline directions respectively as seen on

Figure 2-2. The state variables are chosen to be

q streamwise component

qI normal component

p density

H total enthalpy

and are located at the grid positions shown in Figure 2-2. In contrast with other state

variables, qI is not located at the midpoints of the cell faces but at their vertices.

This location actually simplifies the imposition of the no-slip conditions at the wall

as we will see later on in this section.

The geometric grid nodes x, y define the conservation-cell face vectors a, b, which

connect the midpoints of the grid segments. Both vectors are the boundaries of the

control cell, whose meanline direction is meant to approximate the steady streamline.

The finite volume formulation to be used requires that the flow quantities at the

midpoints of each of these vectors are known. To fully specify the velocity direction

at the midpoint of a we define the vector S, which connects the midpoints of the
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N

q
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Figure 2-2: Geometric grid (solid lines), conservation

variable locations.

cell (bold dashed lines), and

quasi-normal gridline segments. S is supplemented with sj, so that (S, 8's) be an

orthogonal basis. Similarly we define b_ at the midpoint of b, so that (b, b1 ) be an

orthogonal basis as well. Other useful geometric quantities are defined as follows:

s =

b+

+= _

b-

b- = b-I

A 1 = S1Lx|

V = |$ x al

All state variables are located at the midpoints

streamwise unit vector

upper streamwise unit vector

lower normal unit vector

mean streamwise vector

mean quasi-normal vector

area seen by streamwise component

area seen by normal component

conservation-cell volume

of the a, b cell-face vectors, except the

qI's, which are located at the vertices of the conservation cell. These are averaged at

the midpoints of the a, b to calculate the flow quantities Q, H, etc. When defining

these flow quantities, it is important to distinguish between the quantities defined at

the midpoints of the a and those defined at the midpoints of the b. Based on the

integral Euler equations (2.1-2.3), the finite volume formulation requires that we know
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the fluxes of mass, momentum and energy through the cell faces. At the midpoint of

a, the flow quantities are as follows:

q = qs streamwise component of velocity

q= } (qI + q1 ) streamwise component of velocity

q*a = qi s1 normal component of velocity

ma pa (qaA + qaA,) streamwise mass flux

Qa = q" + qi absolute velocity

pa pa (Ha 1 (Qa)2 pressure

Ea = Ha - total energy

where pa, qa and Ha are actually p, q and H as defined at the midpoint of a. At

the midpoint of b, we average the downstream and upstream q1 . Moreover, qb, Hb

and entropy Sb are interpolated from the four surrounding a midpoints, using bilinear

interpolation. The interpolation stencil is sketched on Figure 2-4. We also impose jb

to have the direction of b.

q = q'b streamwise component of velocity

ql = I (qi_1 + q1i) streamwise component of velocity

q = q b1̂  normal component of velocity

Q , - jb + q absolute velocity

Density and mass flux across b are computed through the following sequence:

hb = Hb - I (Qb) 2  enthalpy

p = e-s ( Lh ) density

mb = pb bqb normal mass flux

Figure 2-3 shows the vector relationships between Q and the q's and qi's.

Since qb is parallel to 6, only qi is accounted for when calculating the mass flux

through b. From now on we denote the Xa quantities by xi_1 if it is located at the

midpoint of the upstream d_1 vector, or xi if located downstream. Similarly, x bis
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Figure 2-3: Decomposition of the flow velocity Q in the grid coordinate system, at

the midpoints of the cell faces.

now denoted x+ or x-, if located on the top side or bottom side respectively.

An auxiliary pressure7r is also defined at the midpoints of the b faces to distinguish

it from the usual pressure p on the quasi-normal faces d.

In the discrete system, it is convenient to define cell-average and cell-difference

quantities, either between i and i - 1, where i - 1 and i refer to the left and right

cell faces respectively. Such averaging are also defined for "±" and "-" variables,

depending on the quantity involved.

Pa = (Pi + Pi-i) (2.4)

ira = (7r+ + 7r-) (2.5)

p= Pi - Pi-1 (2.6)

Air = ir+ - 7r- (2.7)

Aim = mi- mi- (2.8)

A+m = M+ m- (2.9)

The discrete form of the mass equation is then simply

t (pa V) + Aim + A+m = 0 (2.10)
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The pressure integral on the conservation cell is discretized as

p dA ( i - pj di_1 - 7+9 + r-b- x k

where k is the out-of-plane unit normal. Substituting

=Pa + I A

+ 1 A~7r 7ra+ 2AI

Pi-i = Pa - 1

7r 7= - I-Ar2

gives the following

p dA = Pa Ad + AP da - 7raAb - s7r &a x k

For consistency it is necessary to require that p and 7r approach the same value

in the limit as the cell size shrinks to zero. A suitable requirement is

7ra Pa + Pc (2.13)

where Pc is a small higher-order "pressure correction" term which can be defined to

suppress any possible odd-even q, modes.

The various geometry and grid-velocity quantities are related by the following

identities and earlier definitions.

Ad = Ab N = da S = ba (2.14)

The pressure integral can now be written as

= -PeA + AP - A7rs] x k
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and the semi-discrete form of the momentum equation is as follows

at ((pQ)a
V) + A (m Q) + A+ (m Q)

+ (-Pc Ad + Ap N - A+7r) x k = o (2.16)

It is advantageous to dot this into the S and N vectors. Using the vector relations

$-($ xf) = 0

$. (Nxk) = -N

N. (N xk) = 0

-($ x k) = ($ xAN) -k

gives the S-momentum and N-momentum equation components

, ((P')a V) + A (m qf + m q1 f 1 ) + A+(m qf + mq 1 f1 )

a ((pQ)aV)

± AP - Pc= 0

+ Ai(mqg + mq 1 g1 ) +

(2.17)

A+(mqg + mqjgi)

(2.18)+ A7r - PcN 0

where the following convenient geometric factors have been used.

f i -5

= V

i -
9i= V

1 -.
s=V (b+

+b+ . g

+ N+.g

V

s-L I:L-s + b^!*-$= vi>. f§1 v

siu.N g+ b!
v 9 1 v

ON -- di _1 ,)

The N-momentum equation (2.18) must be manipulated further to eliminate the

interim pressure variable 7r, which is not independent in light of the consistency
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constraint (2.13). An additional constraint on 7r is

7- = rf1 (2.19)

since these 7r values between two adjoining streamtubes j and j -1 are in fact the

same quantity and must be equal at all times. Using this relation together with the

combination

[Equation(2.18)] + [Equation(2.18)] 1 + 2 [pa + Pc - Tra ] - 2 [Pa + Pc - ira]

results in the reduced N-momentum equation which is now devoid of the 7r variables.

((pQ)a V) +

((PQ) V) +

Pclj

. j-1

Ai(mqg + m q1 g1 ) + A+(mqg + m q1 g1 ) -

Ai(mqg + mq g) + A+(mqg + m qg) -

= 0

This replaces the original N-momentum equation (2.18).

The discrete energy equation is

of ((pE)a V) + Ai (m H) + A+ (m H) = 0

The residual functions are now defined as

Rm

-RN

= Aim + A+m

= Ai(mqf + mqif1 ) + A+(mqf + mqf_)

-Ap -- P (sg

Ai (m 4g + m qgI9) + A+ (mqg + mnqLg-L)
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- PCON (2.24)

Rp = 2 Pa + 2 Pc (2.25)

RH - Ai(m H) + A-'(m H) (2.26)

where q is an upwinded speed described later. The overall equation set can now be

tersely given as follows.

a(Pa V) + R m 0 (2.27)
at

S- ((PQ) V) + Rs= 0 (2.28)
V at

N - ((Q)a V) + RN + Rp
V at

± [ - ((')a V) + RN - p (2.29)
IV at .,j-

19PEaV ± Z- (2.30)
a((pE) aV) + RH1

As a consequence of the definitions of qb, pb and H' at the midpoint of b, the

steady-state operators of the mass (2.27), S-momentum (2.28), and energy (2.30)

span three streamtubes. In contrast, the steady-state operator of the reduced N-

momentum equation (2.29) spans four streamtubes. Figure 2-4 shows the stencils of

the equations.

2.1.2 Boundary Conditions

The steady problem requires three boundary conditions at each conservation-cell in-

flow face, and one boundary condition at each x, y grid node all along the perimeter

of the domain, as sketched in Figure 2-5. When studying a started supersonic inlet,

the flow is subsonic downstream of the shock. One physical boundary condition is

therefore required. When the flow remains supersonic all along its path, which is the

case for a straight duct, imposing a physical boundary condition at the exit plane

will result in an ill-posed problem. However, a condition is still required to ensure
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Figure 2-4: Stencils for the conservation equations and for interpolation at the mid-
point of b.

the uniqueness of the solution. A numerical boundary condition must therefore be

imposed at the exit plane.

The total mass flow is not known a priori. This degree of freedom is constrained by

specifying the relative mass flow between two adjacent streamtubes, but it is actually

set by the outlet pressure. At each inflow face, the appropriate boundary conditions

are as follows:

[m/7-nl . - I/fn) ~

H - Hiniet

S -Sinet

-0

0

-0

(2.31)

(2.32)

(2.33)

p - Poutiet

S = h-/(Y-')/p

= 0 (2.34)

h = H - jQ2

The grid nodes at the inlet normally receive prescribed flow angles, and the nodes
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an = 0

0 0 = min
-. - - -- --

* 0 0 0 0 0

HH 0 0

H in * 0 0 0 0

S = SinJ 0 0

Figure 2-5: Steady boundary conditions for duct-flow problem. Variables associated

with boundary condition residuals are indicated by solid circles. Variables associated

with interior conservation equation residuals are shown as open circles.

on the bounding walls are allowed to slip along the wall:

0 6 inlet = 0

6
nwanl = 0

(2.35)

(2.36)

where 0 = arctan (Q,/Q2)

For the unsteady problem, the grid is no longer an unknown. The grid displace-

ment is actually replaced by the normal component of the velocity q1 . Moreover, a

better set of boundary conditions for the unsteady problem is to impose the incoming

characteristic variables at the inlet. This replaces the total-enthalpy condition at the

inlet [14]. The overall set of inlet and outlet boundary conditions is

0 -inlet = 0

J+- Jine = 0

S - Siniet = 0

where

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

P - Poutlet = 0

J+ Q c
2 y - 1
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which is illustrated in Figure 2-6.

On each wall, we can impose the flow tangency condition in a straightforward

way:

qi = 0 (2.42)

Air bleeding is one possibility of controlling shock motion. It consists in dumping

a certain percentage of the inlet mass flow through different slots located on the

walls. Since q1 represents the normal-to-gridline component of the flow velocity, this

formulation handles air bleeding quite easily, as follows:

q± t -= 0
p

(2.43)

where rh is the bleed mass flux per unit length. The '+' or '-' sign actually depends

on the wall to be dumping air as can be seen in Figure 2-6.

q -? =
P

0

- inlet 0

+ +

inlet

S -S =0inlet 3

e0

0

e0

e0

o 0 0 0

o o o 0 & P-Poutlet 0

o o 0 0

o o o 0

+ 0
p

Figure 2-6: Unsteady boundary conditions for duct-flow problem.

J- should also be imposed at the inlet plane when the inlet flow is supersonic.

This is implicitly accounted for through the use of the upwinded speed q, which we

will soon describe.

31

J



2.1.3 Artificial Dissipation

Dissipation is introduced via the upwinded speed 4 which appears in the residual

functions (2.23) and (2.24). It is defined as

qi = qi - pi1 (qi - qi_1) + y (qj-1 - qj- 2 ) (2.44)

where the numerical viscosity coefficients p are defined in terms of the local Mach

number.

1)

Ct, ~" 1I

- max 0

0

p 4 ;

C

(1
2 M2 -

Mi + Mi_1J

1st-order dissipation

2nd-order dissipation

Mcrit ~_ 0.98

The dependence of di on the i - 1 and i - 2 stations increases the upstream extent

of the stencils of the Rs and RN residual functions, as shown in Figure 2-7 for the

S-momentum case.

i-3 i-2

0

i-i i

1st-order dissipation

2nd-order dissipation

Figure 2-7: S-momentum stencil extension caused by introduction of 1st-order and

2nd-order dissipation.

4 implicitly sets Ji,,,et through the use of Qiniet in the first two control cells. In-

deed, setting Jiflet and inlet velocity Qintet is equivalent to setting both Riemann's

invariants.
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2.1.4 Corrected Pressure Term

Since the qi averaging, both on and b, is transparent to the scheme, q saw tooth

modes are likely to show up wherever the grid slope is not smooth enough. Although

these modes cannot be completely removed, they can be controlled through the use

of a pressure correction. Although it is a numerical artifact, this corrected pressure

term Pc is based on the mass conservation equation for a streamtube:

mh = pAQ (2.48)

where A is the cross section area of the streamtube, and Q the speed of the flow.

When rh is held constant, we get:

dA dQ (2.49)
A Q

We can plug into

p= p (H - IQ2) (2.50)

where p and H are held constant. We finally get:

dp = ' Ip q2  (2.51)
y A

The corrected pressure term must be directly proportional to the streamtube area

variation along the streamtube. However our grid is fixed and we cannot think of

that approach in a geometric way. We actually write this streamtube area variation

in terms of q1 . Although the grid is fixed, if qi fluctuates, the direction of the flow

velocity fluctuates as well, and so does the streamtube area. This is better seen on

Figure 2-8. This method is artificial, but it proved to be quite efficient in the original

steady MSES, where the area variation was directly connected to the nodes motion.

Then we define Ac in two different ways:

A+q- -X=A1 - -q

q 2 qa 2 -Ag+-a 2
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A q± + q1 A =A 2  qj - q- AX
qLi Ax q-i sx gI -Li s

Ac= A2 + --- ---- =A2, +
qa 2 q 2 qa 2

which implies

Ac= A 1 + A2  (qj_ - q- 1 ) - (q+j - q-,) AX
AC -A 2 + I II 1(2.52)

2 ga 4

Plugging (2.52) into (2.51), we finally get:

Pc = -i A (qj7_ 1 + q- - g - qjI) (2.53)a a 2 (A1 +A 2)

direction of

q~~~ . -- --

q

tan c q
q

A CA 2 t

Figure 2-8: qi fluctuations and virtual streamtube area variations.

2.1.5 Nonlinear System

Variations in the inlet and exit conditions will be represented by the disturbance

parameter vector d, whose length depends on the number of disturbances considered.

Indeed, we could consider just a freestream density perturbation, which would affect

several of the inlet quantities while the number of disturbances remains one.
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The discrete nonlinear system of equations (2.27-2.30) can be written

F (U, U, ri1, d) = 0, (2.54)

where Uj = [pi, qi, qi, Hi]T contains the state vector at every node, rii contains the

bleed mass fluxes at each bleed location, and d contains the inlet and exit disturbances

as described above.

Time discretization is done via a three point implicit scheme, therefore ensuring

second order accuracy. At each time step, the resulting set of nonlinear equations is

solved via Newton's method. The Jacobian is inverted with a LU solver. Storage and

implementation of the formulation presented above is similar to the implementation

described in [6].

All results presented in this dissertation are based on a fixed geometry. The

actuation mechanism selected is mass flow bleeding. However, wall displacement

could have been another possibility. Such a choice would have involve modifications

of the grid geometry, which in turn would have become another perturbation input

for system (2.54).

2.2 Linear formulation

Steady-state solutions can be evaluated by solving the nonlinear set of equations (2.54)

where U = 0. However, integrating the full nonlinear equation in time for unsteady

flows is computationally expensive as it requires an LU factorization at each time

step. If we limit ourselves to the consideration of small amplitude unsteady motions,

the problem can be considerably simplified by linearizing the equations (2.27-2.30).
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2.2.1 Linearized System

The unsteady flow and bleed input are assumed to be small perturbations about a

steady state

U(t) = U U'(t)

ih(t) = + 1'(t)

and the unsteady inflow disturbances contained in d are assumed to be small. Per-

forming a Taylor expansion about steady-state conditions and neglecting quadratic

and higher order terms in U' and U', the linearized form of equation (2.54) is

OFdU' OF OF ., F
OF dt + U' + F + d = 0 (2.55)

OU di aU Orh ad

where all derivatives are evaluated at steady-state conditions. The above equation

can be rewritten
dU'

E + AU' = Bmrh' + BAd, (2.56)
dt

where the definitions of the matrices E, A, Bm and Bd follow directly from (2.55).

Both E and A are n x n real matrices. It is important to note that while the boundary

conditions may be set to time-varying quantities, they do not involve temporal differ-

entiation. For example, a wall condition is of the form qL(t) = ri(t)/p. Therefore, n2

rows of E associated with the n2 boundary condition equations are populated with

zeroes exclusively: E is singular.

The parameter vector d essentially contributes to set the inlet and exit boundary

conditions. Therefore, one may expect the non-zero entries of vector Bd to correspond

only to boundary conditions. However, the first two S- and N- equations of each

'streamtube' also depend on parameter Qj, inlet flow velocity, as a result of the

upwinding scheme presented in section (2.1.3). Therefore non-zero entries are to be

expected for these state equations.
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2.2.2 Linearized Boundary Conditions

Here the perturbations caused by atmospheric disturbances and angle of attack changes

are linearized. We only consider their first order effects. Therefore, to first order, a

more general perturbation would be a linear combination of these effects. Note that

all the following inlet flow quantities are implemented through inlet velocity Qj, angle

of attack 64, inlet speed of sound ai and inlet entropy Si.

Air bleeding

The linearization of the bleed condition (2.43) is straightforward:

( ho 1
q -t ..pi-.rn= 0 (2.57)

P / Po

where the subscript o refers to steady state quantities. To conform to the format used

for equation (2.56), we can write it as:

q k 2 .p = -p -. m (2.58)
± P0 PO

Isothermal vertical gust

Since the temperature is set to be constant, the inlet speed of sound remains un-

changed. Among the four inlet quantities Qj, 64, ai and Si, only Qj varies, as follows.

-i QOO±+AQi

Vi

a = = a0Qi-

where vi denotes the vertical component of the inlet velocity. In terms of the primary

variables, this condition is:
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2 7-1

2 - 1

J +AQj

2

= J- + j
*2

6* = 0

Si =SO

Atmospheric speed of sound (Temperature) change

Here we consider a constant pressure temperature change.

unchanged.

Qi Qoo

64 = 0

ai= a00 + Aa

1
Si =So +

Or, in terms of the primary variables:

J+ J+ + Aa
7- 1

J- =J- - a

Oj = 0

1
Si =

Sz Soo +

Inlet velocity remains

This perturbation is equivalent to a constant pressure density disturbance since

a = 'yrT only depends on the temperature T, as well as p = p/(rT) when pressure

is assumed to be constant.
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To determine the unsteady response of the flowfield, the inputs rh'(t) and d(t) are

specified as presented above and the large system (2.56) is time-marched to determine

the resulting flow. Often, we are not interested in obtaining the actual flow itself, but

in relevant output quantities. We define a output vector y as

y = CU' + Dmrh' + Ddd (2.59)

which, for the analyses presented here, contains pressure sensing upstream of the

shock and the average Mach number over the height of the inlet at a given location. C,

Dm and Dd are matrices containing mean flow contributions to the output evaluation.

To further simplify notation, we define the global input vector u = [ri', d]T and

rewrite equations (2.56) and (2.59) as

dU'
E + AU' = Bu (2.60)

dt

y = CU' + Du. (2.61)

In the subsequent discussion, we will only refer to perturbation about the steady

state U. We may then drop the ' sign without ambiguity.

2.3 CFD Results

The main goal of the test cases presented in this section is to demonstrate the accuracy

of the nonlinear formulation as well as the agreement between the nonlinear and the

linear code for small perturbations.

2.3.1 Nonlinear Time Simulation

The nonlinear formulation is tested for a straight duct, whose length is five times its

width. Although such a case does not demonstrate the full nonlinear capability of

the formulation, we show that both convection and wave propagation are accurately

simulated. Supersonic and subsonic regime are tested using two different inlet pertur-
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bations, an incoming density disturbance and an incoming acoustic wave. These two

disturbances are of interest since they do not propagate the same way. The incoming

density wave is equivalent to an entropy wave. It is convected at the speed of the

flow. The acoustic wave, a J+ wave, propagates at the speed of sound relative to the

mean flow.

Incoming Density Disturbance

The first test case is a duct flow with an inlet Mach number M = 0.5. An incoming

density disturbance is generated which is constant across the inlet plane. It varies

temporally with a Gaussian distribution as follows:

p'(t) = -0.01poe (t-tpeak /fo)
2  (2.62)

where the frequency fo equals ao/h, inlet speed of sound divided by the height of

the inlet, and the non-dimensional time tpeak sets the time at which the perturbation

peaks. In addition we set inlet velocity and pressure to their nominal value across

the inlet plane. Such perturbation therefore convects at the speed of the flow. The

time discretization scheme had a time step of length 1/2To. For the results shown in

Figure 2-9, a = 6f2 and tpeak = 2. Density was averaged across the width of the duct

and plotted at streamwise stations for t/To = 2, 6, 10 where To = 1/fo. The density

distribution calculated by the code is plotted against the analytical solution for small

perturbations:

p' (t) = -0.01poe-(t-tpeak/fo) 2  (2.63)

where c = Qj inlet velocity of the flow. No dissipation or dispersion is observed

compared to the analytical solution.

The second test case has an inlet Mach number M = 1.5. A similar disturbance

is generated with a = 12f0 and tpeak = 1. The time discretization scheme had a time

step of length 1/4To. Results are seen in Figure 2-10. Density was averaged across

the width of the duct and plotted at streamwise stations for t/To = 1, 2.5, 4. The

density distribution is plotted against the analytical solution for small perturbations.
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Figure 2-9: Subsonic flow M = 0.5 with 1% density
averaged over width plotted against analytical linear
coordinate. Top to bottom: t/To = 2,6,10.

disturbance at inlet. Density
solution, as function of the x-

Very good agreement is observed.

Incoming Acoustic Wave

The next test case is a duct flow with an inlet Mach number M = 0.5. An incoming

acoustic disturbance is generated which is constant across the inlet plane. This dis-

turbance consists in a J+ disturbance while J- is held constant as well as entropy. It

varies temporally with a Gaussian distribution as follows:

(J+)'(t) = 0.005Jo+e (ttpeak /fo) 2 (2.64)

The speed of sound a can be easily obtained knowing that

Aa = (y - 1) AJ+ (2.65)

The isentropic relationship

p/aY-1 = constant (2.66)
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Figure 2-10: Supersonic flow M = 1.5 with 1% density disturbance at inlet. Density

averaged over width plotted against analytical linear solution, as function of the x-
coordinate. Top to bottom: t/To = 1, 2.5, 4.

yields the inlet pressure, whose amplitude is 1.94 % of its nominal value. For the

results shown in Figure 2-11, a = 12f2 and tpeak =1. The time discretization scheme

had a time step of length 1/4To. Pressure was averaged across the width of the duct

and plotted at streamwise stations for t/To = 1, 2.5, 4.75. The pressure distribution is

plotted against the analytical solution for small perturbations with c = ao + Qj. The

propagation occurs without dissipation. The propagation speed c of the nonlinear

flow response computed is slightly higher due to an increase in the local speed of

sound.

The last case was computed for an inlet Mach number M = 1.5. A similar distur-

bance is generated with a = 20f2 and tpeak= 0.5. The time discretization scheme had

a time step of length 1/8To. Results are seen in Figure 2-12. The amplitude of the

incoming pressure perturbation is 1.11 % of its nominal value. Pressure was averaged

across the width of the duct and plotted at streamwise station for t/To = 0.5, 1.25, 2,

against the analytical solution for small perturbations. As before, the match is quite

satisfactory. As the simulation goes on, slight dissipation is observed. This effect is

purely numerical and is due to the upwinding scheme which introduces a numerical
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Figure 2-11: Subsonic flow M = 0.5 with incoming acoustic disturbance, 1.94%

pressure perturbation. Pressure averaged over width plotted against analytical linear
solution, as function of the x-coordinate. Top to bottom: t/To = 1, 2.5, 4.75.

dissipation factor. Indeed, this acoustic wave creates a variation in the streamwise

component of the flow, since AQ = AJ+. This effect may be reduced by decreasing

the artificial dissipation factor, at the expense of potential numerical instabilities.

These computations have been done for small perturbations which does not com-

pletely demonstrate the nonlinear capability of the formulation. However, most of

the applications presented later in this dissertation deal with linearized equations of

the flow.

2.3.2 Linear Time Simulation

As this dissertation mostly focuses on the behavior of a diffuser at M = 2.2, both

nonlinear and linear formulations are now compared for such supersonic flows. The

steady state flow was computed for a freestream Mach number of 2.2. The inlet

geometry and the Mach contours are shown in Figure 2-13. The diffuser is started as

a shock forms right behind the throat. The Mach number averaged across the exit

plane is 0.55.
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Figure 2-12: Subsonic flow M = 1.5 with incoming acoustic disturbance, 1.11%

pressure perturbation. Pressure averaged over width plotted against analytical linear

solution, as function of the x-coordinate. Top to bottom: t/To = 0.5,1.25, 2.

Figure 2-13: Mach contour of Mach 2.2 started flow in supersonic diffuser.

Good agreement is expected for small perturbations. Both nonlinear and lin-

earized codes simulated the flow response in terms of Mach number averaged across

the throat. An incoming density disturbance is set at the inlet plane, as described in

the previous sub-section. Figure 2-14 shows the results for a 'fast' evolving Gaussian

perturbation with parameters a = 2f2 and tpea = 5. Three amplitudes were consid-

ered: 1 %, 2 % and 4 % of the nominal inlet density po. The time step was set to

1/To. Nonlinear effects are weak and good agreement is observed for all three cases.

Maximum error is defined as max(M - Ma)/max(Ma1 - Mo) where the subscripts 1,

n2 and o stand for the linear response, the nonlinear response and the nominal average
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Mach number. The errors calculated are 2.5 %, 4.2 % and 7.8 % for amplitudes 1, 2

and 4 % respectively.
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Figure 2-14: Inlet Mach number 2.2. Response to an incoming density disturbance

a = 2f0 in terms of the average Mach number at the throat. Nonlinear response

plotted against linearized response. Top to bottom: disturbance amplitudes are 1 %,

2 %, 4% of nominal density value.

As the temporal distribution of the disturbance is slowed down, accounting for

nonlinear effects becomes crucial. Figure 2-15 shows the results of a similar time

simulation with a = 0.03f2 and tpeak= 20. The time step was set to 1/0.3To. Three

amplitudes were considered: 1 %, 2 % and 3 % of the nominal inlet density po. While

the error as defined above does not exceed 4 % for the 1 % density perturbation, it

increases dramatically when reaching 2 % and becomes meaningless for 3 % due to

the shock motion towards the throat. Although this last case remains stable, unstart

is observed for disturbance amplitudes around 3.5 %.

Other computations showed that the shock motion amplitude is tied to the fre-

quency content of the perturbation studied. This sets a lower bound to the maximum

disturbance amplitude allowed to ensure good agreement between the nonlinear and

linear formulations. Knowing the nature of the perturbations studied, this bound is

actually set by the lowest frequency of interest. Nonlinear computations are therefore
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Figure 2-15: Inlet Mach number 2.2. Response to an incoming density disturbance
a = 0.03f in terms of the average Mach number at the throat. Nonlinear response
plotted against linearized response. Top to bottom: disturbance amplitudes are 1 %,
2 %, 3% of nominal density value.

needed to estimate this threshold.

2.4 CFD Summary

A 2-D unsteady Euler flow solver designed for subsonic and supersonic flows in dif-

fusers has been developed and validated against analytical solutions. A linearized

formulation has been derived, which matches the nonlinear solver for small perturba-

tions. However, the number of states of the CFD models is not well-suited for active

control purposes. The next chapter will present methods to perform model-order

reduction on the linearized solver.
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Chapter 3

Arnoldi-based Model Order

Reduction Techniques

In general, obtaining accurate results from a CFD code requires thousands of grid

nodes so that the discretized equations correctly represent the continuous ones. Most

of the results that are presented in this dissertation required more than 10,000 state

variables when computed with a full-order CFD code (four unknowns at each grid

point). Although we can restrict ourselves to linear perturbations around some pre-

computed steady-state, the matrices involved are so large and so time consuming to

solve that we cannot easily repeat simulations to get a good understanding of the

system at hand. However, one is often concerned with a small set of outputs of in-

terest due to a certain perturbation. The linear time invariant system to be reduced

is given by the state space system (2.60,2.61). We drop the superscript ' to denote

perturbations about the steady-state quantities.

The idea behind developing a projection-based reduced-order aerodynamic model

is to project the large space used by a high-fidelity CFD model, such as that described

in the previous chapter, onto a lower dimensional space which is characterized by a set

of basis vectors. If these vectors are chosen so as to accurately span the solution space,

the model behavior can be captured with just a few states. In this way a low-order,

high-fidelity aerodynamic model can be obtained. There are several options available

for selecting the basis vectors. We will focus on Arnoldi-based selection methods.
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It is desirable to choose an orthogonal set of vectors, as the resulting congruent

transformation preserves the system definiteness, and therefore often preserves system

stability. The theory of Arnoldi-based model reduction will first be described for the

generic system (2.60,2.61) and then extended for the case of singular descriptor matrix

E.

If the set of q orthonormal basis vectors is contained in the columns of the matrix

V, a qth order approximation to the perturbation solution can be made by assuming

U(t) = VU(t), (3.1)

where U(t) is the reduced-order aerodynamic state vector. Substituting this rep-

resentation of U into the linearized governing equations (2.60) we also require the

residual r(t) = AVU(t) + Bu - EVA to be orthogonal to the subspace spanned by

the columns of W i.e WT r = 0. This dissertation only makes use of W = V. As a

result we obtain the reduced-order system

d + AU= u, (3.2)
dt

=CU + Du, (3.3)

where = VTEV, A VTAV, = VT B, 0 CV and 9 is the output of the

reduced-order system.

3.1 Arnoldi Basics

One approach to ensuring accurate representation of system dynamics is to try to

match the transfer function of the reduced and original systems. Several different

matching criteria are possible. Here we describe a process based on matching moments

of the transfer function.
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Consider the transfer function H(s) of system (2.60) and (2.61):

H(s) = C (sE + A) B + D, (3.4)

which can be rewritten

H(s) = C (sA-1E +I) A-1B + D (3.5)

H(s) can be expanded in a Taylor series about s = 0, resulting in the following

expression:
00

H(s) = Z iSk + D (3.6)
k=O

where

ik = C (-A-1E)k A- 1 B (3.7)

is the kth moment of H(s). A good approximation to the transfer function (3.6)

about s = 0 should match its first moments Mk . One can think of the moments of

the transfer function as being analogous to its derivatives evaluated at s = 0.

We now define the qth order Krylov subspace generated by a matrix A and a

vector b as

ICq (A, b) = span {b , Ab, ... , Aq~b} (3.8)

The Arnoldi method generates a set of vectors which spans a qth order Krylov

subspace, which is defined for the single-input, single-output system EU = AU + bu

as

IC, (A1'E, A-'b) = span {A-lb, (A- 1 E)A-'b, ..., (A-1E)q- A-'b} (3.9)

Krylov subspace based projection techniques iteratively extract the dominant direc-

tions present in the time response to the chosen disturbance, like a power method

extracts the dominant eigenvectors of a matrix. For a system with multiple inputs,
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the Krylov subspace is generated by considering each input in turn:

ICq (A-1E, A-1B) = span{A-'bi, (A 1E)A-lbi,, -, (A-lE)--'A-llbi,

A-'b 2 , (A- 1 E)A- 1 b2, -, (A- 1E)q- 1A- 1b2 , ... }, (3.10)

where bi, b2 ,.-. are the columns of B. As stated in [10], the essential elements of

Krylov-subspace based reduction are given by

Lemma 1

Suppose Cq (A-1E, A- 1 B) C col span (V), then (A-1E) k A- 1B = V (A k)k A- 1A

for k < q.

Proof see Grimme [10].

This yields immediately the following moment matching theorem.

Theorem 1 (Krylov Subspace Model Reduction)

If colspan(V) C IC (A-E , A- 1B) then the reduced order transfer function f$(s) =

0 (sf + A) B + D matches the first q moments of the original transfer function

H(s).

Proof see Grimme [10].

Therefore, if V satisfies that condition in Theorem 1, the dynamics of our reduced-

order model are expected to closely fit that of the full-order system as the disturbance

frequency tends to s = 0. This theorem readily extends to non-zero frequencies as we

shall see in next section.
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3.2 Multiple Interpolation Point Arnoldi Method

The basic Arnoldi method results in a reduced-order model which matches coeffi-

cients of a Taylor series expansion of the full-order transfer function about s = 0.

Although this means that low-frequency dynamics can be captured accurately with

just a few reduced-order states, the model cannot be expected to be well-behaved as

the disturbance frequency increases, or to accurately capture transient response. As

the frequency range of interest increases, Arnoldi-based reduced-order models often

require a large number of basis vectors to achieve accurate results. Instead of match-

ing transfer function moments at zero frequency (the so-called time moments), an

interesting extension is to shift the interpolation point to higher frequencies, or to

consider multiple interpolation frequencies covering a wider frequency range.

Writing s = so + s', the Taylor series expansion of the transfer function (3.4)

about some complex point so yields

H(s) = C (sE + A)- 1 B + D

SC [s'E +(A+soE)] B + D

= C s'(A+soE)-E+I] (A+soE)-1 B + D

We can therefore write

H(s) = Zm's' + D (3.11)
k=O

where

mk = C [-(A+ soE)' Elk (A + soE)-1 B (3.12)

Equations (3.12) and (3.7) are equivalent, which can be seen by considering an anal-

ogous dynamical system in which A -+ (A + soE) and s -+ s'. The following

statement is therefore a corollary of Theorem 1, as follows.

Corollary 1
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If colspan(V) C K, ((A + soE) 1 E, (A + soE<)1 B) then the reduced order transfer

function fl(s) = 0 (s + A) + D matches the first q moments about so of the

original transfer function H(s).

Although Grimme [10] investigated both real and imaginary shifting in his very

comprehensive work, we will focus on minimizing the frequency-response error IH(s) -

H(s)| over a certain frequency range. Therefore, we will restrict this dissertation to

imaginary interpolation points of the form so = iwo. We actually need to sample at

so and its complex conjugate s*, for two reasons.

First, poles near the complex conjugate s* might be 'forgotten' in the process when

extracting dominant eigenvalues in the neighborhood of the imaginary interpolation

point so. To motivate this observation, we note that the construction of the Krylov

subspace involves the multiplication of vectors by (A + soE)- 1 E. Let us expand some

real vector g in terms of the generalized eigenvectors xk of (-A, E), with eigenvalues

Ak. After multiplying g by (A + soE)-1 E, whose eigenvalues are 1/(so - Ak), we get

(assuming distinct eigenvalues)

(A + soE)-1 Eg = (A + soE)- 1 E ax a xk (3.13)
k=1 k=1 so - Ak

where ak is the coordinate of g on the kth generalized eigenvector Xk. Therefore

eigenvalues that are strong (large ak) or close to so (large 1/ (so - Ak) ) are emphasized

when multiplying g by (A + soE) 1 E. If the complex conjugate (s* - so) is large

compared to the (so - Ak) that are emphasized, we might lose all the information

contained by the poles close to s*. At frequencies close to so, they are involved in the

system dynamics though, and we might not get as good a local match as expected.

However, this analysis is somewhat limited. See [10] for more details.

In addition to that, the use of complex matrices raises an important implementa-

tion concern: our reduced-order model should be consistent with the original system

and yield real outputs. The avoidance of a complex basis V is therefore desirable.

This is done by choosing so and s* pairwise: two Krylov subspaces C and C* are
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constructed, generated from sequences of vectors that are complex conjugate of each

other, based on:

(A + s*E)-1 g* = [(A + soE)-' g]* (3.14)

No additional computational effort is involved in this method, since knowledge of

the first sequence of vectors immediately implies knowledge of its conjugate. More-

over, the conjugate Krylov subspace C* is not explicitly generated. The union space

C U K* is the span of the real and imaginary parts of the vectors of KZ. Only one

set of vectors is computed, and V will be the set of the real and imaginary parts,

after orthogonalization. This is best described in the pseudo-algorithm below for the

single interpolation point so = iwo.

Algorithm 1 (Arnoldi method)

function V = arnoldi(E,A,b,wo,q)

Factor (A + iwoE)

Solve (A+ iwoE) w = b

V =

for j = 2 : q

Solve (A+iwoE)w =EV_1

for k = 1 : j - 1

h = w' Vk

w = w-hVk

end

V, =W

end

Here, w' Vk denotes the hermitian product of vectors w and Vk. Each computed

vector is orthogonalized with respect to the previous ones using a Gram-Schmidt

orthogonalization process. Although this sub-step is not theoretically necessary, it

enables numerical robustness as the number of vectors computed increases. If we
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write g = E akXk, where Xk denotes the eigenvector of A with eigenvalue Ak and ko

the index of the dominant eigenvalue, ANg r Akoako Xko as N increases. Orthogonal-

ization then plays a crucial role by preventing the resulting vector from being aligned

with a dominant eigenvector.

The matrix V, as computed by Algorithm 3.1, which contains the q vectors V

as columns, is an orthonormal basis for Cq, with q complex basis vectors. V needs

to be further processed to span Cq U K*: the real and imaginary parts of each basis

vector will be extracted, and the resulting 2q vectors orthogonalized. Gram-Schmidt

appears to be a natural choice, and can be done at each step of Algorithm 1, in

parallel with the Hermitian orthogonalization used for generation of the complex

basis. However, an alternate approach is to perform the orthogonalization using

singular value decomposition (SVD). Unlike Gram-Schmidt orthogonalization, SVD

enables the assessment of the amount of new information added by each basis vector.

Using the singular values, the option is available to further reduce the size of the

resulting basis.

For the sake of simplicity, Algorithm 1 was restricted to a single interpolation point

wo. This does not yield a better behaved model than the single point Arnoldi model

derived about s = 0, as shown in Section 3.1: if a limited number of basis vectors are

used, the reduced-order model will give a good match only in the neighborhood of wo.

The range of accuracy of the model can be improved by using multiple interpolation

points in order to obtain a good fit over the entire frequency range of interest. In

the case of r interpolation points, the basis V spans U' 1 I, which includes r Krylov

subspaces by definition. Corollary 1 still holds, and moment matching is thus ensured

at every interpolation point stored in w = [wo, Wi, ... , Wr]. We can therefore evolve

Algorithm 1 to consider r frequency points as follows. q = [qi, q2 ,... , q,] contains

the numbers of complex Arnoldi vectors to be evaluated at each interpolation point Wk.

Algorithm 2 (Multi-Point Arnoldi method)

function V = arnoldi(E,A,b,w,q,r)

for 1 = 1: r
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QM=

Factor (A +iwE)

Solve (A + iwE) w = b

j = Q+1

=

for j = Q + 2 :Q + q

Solve (A + iwE) w = EVj_1

for k Q + 1: j - 1

h = w' Vk

w = w - h Vk

end

V - w

end

end

As described previously, real and imaginary parts are then extracted and orthog-

onalization is done using SVD. At this time, the size of the basis can be further

reduced. When the final set of basis vectors V is obtained, the reduced-order model

is constructed by projection as described by equations (3.2) and (3.3). This method

extends readily to multiple input cases by applying the algorithm to each column of

B separately. The final basis is computed by recombining all the sets obtained from

Algorithm 2 with SVD.

3.3 Application to Singular Descriptor Matrix Dy-

namical System

As seen in Section 2.2.1, the descriptor matrix E of system (2.60) is singular: we

actually deal with an algebraic system. Although, the previous theorems apply to the

singular descriptor matrix system [20], performing reduction via the Arnoldi method
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directly on system (2.60) would not only reduce its dynamics but would also affect its

boundary conditions. However, it is possible to extract an actual state-space system

of order ni = n - n 2, whose dynamics are identical to (2.60). Boundary conditions

will be put aside and treated separately. System (2.60) can be written

EA E12 + A A 12  U 1 1  [B 1  (3.15)

0 0 UJ2 A21 A22 U2 B2

where U 2 is a vector containing those flow unknowns which are prescribed via bound-

ary conditions, and the vector U 1 comprises the remaining unknowns, which are

determined by the equations of state.

3.3.1 Condensed Dynamical System

Since the matrix A is invertible, the change of variables U = A- 1 Z can be applied.

This change of variables does not alter the transfer function of the initial system and

yields

5l 512 Z1 + , 0 Z1 B 1

0 0 Z2 0 I2 Z2 B 2

where E = EA- 1, and I1 and 12 are the identity matrices of dimensions ni and n2

respectively. We also note that, for any matrix M, the structure of the matrix product

EM remains identical to that of the matrix E: the transformed states Z2 = AU 2 are

prescribed.

The prescribed states Z2 can now be condensed out, leading to the actual state-

space system

EuZ1 + Z1  = Biu - E 1 2 B2 6, (3.17)

where we have used Z2 = B 2u. Denoting O = CA 1 = [01 02] , the expression for

the output y becomes

y = 01Z1 + (D + 02B 2 ) u. (3.18)
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We will denote b = (D + 02 B2).

Using this change of variables, we have extracted the 'true' dynamics of system

(2.60). Although the boundary conditions do not show up explicitly in equation

(3.17), they can easily be reconstructed from Z2 = B2 u. Moreover, they are implictly

present in the output y due to the feedthrough term D.

3.3.2 Implementation of Arnoldi Method

The multiple frequency point Arnoldi reduction technique described is applied to the

condensed state-space system (3.17, 3.18). The existence of a second input n does

not alter the method described previously, as shown by the transfer function

H(s) = 01 (I1 + sAn)>1 (B1 - s512B 2 ) + b (3.19)

The presence of n simply doubles the number of inputs to consider, since we can

define a new set of moments generated by the term E12B 2 . Application of the multiple

input, multiple frequency point Arnoldi method described above is unchanged, and

the resulting basis spans the following Krylov subspace:

ICq{ (I1 + wokii>1 5I, (1i + wotii B1 B, 5 12 B 2] } (3.20)

Due to the CFD formulation, boundary condition rows are mixed with state equa-

tions rows in 5 = EA- 1 . It would not be practical to explicitly extract 5u and

512. Instead of computing V, an ni x q matrix, it is far more convenient to compute

[VT 0 ]T directly with the original system (3.16). The actual implementation is based

on the following observations.

Inverse (I + wo5

(I+wo 
1  [ (I1 + Lwot 11 ) wo5 2

0 I2
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11 + ( woki> wo (Ii + wOOEn) 12 (3.21)

0 12

Second input vector E12B 2

I k12] [2 E2 [ 2] (3.22)

L0 0 B2 L 0

Multiplication by 5n

[ l t12] [B] [IIB] (3.23)

L0 0 JL0 1 L 0

Although we cannot extract the block matrix 5ll, we can identify the entries

corresponding to the matrix-vector product 511B1 in 5B. These entries correspond

to the ni actual state unknowns. Algorithm 2 is therefore applied to

C (I+ wo5Y 5, (I+ woS) [ B1 , (I+ wo5fr> 1  [2 0 (3.24)
0 1LB2

The matrices 5 or (I + wo5) are never explicitly computed. We actually make use

of the following relations:

S= EA- 1  and (I + woE = A (A + woE) 1

Recombination of Krylov subspace vectors through SVD provides V. The final

step consists in calculating the reduced model matrices as described by equations
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(3.2) and (3.3).

= VTk11V =[VT 0 EA-1[
- 0

B1  = VTB1= V 0[B
0

$ 2  = VT 12 B 2 = VT 0 ]EA_1 0
- - B2

0 = o1V=CA-1
0

= D+0 2 B2 = D + CA_1 0
B2

3.4 Arnoldi-Based Model Order Reduction Sum-

mary

An algorithm has been presented to apply multiple point Arnoldi order reduction

to large state space form systems. Multiple point Arnoldi method approximates the

transfer function of the full-order model to be reduced over a frequency range defined

by the user. The user picks frequencies in this range and computes Arnoldi vectors at

each point. After recombining the Arnoldi vectors into an orthogonal real basis, the

full-order model is projected onto this basis. The cost of computing the model lies in

the number of frequency points, each of which implies one complex matrix inversion.

The algorithm has also been generalized to singular descriptor matrix systems. The

next chapter will present applications of this method on the linearized CFD model

developed in Chapter 2.
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Chapter 4

Results

Reduced-order models have been developed for supersonic started duct flows. A

supersonic diffuser has been studied at a steady-state Mach number of 2.2 and a

nominal upstream bleed of 1% of the inlet mass flow. The steady state Mach contours

for this diffuser are shown in Figure 2-13. Figure 4-1 shows the different inputs and

outputs of the system. The output of interest is the average Mach number at the

throat in response to two unsteady inputs: a planar inlet density perturbation and an

upstream bleed perturbation about nominal 1% bleed. Bleed occurs through small

slots located between 46 % and 49 % of the inlet overall length. For control purposes,

a sensor is located on the top wall, at the impingement point of the first Mach wave

plotted on Figure 2-13. It measures pressure variations from the steady state pressure.

Incoming flow Pressure sensing

Average Engine compressor

Inlet disturbance mach Shock
(density)i
(s -hegh h Upstream bleed

--.- heighh

Figure 4-1: Definition of the different inputs and outputs: incoming density distur-

bance, air bleed, pressure sensing.

The CFD computational grid has 3078 points, which corresponds to 11,730 un-
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knowns. A time-domain computation of this size is expensive, however we will show

that the linearized flow dynamics can be accurately captured with less than 80 modes.

All of the reduction methods shown are applied over the frequency range [0, 2 fol where

fo = ao/h is the reference frequency of the diffuser, defined as the freestream speed

of sound ao divided by the height h of the inlet. According to the atmospheric model

considered, disturbances are expected to be in this range.

Throughout this chapter, we will refer to error between the full-order and the

reduced-order transfer functions as the magnitude of H(s) - f(s), calculated at the

complex frequency s = 27rif. Maximum error will be the maximum value of this error

over the frequency range [0, 2fo].

4.1 Unshifted Arnoldi Method

We begin with the basic Arnoldi method, which leads to a basis of vectors that

matches moments of the transfer function about s = 0. Gram-Schmidt orthogo-

nalization is performed sequentially from the first real vector computed to the last.

Therefore, as we add one state to the model we increase the dimension of the spanned

Krylov subspace by one and the reduced-order model obtained matches one more mo-

ment of the full-order transfer function. Figures 4-2 and 4-3 show the resulting gains

and phases of the transfer functions from bleed input to average throat Mach number,

for the full-order and reduced-order systems. In each plot, the dotted line corresponds

to the full-order transfer function (n = 11, 730). The solid lines are transfer functions

for reduced-order models of size q = 10, 20, 30, 40 and 50, plotted from top to bottom.

With just ten states in the reduced-order model, a good approximation is obtained

locally near f/fo = 0, however for higher frequencies the error increases rapidly. As

more Arnoldi vectors are added to the basis, the quality of the match improves for

higher and higher frequencies. With 40 and 50 basis vectors, the transfer function is

approximated well over the entire frequency range of interest. Although the size of

the reduced-order models has increased to obtain this fit, we note that the compu-

tational expense to obtain each of the models shown in Figures 4-2 and 4-3 is of the
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same order (i.e. the cost of a single system factorization).
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Figure 4-2: Magnitudes of full-order transfer function vs. ROM transfer function
(bleed to average Mach number at throat). From top: 10, 20, 30, 40 and 50 reduced-
order states, all models interpolated at f/fo = 0.

The evolution of accuracy with total number of modes is better shown in Figure 4-

4. In this figure, the error at each frequency is plotted for the reduced-order models

shown in Figures 4-2 and 4-3. It can be seen that with just 10 modes, the model is

very accurate in the neighborhood of f = 0, and this local accuracy does not improve

as more modes are added (due to round-off errors). Figure 4-4 shows clearly that

as more modes are included in the model, the accuracy at frequencies away from

the interpolation point increases. It is interesting to note that for the q = 30 case,

the improvement in accuracy over the frequency range [0, 0.8fo] is achieved at the

expense of a worse prediction at higher frequencies. This can also be clearly seen in

Figures 4-2 and 4-3 and highlights the fact that these single point Arnoldi models

can be unreliable far away from their interpolation point. In order for all errors over

the frequency range to be less than 10-2, more than 100 basis vectors were required

in the reduced-order model.
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Figure 4-3: Phases of full-order transfer function vs. ROM transfer function (bleed

to average Mach number at throat). From top: 10, 20, 30, 40 and 50 reduced-order

states, all models interpolated at f/fo = 0.

4.2 Multiple-Point Arnoldi Method

While the previous results showed that the basic Arnoldi model required a large

number of states to accurately capture the relevant dynamics over the frequency

range, significant improvement can be realized by using the multiple-point Arnoldi

method. As discussed, using multiple interpolation points causes moments of the

transfer function to be matched at several frequencies. At each frequency chosen to

be an interpolation point, the fit between the reduced-order and full-order transfer

functions is exact. This can be seen in Figures 4-5 and 4-6 where results are shown

using five frequency points: f/fo = 0,0.5,1,1.5 and 2. The top plot in both Figures

4-5 and 4-6 is a reduced-order model of total size q = 9. This corresponds to one

Arnoldi vector at each frequency point, calculated using Algorithm 2 and orthogonal-

ized using Gram-Schmidt. Note, however, that the Arnoldi vectors at the non-zero

frequency points are complex, and thus result in two basis vectors (total number of

basis functions = 1+4*2 = 9). As the plot shows, the transfer functions of the reduced

and full-order systems match exactly at the selected interpolation points.
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Figure 4-4: Absolute value of error for five reduced-order models of size 10, 20, 30,
40, 50. All models interpolated at f/fo = 0.

The size of the reduced-order model is increased by considering increments of one

Arnoldi vector at each interpolation point. This results in reduced-order models of

size q = 18, 27, 36 and 45, whose transfer functions are shown in the lower four plots

of Figures 4-5 and 4-6 from top to bottom respectively. Figures 4-5 and 4-6 demon-

strate the analogy between the moments and the derivatives of the transfer function.

As discussed, in the top plot the value of transfer function at each interpolation point

is matched exactly. In the second plot (two Arnoldi vectors and hence two moments

matched per frequency point), it can be seen that the value of the transfer func-

tion plus its slope are matched. Figures 4-5 and 4-6 also show that as the number

of Arnoldi vectors at each interpolation point is increased, the fit away from that

frequency improves.

Figure 4-7 shows the error between the reduced-order and full-order transfer func-

tions versus frequency for five models ranging in size from q = 18 to q = 63. For

the four lower order models, the maximum error is of the order 10-1. A significant

reduction in error is achieved by including 63 state vectors. In this case, the maxi-

mum error over the frequency range of interest is 10-2. For the single-point Arnoldi

method, more than 100 basis vectors are required to achieve this level of accuracy.

65

.. ...... ..... . .....



- - - -- ROM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

0-
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

21

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f/f

Figure 4-5: Magnitudes of full-order transfer function vs. ROM transfer function

(bleed to average Mach number at throat). All models derived with five interpolation

points at f /fo = 0, 0.5, 1, 1.5, 2. From top: 9, 18, 27, 36 and 45 reduced-order states.

Figure 4-7 shows clearly that for a low number of states, accuracy remains localized

to the neighborhood of the interpolation points.

Gram-Schmidt was used to orthogonalize all the basis vectors for the multiple-

point Arnoldi models described above. A better approach is to use SVD to perform

this orthogonalization. Once the complex Arnoldi basis about each frequency point

has been computed (which uses an internal Gram-Schmidt procedure), the set of real

vectors resulting from the extraction of the real and imaginary parts can be combined

and orthogonalized using SVD. This approach gives us the option to select a subset of

the resulting orthogonal vectors, based on the calculated singular values. If not all of

the vectors are retained, then the moment matching properties will not be preserved

exactly. Figure 4-8 compares the results for both orthogonalization processes. A five

point Arnoldi model was generated, identical to that discussed above. 90 real vectors

were extracted from the initial complex vectors. Gram-Schmidt was used to perform

orthogonalization and construct one set of reduced-order models, whose sizes range

from 2 to 88 vectors. SVD was also performed on the 90 real vectors and another set of

reduced-order models was constructed. Maximum error over [0, 2fo] is plotted for both
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Figure 4-6: Phases of full-order transfer function vs. ROM transfer function (bleed

to average Mach number at throat). All models derived with five interpolation points

at f/fo = 0, 0.5, 1,1.5, 2. From top: 9,18, 27, 36 and 45 reduced-order states.

set of models from size 2 to 88 vectors. No significant difference can be seen before

reaching low singular values. The gain in accuracy is then dramatic: SVD offers a

maximum error of order 10-6 with 75 vectors while the error due to the Gram-Schmidt

basis levels off at 10-4 and increases dramatically after that point. This shows that

Gram-Schmidt orthogonalization is an ill-conditioned method compared to SVD. A

slight increase in error is observed if an even higher number of vectors are retained.

The singular values give a good indication of the importance of a particular mode,

and neglecting those modes with small singular values was found to result in efficient

reduced-order models without compromising accuracy.
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vectors. Bottom: singular values.
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4.3 From Multiple-Point Arnoldi to Proper Or-

thogonal Decomposition

Since the efficiency of the reduced-order model has been significantly increased by us-

ing the multiple-point Arnoldi method, the question might be asked: why not increase

the number of interpolation points and reduce the number of moments matched per

interpolation point? As discussed by Willcox et al. [27], as the number of frequency

points is increased and the number of moments matched at each point is reduced

to one, the method becomes a frequency-domain Proper Orthogonal Decomposition

(POD) approach, which uses SVD on a set of complex responses obtained at selected

frequency sample points to construct a basis [13, 15, 29].

A short aside may be useful to make the connection between the multiple point

Arnoldi and the POD methods explicit. Fundamentally, the POD method aims at

representing the solution Z(t) of the initial system (3.16) in an optimal way from a

least-square perspective. We look for the vector *(t) that satisfies

max N ('(,Q) (4.1)
+1 ('I, I ) (I , 1 W)

where (. , . ) and (.) denote scalar product and time averaging respectively. The

vectors Wk are the POD basis vectors computed as a linear combination of snapshots

as follows:

" Choose a set of N frequency points wm in the frequency range of interest,

* Solve (iwm5+ I) Zm = B for each frequency Wm,

" Extract real and imaginary parts of each complex vector calculated: these are

the in-phase and out-of-phase responses to the disturbance. The resulting N

vectors form the snapshots Zj,

" Compute the correlation matrix C such that Cp = (Z,, Z,) /N and extract its

eigenvalues as well as the associated eigenvectors Vk,
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* Construct each basis vector as a linear combination of snapshots using the

eigenvectors as coefficients: the eigenvector Vk gives the basis vector 1
k =

This procedure is actually Algorithm 2 when computing only one complex Arnoldi

vector at each frequency point. Moreover, it can be seen that calculating the cor-

relation matrix C from the resulting real vectors and extracting its eigenvectors is

equivalent to orthogonalizing them by SVD. The eigenvalues of C are in fact the

singular values of the matrix whose columns are the real and imaginary parts of each

complex vector computed. In this case, the POD basis is identical to an Arnoldi

basis.

Figure 4-9 compares the accuracy provided by the multiple-point Arnoldi method

and the POD method. The top plot shows the maximum error over the frequency

range [0, 2 fo]. This error is plotted versus the total number of basis vectors in the

reduced-order model for five approaches. The first three models use multiple-point

Arnoldi with 5, 11 and 21 interpolation points. The baseline models in these three

cases contained 90, 126 and 123 basis vectors respectively (corresponding to 11, 6 and

3 Arnoldi vectors respectively per frequency point). SVD was then used to select an

orthogonal subset of the baseline vectors and create reduced-order models ranging in

size from q = 1 to q = 75. The second two models shown in Figure 4-9 were created

using POD with 41 and 61 frequency points, which yields baseline models of 81 and

121 vectors respectively. It can be seen that for models of size q = 30 or less, the

maximum error is independent of the number of interpolation points. For higher-

order models and lower error levels, the plot shows that, in most cases, choosing

more frequency points improves the accuracy of the reduced-order model for a given

number of basis functions. (When a very large number of basis vectors is selected,

numerical noise becomes an issue, as can be seen for the 61-point POD method.) This

improvement in accuracy must be traded with the computational cost of deriving the

model, which is directly proportional to the number of interpolation points. The lower

plot in Figure 4-9 shows the first 75 singular values for each of the models. While the

POD singular values drop off more rapidly, the plot shows that there is considerable
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advantage in post-processing the Arnoldi-based models with SVD to obtain a further

reduction in size.
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to be satisfied exactly, all vectors must be retained in the basis. As the number of

inputs increases, the size of the reduced-order model can become very large and

also lead to numerical problems. Using SVD instead is a particularly convenient

approach for the multiple input case. When the vectors are combined using SVD,

there is no longer a separate sequence of vectors for each input. Instead, the resulting

orthogonal basis can comprise a combination of Arnoldi vectors and have greatly
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improved efficiency. As the singular values decrease, a subset of SVD vectors can be

selected which offers similar accuracy properties.

Figure 4-10 shows the maximum error over the frequency range [0, 2 fo] between

a two input reduced-order and the full-order model. The two inputs considered are

upstream bleed and incoming density disturbance. Two sets of Arnoldi vectors were

generated separately using five frequency points: f/fo = 0, 0.5, 1,1.5 and 2. Ten

Arnoldi vectors were computed at each interpolation point yielding a 90 vector set

for each input. They were recombined into a single orthogonal basis using SVD.

10-

-s o ni densiy 
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Figure 4-10: Two input reduced-order model Top: maximum absolute value of error

over [0, 
2

fo] versus number of basis vectors. Bottom: singular values.

As seen in Figure 4-8, the single input five point Arnoldi model constructed for

bleed required about 78 basis vectors to achieve an maximum error of order 10-.

Although not shown, the trend is identical for the single input five point model

constructed to simulate the effect of an incoming density disturbance. If we were to

use Gram-Schmidt orthogonalization to recombine both sets of Arnoldi vectors, we

would expect to need at least 155 basis vectors to reach this accuracy. However, after

recombination with SVD, less than 120 state vectors are sufficient to reach this error

level in Figure 4-10, demonstrating the efficiency of the recombination method. We

also note the strong correlation between the singular values and the maximum error
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observed. For more than two inputs, the SVD approach is expected to be even more

efficient compared to Gram-Schmidt.

4.5 Time Domain Simulation

The following example demonstrates the accuracy of a multiple-point Arnoldi model

for a time domain computation. For this case, we consider the second unsteady input

to the system, an incoming density perturbation. Five interpolation points were

used, at frequencies of f/fo = 0, 0.5, 1,1.5, 2. Ten Arnoldi vectors were calculated at

each interpolation point, resulting in a total of 90 vectors. These vectors were then

combined and orthogonalized using SVD. The resulting singular values are plotted in

Figure 4-11.
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values for the Arnoldi basis vectors for an incoming density

The figure shows that the magnitude of the singular values starts to drop off

rapidly once the basis reaches a size of approximately q = 70. Reduced-order models

of varying size were constructed using the vectors obtained from the SVD analysis.

Figure 4-13 shows a time-domain simulation of the diffuser in response to an incoming

density perturbation calculated by the linearized CFD code and several reduced-order

models. The perturbation considered is constant across the inlet plane, but varies
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temporally with a Gaussian distribution as follows:

p'(t) = -0.02poe-t-2/0)2 . (4.2)

The parameter a in the above equation was selected so that the dominant frequency

content of this perturbation falls in the range [0, 2fo]. For the results shown in Figure

4-13, a = 6fV. Figure 4-12 shows the evolution of p' as a function of time.

0.02

.0.015 -

A 0.01 -

0.005

0I 1 -L 3L 4 6 L 10

Figure 4-12: Incoming density disturbance as a function of time. a 6fs, T0 = 1/fo.

The responses shown in Figure 4-13 support the conclusion drawn from the sin-

gular values in Figure 4-11. For models with q = 40 and q = 50, there is significant

error in the time domain response. Increasing the number of modes to 60 gives a very

good result, while the response with 70 modes is virtually indistinguishable from the

CFD.

4.6 Active Control Design of Diffuser using Multiple-

Point Arnoldi Method

Active control design is one of the fields that is the most sensitive to problem size.

Even after linearization, CFD model are impracticable for control purposes. Reduced-

order models that can capture the dynamics of the system in the frequency range

of interest are therefore desirable. However, one must make sure that the models

constructed accurately capture not only the dynamics of the initial system, but also

the dynamics of the controlled system.

Throughout this section, we will develop a crude controller design to monitor the

74



~1.355 -----. - - - 0 Ful-order -

1.35

1.345

0 1 2 3 4 5 6 7 8 9 10

Figure 4-13: Linearized response to a density perturbation in the incoming flow. The

full-order model (circles) is compared with several reduced-order models ranging in

size from 40 to 80 states. To = 1/fo

average Mach variation over the throat of a supersonic engine inlet, in response to

incoming flow variations. These results will not focus on the specifics of controller de-

sign, but rather are intended to demonstrate that a controller designed using reduced-

order system dynamics is effective when applied to the full-order model.

4.6.1 Modeling and Control Design

Avoiding unstart is crucial for the flight safety of a supersonic jet. As the shock pops

forward the aircraft structure undergoes a dramatic drag increase while the engine

inlet mass flow drops far below the design value. We would like to control the shock

position by limiting the amplitude of the throat Mach number variation. We make

use of the same inputs and outputs described in Figure 4-1, which are as follows:

y = " " average Mach number variation
Mao

z = 0 pressure sensing
p0

0

d = " Po incoming density disturbance
Pin

b = Mb fraction of mass flow dumped

where Ma represents the Mach number averaged over the throat, p is the pressure
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sensed, pi, the inlet density, rnb is the mass flow bled through the upstream slots,

and nriin, the incoming mass flow. These quantities are the full unsteady quantities

(i.e x = x0 + x'). The superscript 0 refers to the steady state.

Figure 4-14 supplements Figure 4-1 with the control path. The controller is a

feedforward controller that evaluates the level of upstream bleed needed to limit the

perturbation due to the incoming density disturbance, after assessing its importance

via the upstream sensor.

z

Pressure sensing

Inlet disturbance Average
(density) mach Shock Controller

y
dheight h Upstream bleed

Figure 4-14: Control path for shock control: inlet disturbance, sensing, controller and
actuation.

As discussed earlier, the atmospheric turbulence model used indicates that distur-

bances are expected to lie in the frequency range [0, 2fo]. The controller design can

therefore be restricted to this frequency domain.

The 2-D Euler equations are linearized as shown in section 2.2 and reduced with

the multiple-point Arnoldi method. This requires identification of the inputs and

outputs of the system. The main output y is the sum of the contributions Yd and ya

due to both disturbance d and actuation b respectively. The design considered focuses

only on the supersonic flow upstream of the shock. As a result, the pressure sensed

z, which is upstream of the actuation mechanism, is only affected by the incoming

density disturbance and not by the actuation. We denote

y(t) = Yd(t) - ya(t) (4.3)

G(s) = Yd(s) (4.4)
D(s)
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Z(s)((45)WS(S) D(s)

Wa(s) Ya(S) (4.6)
B(s)

We(s) B(s) (4.7)
Z(s)

(4.8)

where X(s) denotes the Fourier Transform of x(t). Figure 4-15 shows the block

diagram connecting all the defined transfer functions.

incoming disturbance

d G(s) Y

z b
W(s) W (s) W(S)s c b a~s

pressure controller actuation
sensing

Figure 4-15: Block diagram of control system. Feedforward controller.

We can now explicitly write the relation between the controlled average Mach

number variation y and the incoming density disturbance d in the Laplace space.

Y(s) = (G + WaWcWs) D(s) (4.9)

All three transfer functions G, W and W, are known. However We must be

determined. For this study, three reduced-order models were built to simulate the

Mach response Yd to an incoming density disturbance d, the Mach response ya due

to bleed b, as well as the sensed pressure response z due to the inlet density per-

turbation d. For each model, five interpolation points were used, at frequencies of

f/fo = 0,0.5,1,1.5,2. Ten Arnoldi vectors were calculated at each interpolation

point, resulting in a total of 90 vectors. Only the input vector was accounted for
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when generating the reduced basis V described in equation (3.1). (The Arnoldi ba-

sis does not consider output definition). As a result, the d-to-y and d-to-z models

have the same low order matrices. The models are those shown in Figures 4-9 and

4-13. Referring to these results, we can limit the size of our reduced order model

to 76 states. This allows very good accuracy to be achieved on the frequency range

of interest. The transfer functions G, W and W, based on the above reduced-order

models were computed over the range [0, 2 fo]. They can be seen in Figure 4-16
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Figure 4-16: Gain (left) and phase (right) of the transfer functions of the system.
From top to bottom: perturbation to be controlled G, actuation W and sensor W,.

Once the reduced-order models have been generated, the input/output behavior

can be evaluated at many frequencies with low computational cost. Each evaluation

requires one system factorization and solve, which for the high-order system is ex-

pensive. For each of the transfer functions, five high-order system factorizations were

required to derive the reduced-order models. The resulting models are then used

to generate 100 data points over the frequency range of interest. To generate this

amount of data with the original model would be computationally prohibitive.

The data generated by the reduced-order models were used to fit a lower-order

model using the method of [18]. The controller transfer function We was then

designed using H' optimization [3]: adding a low pass filter to the input path,
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I (G + WaWcW,) (iw)I was minimized over the range [0, 1.5fo] as the disturbance fre-

quency most likely lies below fo. The controller transfer function can be seen in

Figure 4-17 and the closed-loop transfer function in Figure 4-18. Optimization was

made more aggressive over the range [0, 1.5fo] at the expense of an ill-behaved re-

sponse beyond f = 1.5fo. Although the response amplitude increases dramatically

for high frequencies, the controller remains stable. Significant improvement in Mach

variation amplitude is obtained for frequencies below 0.6fo.

5 1 1

f/f0

£0

Figure 4-17: Gain and phase of the controller transfer function Wc.

4.6.2 Linearized CFD Model with Control versus Reduced-

Order Model with Control

Although it was constructed using the reduced-order models, the interesting ques-

tion is whether the controller will be effective for the high-order CFD model. The

controller presented above was implemented in the full-order linear code and compar-

ison was made of the Mach number response due to an incoming density disturbance

of amplitude 1% of the nominal value po. Figure 4-19 shows the response y at the

throat for both the linear code and the reduced-order model, when actuation is off

and on. The inlet disturbance d has the form described in equation (4.2), with a set
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Figure 4-18: Gain and phase of closed-loop TF (G + WaWcW,) versus open-loop TF
G. Optimization was stressed over [0, 1.5fo].

to 0.5f2 and peak time at 5To. The frequency decomposition of this disturbance lies

in [0, 0. 6 fo], which fits in the design frequency range of the controller.

Both the reduced-order and the full-order linearized model yield satisfactory re-

sponse using the controller design presented previously. The reduced-order model

response is virtually indistinguishable from that of the full-order linearized model.

Under control, the CFD model has the behavior expected. This shows that the

reduced-order models enable control design and accurate simulation of the CFD model

response under control. Figure 4-20 represents the fraction of mass flow dumped

though the bleed slots, for both models. Every parameter of interest is accurately

represented with the reduced-order models used. Moreover, since the controller is

effective at reducing the amplitude of the variation (as seen in Figure 4-19), the lin-

earization assumption should hold for the controlled system. In future work, the

effectiveness of the controller on the nonlinear system will be investigated.
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Chapter 5

Conclusion and Recommendations

This dissertation presented a new computational tool for simulating unsteady Euler

flow, and applied Arnoldi-based model-order reduction to the linearized equations

derived from the flow solver. The resulting reduced-order models were used to design

an active control strategy for a supersonic diffuser.

5.1 Unsteady Euler Flow Solver

This thesis first develops a method of discretizing the unsteady Euler equations for

2-D flows based on a finite-volume formulation. Flow velocity is represented locally

using the grid geometry. It is decomposed into two components: its projection onto

the meanline direction of the streamwise gridlines and its projection onto the direction

normal to the streamwise gridlines. CFD validation results show that the formulation

has subsonic and supersonic capability. Simple perturbations are simulated with high-

fidelity. When simulating supersonic cases, a slight dispersion effect is observed due

to the upwinding scheme added to ensure numerical stability. This effect can be

reduced by tuning the artificial dissipation coefficient.

For model reduction purposes, this CFD formulation has been linearized. Good

agreement is observed with the nonlinear formulation for small perturbations. Results

show that, for supersonic started flows, nonlinear effects become more important as

the frequency of the inlet disturbance is decreased. The linear system obtained from
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the nonlinear solver is algebraic since the descriptor matrix is singular, as boundary

conditions do not require temporal differentiation.

Even under the linearization assumptions, simulating such large fluid problems

remains computationally expensive, or even impossible when considering optimal con-

trol design.

5.2 Arnoldi-Based Order Reduction Techniques

Reduced-order models are sought that accurately simulate flow responses due to se-

lected disturbances, on a given frequency range. Basic and multiple interpolation

point Arnoldi methods have been reviewed. Basis vectors are computed that span

the Krylov subspace generated by iterating a complex matrix on the input vector.

This input vector represents perturbations to the steady state boundary conditions.

Real and imaginary parts of each complex basis vector are then extracted and recom-

bined to form a single orthogonal basis. The full-order system is then projected onto

this basis. Such methods allow matching of the first moments of the transfer function

at each frequency point selected. This matching occurs only at zero frequency for the

single point Arnoldi method. As the number of basis vectors increases, so does the

number of moments matched at each point. This improves the frequency response of

the reduced-order model. Two pseudo-algorithms have been presented to describe the

sequence of the operations required by single and multiple point Arnoldi methods.

Since the linear system derived from the nonlinear formulation is algebraic, a

specific implementation method has been developed for singular descriptor matrices.

In this methodology, model order reduction is performed only on the state equations.

Boundary conditions are extracted from the initial system and a state space system

is derived from the state equations. The boundary conditions are not approximated

and appear in the output via a direct transmission term.

Model order reduction techniques have been applied to the case of a supersonic

diffuser whose flow is started. Results show the high-fidelity of the reduced-order

models constructed for flows of interest. Model size was reduced by two orders of

84



magnitude from the original CFD model. When comparing full-order and reduced-

order transfer functions, the use of multiple frequency points in the Arnoldi algorithm

reduces the size of the required basis in order to achieve the same level of accuracy on

the frequency range of interest. For example, using five frequency points results in a

size reduction of 50 % over the single point model. Gram-Schmidt and singular value

decomposition have been compared for recombination of the computed vectors. Not

only does SVD yield faster convergence, but it also proves to be better numerically

conditioned. This procedure also yielded additional accuracy information via the

singular values. High-fidelity resolution is observed when comparing the transfer

function of the full-order and the reduced-order models, as well as when performing

time-simulation using both CFD and reduced-order models.

For the reduced-order models considered, the number of interpolation points and

the number of Arnoldi vectors at each frequency point (and therefore the number

of moments matched) were varied. These models were compared to POD-generated

reduced-order models. When holding the number of state vectors constant, increas-

ing the number of frequency points along with decreasing the number of Arnoldi

vectors per frequency point improves accuracy for a given basis size. By balancing

the number of frequency points and Arnoldi vectors per frequency point, the multiple

point Arnoldi models can achieve roughly the same level of accuracy as POD models

with the same number of basis vectors, but with a significant decrease in the cost of

obtaining the model, as each frequency point requires one matrix inversion.

Two-input models have been constructed and compared against the original CFD

model. CFD-quality frequency response has been observed for both inputs considered.

SVD proves to be a convenient recombination method for the two sets of Arnoldi vec-

tors generated, as it further reduces the number of state vectors required for achieving

a given level of accuracy.

Arnoldi-based order reduction techniques have been applied to a simple control

problem in the supersonic diffuser. Mach variations at the throat due to an incoming

density disturbance are monitored via upstream bleed. Reduced-order models have

been constructed to model disturbance, sensing and actuation. The limited size of the
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models has allowed the evaluation of numerous data points which have been further

processed to generate the controller design. When implementing the controller in both

the full-order and the reduced-order model, discrepancies between time-simulations

are indistinguishable, as long as the disturbance frequency lies in the design frequency

range.

These results show that Arnoldi-based order reduction can model the flow re-

sponse to any perturbation as accurately as the original CFD solver. Controlled

dynamics of both full-order and reduced-order models are nearly indistinguishable.

When performing model order reduction, the multiple point Arnoldi method is espe-

cially attractive as it offers a trade between accuracy and computational cost. The

limited size of the model generated allows the application of optimal control theory.

New perspectives are therefore offered to active flow control.

5.3 Recommendations for Future Work

There are several extensions that should be considered for this work:

" Simulate the presence of boundary layers on the walls via a wall blowing model.

This would allow the code to account for viscous effects at low computational

cost. Perform model order reduction on the pseudo-viscous code obtained.

" Validate the CFD model against experimental results.

* Identify the relevant quantities that can be related to the unstart mechanism.

* Investigate the actuator placement problem in order to optimize the effective-

ness of the bleed device.

" Apply optimal control directly on the state space system generated via Arnoldi-

based model-order reduction.

* Validate controller against experimental results.
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* Investigate piecewise-linear model-order reduction to account for nonlinear ef-

fects such as shock motion.
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