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Abstract— In this paper, we propose a high-precision pose
estimation algorithm for systems equipped with low-cost inertial
sensors and rolling-shutter cameras. The key characteristic of
the proposed method is that it performs online self-calibration
of the camera and the IMU, using detailed models for both
sensors and for their relative configuration. Specifically, the
estimated parameters include the camera intrinsics (focal
length, principal point, and lens distortion), the readout time
of the rolling-shutter sensor, the IMU’s biases, scale factors,
axis misalignment, and g-sensitivity, the spatial configuration
between the camera and IMU, as well as the time offset
between the timestamps of the camera and IMU. An additional
contribution of this work is a novel method for processing the
measurements of the rolling-shutter camera, which employs an
approximate representation of the estimation errors, instead of
the state itself. We demonstrate, in both simulation tests and
real-world experiments, that the proposed approach is able
to accurately calibrate all the considered parameters in real
time, and leads to significantly improved estimation precision
compared to existing approaches.

I. INTRODUCTION

In this work we address the problem of pose estimation

using a low-cost inertial measurement unit (IMU) and a

rolling-shutter camera. In recent years, the combination of

cameras and inertial sensors has emerged as an attractive

solution for 3D pose estimation. This is in large part due to

the development of low-cost MEMS inertial sensors, which

are suitable for use in systems where cost, weight, and

power consumption are constrained. The combination of

these sensors with low-cost cameras can lead to versatile,

inexpensive localization systems, with applications in both

robotics (e.g., micro aerial vehicles) and other areas (e.g.,

navigation aids for the visually impaired). Our interest in

the use of a rolling-shutter camera is motivated by the fact

that, in most cases, low-cost cameras employ rolling-shutter

imagers.

Our main focus in this paper is on the detailed modeling

and calibration of the sensors used for pose estimation, a

prerequisite for high-quality state estimates. In prior work,

the sensors’ intrinsic characteristics, relative spatial con-

figuration, and timing, are often calibrated by a combina-

tion of offline and online methods. On the one hand, the

camera’s intrinsic parameters are typically estimated offline

via a specialized calibration process. On the other hand,

the IMU’s biases are typically estimated online, since their

values usually drift over time. High-precision visual-inertial

estimators sometimes calibrate additional parameters online,

such as the camera-to-IMU transformation [1]–[4] or the

time-offset that exists between the timestamps of the IMU

and the camera [5].

The existing approaches have certain shortcomings. First,

performing offline camera calibration is an often tedious

process, which should be repeated periodically, since me-

chanical shocks and other factors can lead to changes in

the camera parameters over time. Moreover, we note that,

even if high-quality offline calibration is performed, the

existence of some uncertainty in the camera parameters is

inevitable. Treating the computed values as known constants

(the standard approach) leads to unmodeled errors, which

degrade the accuracy and reliability of any estimator. Finally,

in existing approaches some of the non-ideal characteristics

of IMUs (e.g., misalignment between the sensor axes, non-

unit scale factors) are typically ignored. However, in low-cost

MEMS IMUs these effects are likely to be significant, and

ignoring them will reduce accuracy.

To address these limitations, in this paper we present a

method for pose estimation and concurrent self-calibration

that uses high-fidelity models for both the camera and the

IMU. Specifically, we are interested in pose estimation in

an unknown environment, using inertial measurements and

observations of naturally-occurring features tracked by the

rolling-shutter camera. We do not use any fiducial points

or other knowledge about the structure of the scene. We

demonstrate that, in this setting, it is possible to concurrently

localize and perform online calibration of all of the following

quantities:

• the IMU biases

• the misalignment and scale factors of the IMU sensors

• the acceleration dependence (typically called g-

sensitivity) of the gyroscope measurements

• the camera-to-IMU spatial configuration

• the camera intrinsic parameters, including lens distor-

tion

• the image readout time of the rolling-shutter camera

• the time offset between the timestamps of the camera

and the IMU

We note that the use of a rolling-shutter camera, as

opposed to a global-shutter one, requires special treatment:

with a rolling-shutter camera each image row is captured at a

slightly different time instant, and therefore, from a different

camera pose. Since including in the estimator one state for

each image row (the “exact” approach) is computationally

intractable, all existing methods employ some assumption

about the nature of the camera trajectory (see, e.g., [6]–

[8]). By contrast, our approach employs no assumptions

on the form of the camera trajectory itself. Instead, it uses

an approximate representation for the time-evolution of the



estimation errors during the image readout time. Since these

errors are typically small, this leads to only small modeling

inaccuracies. Moreover, since the statistical properties of the

errors are known in advance, we can compute upper bounds

on the worst-case magnitude of these modeling errors.

This novel treatment of the rolling-shutter measurements

is employed in conjunction with an extended Kalman filter

(EKF)-based estimator. This EKF includes in its state vector

all the calibration parameters described, in addition to the

“standard” states needed for pose estimation (e.g., position,

velocity, orientation, and feature positions). Through both

Monte-Carlo simulations and real-world experiments we

demonstrate that all the calibration parameters can be es-

timated with high precision. More importantly, however, our

results show that jointly estimating the camera motion and all

the calibration parameters leads to significant improvement

in localization accuracy, compared to previous approaches

that perform online estimation of only a subset of parameters.

II. RELATED WORK

To the best of our knowledge, the topic of joint self-

calibration of visual and inertial sensors has not been ad-

dressed in the past. In what follows, we discuss relevant

approaches, divided into three categories:

a) Camera calibration: In the vast majority of cases, real-

time vision-based localization algorithms assume that the

camera’s intrinsic parameters are known in advance, e.g.,

via an offline calibration (see [9] for a comprehensive re-

view of calibration methods). Camera self-calibration is also

possible. In [10] the authors present an online approach to

self-calibration, which employs a Sum-of-Gaussians filter for

visual SLAM. However, this is a vision-only approach, and

thus IMU calibration is not addressed.

For a rolling-shutter camera, in addition to the geometry

of the camera’s projection model (e.g., focal length, principal

point, lens distortion) one must also know the image readout

time, i.e., the time needed to capture all the rows of the

image. Calibrating this readout time is a much less studied

issue. The approaches presented to date are offline ones,

and require knowledge about the properties of the scene

(e.g., a known calibration pattern in [8], or a LED flashing

at a known frequency in [11]), a special motion of the

camera [12], or a combination thereof. Moreover, these

approaches require the camera’s projection geometry to be

perfectly known. By contrast, in our work both the camera

geometry and the readout time are jointly estimated online.

b) IMU calibration: Gyroscope and accelerometer measure-

ments are typically affected by biases, which are slowly

changing over time. The majority of high-precision vision-

aided inertial navigation algorithms model these biases, and

estimate them online along with the system motion (see.,

e.g., [1], [2], [13] and references therein). However, the

misalignment of the IMU axes, IMU scale factors, and the g-

sensitivity of the gyroscope measurements are typically not

estimated online. Most often these effects are assumed to be

negligible (realistic for high-end, expensive, sensors), while

offline calibration methods have also been employed [14],

[15]. Our approach removes the need for offline calibration,

by estimating all the above systematic errors online.

We note that methods for high-precision IMU calibra-

tion using a camera are presented in [16], [17]. In these

works, a camera with known intrinsic parameters is used,

in conjunction with a known calibration pattern. The visual

measurements of known landmarks are then used in bundle

adjustment [16] or in an EKF [17], to estimate the IMU

characteristics as well as the transformation between the

camera and IMU frames. Compared to these methods, the

self-calibration approach we describe jointly estimates the

IMU and camera parameters, without known scene structure.

c) Camera-IMU calibration: The estimation of the spatial

and the temporal relationship between the IMU and camera

data streams has been the subject of a number of recent

papers. Most work has focused on estimating the transfor-

mation (i.e., rotation and translation) between the camera

and IMU frames (see, e.g., [1]–[4] and references therein),

while the temporal calibration between the camera and IMU

is a less-explored topic [5], [18]. In all cases, however,

the intrinsic parameters of the camera are perfectly known,

and simplified (bias-only) models for the IMU are used. By

contrast, in this work we employ detailed models both the

camera and the IMU, whose parameters are estimated online,

along with the spatial and temporal relationship between two

sensors.

III. ESTIMATOR FORMULATION

Consider a system equipped with a rolling-shutter camera

and an IMU consisting of a 3-axis accelerometer and 3-axis

gyroscope. Our goal is to concurrently estimate the state of

the system with respect to a global coordinate frame {G}
and all the parameters of the two sensors’ models. To track

the motion of the system we affix to it a “body” coordinate

frame, {B}, and track the motion of this frame with respect

to {G}. The origin of the body frame is chosen as the

point where the three accelerometer axes intersect, while

its orientation is determined based on the camera frame,

{C}. Specifically, we define the rotation of {B} with respect

to {C} to be a known, constant matrix1 C
BR. The specific

value of C
BR can be selected at will. For instance, it can be

chosen as the identity matrix for simplicity, or set equal to

the prior estimate of the camera-to-IMU rotation, so that the

axes of {B} are “close” to axes of the IMU sensors. In our

implementation we use the latter.

A. Hybrid EKF

The state of the body frame is described by the orienta-

tion B
Gq̄, position GpB , and velocity GvB . The EKF-based

estimator that we employ to track this state is a modifi-

cation of the “hybrid” filter originally proposed in [19]. It

combines a sliding-window formulation with a feature-based

1If we chose the orientation of {B} independently of both the IMU
and the camera, we would need to estimate both the orientation of {C},
and the IMU sensors’ directions (which are uncertain due to potential
misalignment) with respect to {B}. This can be shown to introduce
unidentifiable parameters in the system model. Alternative choices exist to
avoid this problem, such as aligning one axis of {B} with one axis of the
IMU [16]. However, that leads to more complex measurement models.



Algorithm 1 Hybrid EKF algorithm

Propagation: Propagate the state vector using the IMU

readings, and the covariance matrix using (4).

Update: When camera measurements become available:

• Augment the sliding window with a new state, and begin

image processing.

• For each feature track that is complete after m or fewer

images, do the following

– Triangulate the feature using all its observations.

– Compute the feature-reprojection residuals (11) and

their Jacobians (13), and apply the method of [20]

to marginalize out the feature error.

– Perform a Mahalanobis-distance gating test.

• For the features included in the state vector, compute

the residuals (11) and measurement Jacobians (13).

• Perform an EKF update using all the feature residuals.

• Initialize into the state vector features that are still

actively tracked after m images.

State Management:

• Remove SLAM features that are no longer tracked.

• Remove all sliding-window states that have no active

feature tracks associated with them.

one, and is able to exploit the computational advantages of

both formulations. The resulting hybrid algorithm has a low

computational cost, and is capable of real-time operation in

devices with limited CPU capabilities, as demonstrated in

our experiments. We here briefly describe the structure of

the estimator (see Algorithm 1), and refer the reader to [19]

for further details. Subsequently, in Sections IV and V we

present the IMU and camera measurement models used in

the estimator to enable the online sensor calibration.

The state vector of the EKF at time-step k is given by2:

xk =
[

xT
Ek

xT
c xT

B1
· · · xT

Bm
fT1 · · · fTs

]T
(1)

where xEk
is the “evolving state”, comprising the current

body-frame state as well as the time-varying IMU biases,

defined in (3); xc is the vector of parameters we seek to

calibrate, defined in (10); the states xBj
, j = 1 . . .m, are

the body states corresponding to the time instants the past

m images were recorded; and fi, i = 1..s, are the currently

visible features, in inverse-depth parameterization.

When an IMU measurement is received, it is used to

propagate the evolving state and covariance. On the other

hand, when a new image is received, the sliding window of

states is augmented with a new state. Note that each image is

sampled over a time interval of non-zero duration (the rolling

shutter readout time). By convention, we here consider that

2Notation: The preceding superscript for vectors (e.g., G in Ga) denotes
the frame of reference with respect to which quantities are expressed. X

Y
R

is the rotation matrix rotating vectors from frame {Y } to {X}, and X
Y
q̄ is

the corresponding unit quaternion [21]. XpY represents the origin of frame
Y with respect to frame X . I represents the identity matrix, and 0 the zero
matrix. Finally, â is the estimate of a variable a, and ã

.
= a− â is the error

of the estimate.

the timestamp associated with each image corresponds to

the time instant the middle row of the image is captured.

Therefore the state corresponding to each image in the filter

represents the body-frame state at that time instant.

Point features are extracted and matched in the images,

and the resulting feature tracks are processed in one of two

ways: if a feature’s track is lost after m or fewer images, it is

used to provide constraints involving the poses of the sliding

window and the calibration parameters. For this purpose, the

multi-state-constraint method of [3], [20] is employed, which

makes it possible to use the feature measurements without

including the feature in the EKF state vector. On the other

hand, if a feature is still being tracked after m frames, it is

initialized in the state vector and any subsequent observations

of it are used for updates as in the EKF-SLAM paradigm.

At each time step, the hybrid filter processes a number of

features with each of the two approaches. For each feature

the appropriate residuals and Jacobian matrices are com-

puted, and a Mahalanobis-distance gating test is performed.

All the features that pass the gating test are then employed for

an EKF update. At the end of the update, features that are no

longer visible and old sliding-window states with no active

feature tracks associated with them are removed. Note that,

to ensure the correct observability properties of the linearized

system model, and thus improve the estimation accuracy

and consistency, the hybrid filter employs fixed linearization

points for computing Jacobian matrices [3].

IV. IMU MODEL AND STATE PROPAGATION

Due to the physical characteristics of the sensors, as well

as imperfections of the manufacturing process, the IMU

measurements are affected by systematic errors (in addition

to random noise). For a full description of the sources of

errors and their modeling, the reader is referred to [22].

In our work, we employ sensor models that include all the

systematic errors that can be modeled linearly and have the

most impact on precision.

Let us first consider the accelerometer measurements.

Each of the three accelerometer sensors in an IMU provides

scalar measurements of specific force, modeled as:

ami
= si

BuT
i

Bas + bai
+ nai

i = 1, 2, 3 (2)

where Bui is a unit vector along the sensing direction, si
is a scale factor close to unity, bai

is a bias, nai
is random

measurement noise, and Bas is the specific-force vector:

Bas =
B
GR(GaB − Gg)

with GaB being the acceleration of the body frame and Gg

being the gravity vector. Stacking the measurements of the

three accelerometer sensors, we obtain the 3×1 vector:

am = Ta
Bas + ba + na

where Ta is a 3×3 matrix whose i-th row is si
BuT

i , and ba

and na are vectors with elements bai
and nai

, respectively.

The gyroscope measurements are modeled as:

ωm = Tg
B
ω +Ts

Bas + bg + nw

where Tg and Ts are 3×3 matrices, bg is the measurement

bias, and nw the measurement noise. Similarly to the case of



the accelerometer measurements, Tg arises due to the scale

factors in the gyroscope measurements and the misalignment

of the gyroscope sensors to the principal axes of {B}. On

the other hand, the matrix Ts represents the acceleration

dependence (g-sensitivity) of the measurements, which can

be significant for low-cost MEMS sensors [22].

Our goal is to estimate the values of the accelerometer

and gyroscope bias, as well as the matrices Ta, Tg , and

Ts. We note that by estimating the matrices Ta and Tg ,

we are effectively estimating the IMU sensors’ scale factors,

the sensors’ misalignment, and their direction with respect

to the camera frame. Specifically, the scale factors of the

accelerometer and gyroscope sensors are given by the norm

of the rows of Ta and Tg , respectively, while the sensors’

direction in {B} is defined by the unit vector corresponding

to each row (see (2)). Knowing these unit vectors makes

it possible to estimate the misalignment of the sensors.

Moreover, since the rotation between the camera frame and

{B} is by definition a known constant, these unit vectors

also provide us with the direction of the IMU sensors with

respect to {C}.

Following standard practice, the bias vectors ba and bg

are modeled as Gaussian random-walk processes, while the

matrices Ta, Tg , and Ts are assumed to be uncertain but

constant parameters3. Therefore, the evolving state of the

EKF, xE , is given by:

xE =
[

B
Gq̄

T GpT
B

GvT
B bT

g bT
a

]

(3)

On the other hand, the matrices Ta, Tg , and Ts are part of

the calibration-parameter vector xc (see (1)). Specifically, we

define a 27×1 vector xcIMU
, comprising all the elements of

these three matrices, and include it in xc, as shown in (10).

1) IMU-based propagation: The IMU measurements are

used for propagating the state estimates between timesteps.

Specifically, given the IMU measurements in a certain time

interval, as well as estimates for the IMU parameters, we

compute the estimated acceleration and rotational velocity

of the body frame as:

Bâs = T̂−1
a

(

am − b̂a

)

B
ω̂ = T̂−1

g

(

ωm − T̂s
Bâs − b̂g

)

These are subsequently be used to propagate the estimate

of the evolving state via numerical integration, as described

in [3]. Moreover, the covariance matrix of the EKF is

propagated. For this step, we first compute the Jacobian

matrices Φk and Γk, which describe the relationship between

the evolving-state errors in propagation:

x̃Ek+1
= Φkx̃Ek

+ Γkx̃cIMU
+wk

where wk is the process-noise error, modeled as zero-mean

Gaussian with covariance matrix Qk. The matrices Φk and

Γk are computed analytically, similarly to [3]. Based on the

3Note that, if desired, it is straightforward to also model Ta, Tg , and
Ts by random-walk models. This however was not deemed necessary for
the sensors used in our testing.

above expression, the covariance matrix of the EKF, Pk, is

propagated as

Pk+1=





Φk Γk 0

0 I 0

0 0 I



Pk





Φk Γk 0

0 I 0

0 0 I





T

+Diag(Qk,0)

(4)

V. CAMERA MODEL

Let us consider that an image with timestamp t is received.

Due to the time delays inevitably affecting each sensor, this

timestamp is affected by a time offset, td, relative to the IMU

timestamps [5]. This means that the middle row of the image

was actually captured at time t+ td. Moreover, since we are

using a rolling-shutter camera, each of the N rows in the

image is captured at a slightly different time instant. If the

camera readout time is tr, these time instants are given by:

tn = t+ td +
ntr

N
, n ∈

[

−
N

2
,
N

2

]

If a feature with position Gpf is observed at the row sampled

at tn, its image coordinates are described by:

z = h(Cpf (tn)) + n (5)

where Cpf (tn) is the position of the feature with respect to

the camera frame at time tn, n is the measurement noise

vector, and h(·) is the camera’s projection function. The

vector Cpf (tn) can be written as:

Cpf (tn) =
C
BR

B
GR(tn)

(

Gpf − GpB(tn)
)

+ CpB (6)

where CpB is the position of the origin of {B} in the

camera frame, which must be estimated. Moreover, the

camera projection is modeled by the standard perspective

model with radial and tangential distortion [23]. Denoting
Cpf (tn) = [Cxf

Cyf
Czf ]

T , we have:

h
(

Cpf

)

= pc +

[

au 0
0 av

] [

ud

vd

]

(7)

where pc is the pixel location of the principal point, au and

av represent the camera focal length measured in horizontal

and vertical pixel units, respectively, and
[

ud

vd

]

=d

[

u

v

]

+

[

2t1uv + t2(u
2 + v2 + 2uv)

t1(u
2 + v2 + 2uv) + 2t2uv

]

(8)

d = 1+ k1(u
2 + v2) + k2(u

2 + v2)2 + k3(u
2 + v2)3

[

u

v

]

=
1

Czf

[

Cxf
Cyf

]

(9)

In the above, ki, i = 1, 2, 3 are the radial distortion coeffi-

cients, while t1, t2 are the tangential distortion coefficients.

We can now define the 41 × 1 vector containing all the

calibration parameters estimated in the EKF, which includes

all the parameters appearing in the IMU and camera models:

xc=
[

xT
cIMU

CpT
B pT

c au av k1 k2 k3 t1 t2 tr td
]T

(10)

The estimation of these parameters proceeds as normal in

an EKF, by computing the Jacobians of the measurement

models with respect to them, and updating their estimates

during EKF updates. In this process, the uncertainty of the



calibration parameters as well as the effect of this uncertainty

on the state estimates, is modeled in a seamless way via the

EKF equations.

A. Rolling-shutter modeling

We now show how the measurements of the rolling-

shutter camera can be processed. It is important to note

that, as seen in (6), the feature measurements at different

rows (i.e., different n) in one image depend on body-frame

states at different time instants. Since it is impractical to

include in the state vector all these states, previous ap-

proaches typically employ assumptions about the nature of

the motion during the image readout time (e.g., constant-

velocity motion [6], [7], or higher-order parametric forms [8],

[24]). However, low-dimensional models may lead to loss of

modeling fidelity, while high-dimensional models incur high

computational costs.

We here follow a different approach. Specifically, we begin

by observing that in any EKF-based estimator the processing

of the feature measurements requires (i) the residual of

each measurement, and (ii) a linear (linearized) expression

describing the dependence of this residual on the errors of the

EKF state vector. The key idea in our approach is to employ

no assumptions on the form of the trajectory when computing

the residual, by exploiting the IMU measurements. Instead,

we employ an approximate representation for the trajectory

errors when linearizing. We express the errors during the

entire readout interval as a function of the error in the

state at middle of the interval. This, in turn, allows us to

only include this one state in the EKF sliding window,

obtaining a computationally efficient algorithm. These steps

are described in more detail in what follows.

Computing the residual: The residual corresponding to the

feature measurement (5) is defined as:

r = z− h
(

C
BR

B
GR̂(t̂n)

(

Gp̂f − Gp̂B(t̂n)
)

+ C p̂B

)

(11)

where t̂n = t+t̂d+
nt̂r
N

. Note that, as described in Section III,

the EKF state vector only contains an estimate for the body

state at the time instant the middle row of the image is

captured, x̂B(t+ td). Therefore, the quantities B
GR̂(t̂n) and

Gp̂B(t̂n) appearing in (11) are not readily available. To

obtain them, we integrate the IMU measurements in the

time interval [t + t̂d, t̂n], starting from x̂B(t + t̂d) (note

that backward integration may be necessary). Since we are

employing direct integration of the IMU measurements to

compute x̂B(t̂n), arbitrary motions can be described as long

as they are within the bandwidth of the IMU, and no low-

dimensional motion model is needed.

Residual linearization: To derive an expression relating the

residual in (11) to the errors in x̂B(t + t̂d), we begin by

linearizing the camera observation model in (11), to obtain:

r ≃ Hθθ̃B(t̂n) +Hp
Gp̃B(t̂n) +Hcx̃c +Hf f̃ + n (12)

where Hθ and Hp are the Jacobians of the measurement

function with respect to the orientation and position at time

t̂n, Hf is the Jacobian with respect to the feature position,

and Hc is the Jacobian with respect to xc. For details on the

definition of the orientation error, θ̃B , and the computation

of the time-related Jacobians, please refer to [5].

Since (12) involves the errors of quantities at time t̂n,

which do not appear in the EKF state, it cannot be used

directly for an EKF update. We therefore proceed to express

the errors at t̂n as a function of the errors at t+ t̂d. Starting

with the position error, and using Taylor-series expansion,

we obtain:

Gp̃B(t̂n) =
Gp̃B(t+ t̂d)+

nt̂r

N
GṽB(t+ t̂d)+

(nt̂r)
2

2N2
GãB+. . .

This expression would be exact if all terms were kept,

but with a finite number of terms a truncation error is

incurred. The key advantage here is that, since we have prior

knowledge about the magnitude of the estimation errors, we

can predict the worst-case modeling error incurred by any

choice of truncation order. For example, if we only keep the

first two terms, then the truncation error in each direction

is upper bounded by
(ntr)

2

2N2 ǫa where ǫa is the worst-case

acceleration error. Using ǫa = 2 m/sec2 (which is larger than

any value seen in practice in our tests) and tr = 33 msec,

the truncation error is upper bounded by 6.9×10−5 m along

each axis. For the characteristics of the camera used in

our experiments, this translates to a worst-case unmodelled

residual term of 0.08 pixels, when imaging objects at a depth

of 2 m.

Thus if we model the position error using two terms, as

Gp̃B(t̂n) ≃
Gp̃B(t+ t̂d) +

nt̂r

N
GṽB(t+ t̂d)

we only incur a minimal loss of modeling accuracy. A similar

analysis for the orientation errors shows that even if we

truncate the corresponding series after a single term, by using

the approximation θ̃B(t̂n) ≃ θ̃B(t + t̂d), the worst-case

unmodelled residual terms remain below 0.33 pixels, even

allowing for rotational velocity errors of 1 deg/sec.

Employing these approximations in (12), we obtain the

following linearized equation for the measurement residual:

r ≃ Hθθ̃B(t+ t̂d) +Hp
Gp̃B(t+ t̂d) +

nt̂r

N
Hp

GṽB(t+ t̂d)

+Hcx̃c +Hf f̃ + n (13)

This expression can be used for EKF updates, as it only

involves the errors in the body state at t + t̂d, the feature,

and the calibration parameters, which are all part of the EKF

state vector.

VI. SIMULATIONS

We present results from two sets of Monte-Carlo simula-

tions demonstrating the performance the proposed algorithm.

To obtain realistic simulation setups, we generate the sim-

ulated trajectories and the IMU and camera measurements

with characteristics (e.g., noise, feature properties) matching

those of actual datasets.

First test: For the first test, we base our simulation on

a dataset involving significant rotations and translations,

while moving in a room-sized environment for a period

of 45 sec. The data was collected with the rolling-shutter

camera and the Invensense MPU-6050 IMU found on an



TABLE I: Simulations: RMS errors of the calibration parameters

Time (sec) bg (o/sec) ba (m/sec2) CpB (cm) td (msec) Tg Ta Ts (o/sec/g) au, av (pix.) pc (pix.) ki ti tr (msec)

0 0.334 0.187 0.610 9.450 0.0200 0.0200 0.216 5.146 4.941 0.082 0.0010 4.171

15 0.014 0.009 0.160 0.076 0.0007 0.0011 0.020 0.475 0.470 0.015 0.0004 0.190

45 0.013 0.007 0.110 0.062 0.0006 0.0008 0.010 0.400 0.332 0.012 0.0003 0.108
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Fig. 1: Results of a representative simulation trial: estimation errors and the reported ±3 standard deviations. (Top to

bottom, left to right) (a) gyroscope biases, (b) accelerometer biases, (c) gyroscope misalignment/scale, (d) accelerometer

misalignment/scale, (e) g-sensitivity, (f) camera-to-IMU time offset, (g) camera-to-IMU position, (h) camera focal lengths,

(i) camera principal point, (j) camera radial distortion, (k) camera tangential distortion, and (l) rolling shutter readout time.

For all vectorial parameters the least accurate element is shown.

LG Nexus 4 device. In each trial of the simulation tests,

the calibration parameters were set equal to known nominal

values, with the addition of errors drawn from zero-mean

Gaussian distributions.

Table I shows the RMS errors over 100 Monte-Carlo

simulations for all the parameters. The first line corresponds

to the initial errors, the second line to the errors after 15 sec

of motion, and the third line to the final errors. We note that

the initial RMS error values for the Ta and Tg matrices

correspond to misalignment errors with standard deviation of

approximately 1.15o and/or scale factors of 2%. These values

(as well as most of the other initial errors shown in Table I)

are larger than what we typically find in practice. From the

results of this table we can clearly observe that the proposed

online calibration approach can accurately estimate all the

desired quantities. Moreover, we note that the estimation

errors after 15 seconds are significantly smaller than the

initial ones, and almost as same as the final errors, indicating

quick convergence.

It is also useful to examine the results of a single rep-

resentative trial, shown in Fig. 1. These plots show the

estimation errors and ±3 standard deviations reported by the

filter for all the calibration parameters. Due to the limited

space, for the vector parameters (e.g., biases, the Ta, Tg ,

Ts matrices, and so on) we only plot the least accurate

element. These figures also demonstrate the rapid reduction

in uncertainty, and show that the uncertainty reported by

the EKF is commensurate with the actual errors, indicating

consistency [3]. It is important to note that the results

of both Fig. 1 and Table I suggest that, with sufficiently



TABLE II: Initial standard deviation of the calibration pa-

rameters in the second set of simulations

Tg Ta Ts (o/sec/g) au, av (pix.)

0.0058 0.0058 0.169 0.350

pc (pix) ki ti tr (msec)

0.450 0.01 0.001 0.500

TABLE III: Second simulation: RMS errors of pose estima-

tion

B
Gq̄ (o) GpB (m) GvB (m/sec)

Full calibration 0.468 0.619 0.027

Partial calibration 2.045 2.914 0.092

exciting motion, the calibration parameters are observable

(identifiable), a result that we currently seek to prove.

Second test: We now present the results of a second set of

simulations, which demonstrates the improvement in perfor-

mance gained by using high-fidelity IMU models and online

calibration. We compare the proposed approach that uses full

self-calibration against a “partial calibration” approach, in

which only the IMU biases, camera-to-IMU calibration, and

the time offset between the camera and IMU is estimated

(similarly to [5]). In both cases, the IMU and camera are af-

fected by small calibration errors, whose standard deviations

are shown in Table II. Note that the chosen values for Ta and

Tg correspond to scale factors of less than 1% and/or axis

misalignment of approximately 0.3 degrees (these are similar

to or smaller than the values we encountered in practice for

MEMS sensors). Moreover, the camera parameters’ errors

are similar to what we obtain with offline calibration.

We conducted 100 Monte-Carlo tests, generated based on

a 6-minute, 400-m long dataset. In each trial the calibration

parameters are corrupted by random errors, drawn from zero-

mean Gaussian pdfs with the standard deviations given in

Table II. Table III shows the RMS error for the position,

orientation, and velocity, in the case of full calibration (the

proposed approach) vs. partial calibration. We can clearly

observe a significant difference in accuracy in all state

variables. Moreover, we should point out that the partial-

calibration approach failed in 15% of the trials, due to the

presence of unmodeled errors (the results of the failed trials

are not included in the calculations). By properly modeling

the uncertainty of the calibration, the proposed approach

is more robust to the presence of errors (no simulation

trials failed for the full-calibration approach). We thus see

that by using high-fidelity models of the IMU and camera,

and performing online estimation of the model parameters,

we are able to obtain better precision as well as increased

reliability of the estimator.

VII. REAL-WORLD EXPERIMENT

We next present results from a real-world experiment,

which was conducted using the sensors of a Nexus 4 de-

vice. The experiment involves motion in three floors of the

UCR Engineering building, by a person holding the device.

The total duration of the experiment is 9.8 min and the

trajectory length is approximately 633 m. The IMU sample

−150

−100

−50

0

0204060

−5

0

5

y (m)x (m)

z
 (

m
)

Fig. 2: Real world experiment: Estimated trajectory. The red

mark represents the initial position, while the green mark

represents the end position.
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Fig. 3: Real world experiment: Orientation and position

uncertainty (3σ) reported by the EKF during the experiment.

The plotted values correspond to the major axis of the

uncertainty ellipses. Note the sharp drop in the initial orien-

tation uncertainty, which occurs as the calibration parameters

become more certain during the first few seconds.

rate is 200 Hz, while the images are captured at 22 Hz

(sample images are shown in Fig. 4). Shi-Tomasi features

are extracted in the images [25], and matched by normalized

cross-correlation. All data was processed in real-time on the

phone, with the average time needed per EKF update being

18 msec. This time is significantly lower than the image

period, which shows that the proposed method is capable of

real-time operation.

For this experiment, prior estimates for the calibration

parameters are obtained as follows: zero values are used for

the biases and for the g-sensitivity matrix, Ts; the priors

for Ta and Tg are set to the identity matrix; the image

readout time was set equal to the image period; the camera-

to-IMU translation prior is set to zero; the time-offset prior

was set to zero; and finally for the camera intrinsics the

calibration parameters from a different device of the same

type were used. This is done to demonstrate that even rough

information about the camera parameters can be employed



Fig. 4: Sample images recorded during the experiment.

as an initial guess for the proposed method.

Fig. 2 shows the trajectory estimated by the proposed

approach, while the reported uncertainties of the IMU orien-

tation and position are shown in Fig. 3. Although an accurate

ground truth for the entire trajectory cannot be obtained,

the final position error is equal to 1.09 m, corresponding

to 0.17% of the travelled distance. This error is commen-

surate with the reported uncertainty, indicating a consistent

estimator. Due to limited space, the complete results of the

online calibration cannot be included here, but are available

online, along with the video from the experiment [26]. We

point out that the largest misalignment of the IMU axes was

estimated as 0.85o, the maximum scale factor deviation from

unity was estimated as 1.8%, and the maximum value of

the g-sensitivity corresponds to 0.33o/sec/g. As seen in the

simulation results of the preceding section, these values are

large enough to cause significant degradation of performance,

if not properly modeled.

VIII. CONCLUSION

In this paper, we have presented an online approach to

the joint self-calibration of a rolling-shutter camera and a

low-cost IMU during vision-aided inertial navigation. Our

approach employs detailed models of the IMU, the camera

projection geometry, as well as of the relative spatial con-

figuration and timing of the sensors. Our simulation results

and experimental testing demonstrate that by including all

the parameters of the sensor models in the state vector of

the proposed EKF, it is possible to obtain precise estimates

of their values, and to improve the accuracy of the pose

estimates. These results suggest that by including all the

parameters in the state vector, the state remains observable,

and the additional parameters are identifiable in general

trajectories. A formal proof (or refutation) of this result is

the subject of ongoing work.
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