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We have performed high-field multifrequency electron spin resonance (ESR) and high-field magnetization

measurements in magnetic fields H of up to 53 T on single crystals of the kagome-lattice antiferromagnet

KFe3(OH)6(SO4)2. We have analyzed the magnetization curve and the ESR excitation modes for H‖c by using

two kinds of anisotropy origins, the Dzyaloshinsky-Moriya (DM) interactions and the single-ion anisotropy,

the former of which is inevitable in a kagome-lattice antiferromagnet. We obtained good agreement between

experiment and calculation for the case of the DM interactions. In addition, we have clarified the origin of a

field-induced metamagnetic transition observed in the magnetization curve and determined the intraplane and

interplane exchanges and the DM interaction parameters.

DOI: 10.1103/PhysRevB.85.094409 PACS number(s): 76.30.−v, 75.10.Hk, 75.50.Ee

I. INTRODUCTION

Frustrated spin systems provide a rich variety of magnetic
states, such as spin-liquid,1–3 spin-nematic,4,5 and spin-ice6,7

states. In particular, kagome-lattice antiferromagnets have
recently attracted considerable attention as highly frustrated
spin systems because the corner-sharing arrangement leads to
higher degeneracy of the ground state than the edge-sharing
arrangement in triangular lattices. The Heisenberg antifer-
romagnet on the kagome lattice with the nearest-neighbor
interactions is one of the most interesting subjects because
we expect the realization of a kind of “spin-liquid” ground
state.

In a classical limit, the ground state is expected to possess
two possible spin structures, q = 0 and

√
3 ×

√
3, both of

which satisfy the “120◦ spin structure.” Furthermore, the
classical ground state has a continuous degeneracy due to the
“weathervane” rotation of the spins, and thus no long-range
order is expected even at zero temperature.8–11 However, it has
been also shown that thermal or quantum fluctuations could
lift some of the continuous degeneracy known as “order by
disorder.” Theoretical studies for a large spin value predicted
that the ground state has the q =

√
3 ×

√
3 spin structure,

which is selected by quantum fluctuations.3 On the other
hand, for a small spin value, a disordered ground state such
as a resonating valence bond12 (RVB) state is expected to be
observed.

The number of reported experimental studies of Heisenberg
kagome-lattice antiferromagnets is not large because model
compounds are usually difficult to synthesize in single-
crystal form. Recently, some experimental results of S =

1/2 Heisenberg kagome-lattice antiferromagnet compounds,
which are [Cu3(titmb)2(OCOCH3)6]H2O,13 herbertsmithite
ZnCu3(OH)6Cl2,14–17 volborthite Cu3V2O7(OH)2·2H2O,18,19

vesignieite BaCu3V2O8(OH)2,20,21 and A2Cu3SnF12 (A = Rb,
Cs),22–24 were reported. They, however, are far from ideal
kagome-lattice antiferromagnets because of lattice distortion,
partial substitution of nonmagnetic ions, and considerably
large amounts of impurities.

By contrast with these kagome-lattice antiferromagnets,

jarosites, which have a chemical formula AM3(OH)6(SO4)2,25

where A is a monovalent cation and M is a trivalent cation,

have been considered as ideal kagome lattices. Many kinds

of jarosite compounds are listed by the combination of

A+(Na+, Rb+, Ag+, Tl+, NH+
4 , H3O+) and M3+(Fe3+, Cr3+,

V3+, Al3+, Ga3+, In3+) ions. KFe3(OH)6(SO4)2 with Fe3+

(S = 5/2), abbreviated as K-Fe-jarosite, is one of the model

compounds of a typical classical Heisenberg kagome-lattice

antiferromagnet. Magnetic susceptibilities of the K-Fe-jarosite

follow the Curie-Weiss law at high temperatures with negative

Weiss temperature � ∼ −800 K,26 indicating that the nearest-

neighbor interaction is antiferromagnetic. Neither the lattice

distortion of the kagome plane nor the partial substitution of

nonmagnetic ions has been reported and, thus, this jarosite is

regarded as one of the ideal frustrated spin systems. However,

the K-Fe-jarosite undergoes a three-dimensional (3D) long-

range order below the Neél temperature (TN) 65 K.26 The

frustration parameter f = |�|/TN is about 12, indicating that

this compound is highly frustrated.
The magnetic structure below TN was determined to be

the q = 0 spin structure with +1 spin chirality by neutron
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scattering experiments,27 where spin chiralities +1 and −1
are defined as clockwise and counterclockwise spin rotations
in the view of clockwise spin-site rotation, respectively.
High-quality large single crystals of K-Fe-jarosite, which were
made by recent development of the precipitation reaction
method,28 enable us to investigate the details of kagome
physics without any assumption. In a previous study,29 mag-
netic susceptibilities and magnetization indicated the presence
of a weak ferromagnetism along the c direction. Recent
theoretical work30 showed that the Dzyaloshinsky-Moriya
(DM) interaction would induce such canting moments, and
the magnetic structure of the K-Fe-jarosite could be explained
by the DM interactions. A neutron research using a single
crystal of K-Fe-jarosite31 provided details of spin excitations.
Spin-wave excitations were observed in the inelastic neutron
scattering experiments.

As already mentioned, the K-Fe-jarosite forms an ideal
kagome lattice, which remains undistorted down to suffi-
ciently low temperatures. There are few previous reports
of the experiments on a single crystal of a kagome-lattice
antiferromagnet.29,31 This paper provides an in-depth study on
a classical Heisenberg kagome-lattice antiferromagnet using
a single crystal. ESR is mostly useful for evaluating the
perturbation parameters such as the DM interaction, which
inevitably results from the symmetry of the kagome lattice.
Thus, it is important to evaluate the DM components from
experiment because the magnitude of the DM interaction is
key to understanding the nature of the K-Fe-jarosite kagome-
lattice antiferromagnet. We performed magnetization and ESR
measurements in magnetic fields of up to about 50 T with
pulsed magnets.

In a previous paper,29 magnetic phase transition was
observed near TN and was not observed at low temperatures
because of the limit of magnetic field. The successive paper32

reported the results of high-field magnetization at sufficiently

low temperatures. Since the combination of high-field magne-
tization and ESR results enables us to determine the physical
parameters precisely, we have performed magnetization mea-
surements at 4.2 K in high magnetic fields at our high magnetic
field laboratory.

The paper is organized as follows. In Sec. II, crystal
structures of K-Fe-jarosite and experimental methods are
described. Then, experimental results of magnetization and
ESR measurements are reported in Sec. III, followed by their
analyses assuming two kinds of anisotropy origins in Sec. IV.
We discuss how to determine the parameters and the validity.
The observed magnetic structure in K-Fe-jarosite is discussed
with a theory including the DM interaction in a classical
kagome-lattice antiferromagnet. The final section is devoted
to the conclusion.

II. EXPERIMENT

A. Crystal structure

A single-crystal sample (∼2 × 2 × 0.5 mm3) of K-Fe-
jarosite used in this study was prepared by a redox-based
hydrothermal method. The details of the single-crystal syn-
thesis were reported in Refs. 28 and 29. The K-Fe-jarosite
belongs to a rhombohedral system with R3̄m symmetry, and
lattice constants are a = b = 7.30 Å and c = 17.09 Å at
room temperature.33 The crystal structure consists of kagome
layers of Fe3+ ions in the ab plane. These planes stack
along the c axis, separated by nonmagnetic layers of SO2−

4

and K+, as shown in Fig. 1(a). As depicted in Fig. 1(b),
the Fe3+ ions are coordinated with two oxygen atoms from
SO2+

4 and four oxygen atoms from OH− ions to form slightly
distorted octahedrons. Such anisotropic structure suggests that
K-Fe-jarosite has stronger interactions in the layers than those
along the c axis. Figures 1(c) and 1(d) indicate two types
of arrangements of FeO6 octahedron in this compound. The

FIG. 1. (Color online) (a) Crystal structure of K-Fe-jarosite. Hydrogen atoms are omitted for clarity. Fe3+ ions form a kagome lattice in the

ab plane. (b) Arrangement of triangles in the kagome lattice along the c axis and the local environment around Fe3+ ions. The kagome Fe3+

layers are separated by planes of nonmagnetic K+ and SO2−
4 ions. (c) and (d) Arrangement of the FeO6 octahedron in the nearest triangular

layers along the c axis. The principal axis of the octahedron is tilted from the c axis, and the tilting directions of the octahedron in (c) and (d)

are opposed to each other.
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tilting directions of the octahedron on each triangle against the
c axis change alternatively with the layers along the c axis.

B. Experimental methods

Pulsed field ESR measurements were conducted in mag-
netic fields (H ) of up to 53 T at temperatures between
1.3 and 300 K by using our pulsed field ESR apparatus
equipped with a nondestructive pulse magnet, a far-infrared
laser (Edinburgh Instruments, FIRL100), several kinds of
Gunn Oscillators, which cover the frequency range between
50 GHz and 2 THz, and an InSb detector (QMC Instruments).
The ESR measurements at 1.6 K and frequencies below
500 GHz in static magnetic fields of up to 14 T were also
performed by utilizing a superconducting magnet (Oxford
Instruments) and a vector network analyzer (AB millimetre,
MVNA). High-field magnetization measurements at 4.2 K
in pulsed magnetic fields of up to 53 T were carried out
with a nondestructive pulse magnet. The magnetization was
measured with an induction method using a pick-up coil. The
magnetization at 4.2 K in a magnetic field of up to 7 T was also
measured with a superconducting quantum interference device
(SQUID) magnetometer (Quantum Design, MPMS-XL7) for
the correction of magnetization measured in pulsed magnetic
fields. All the experiments were carried out at KYOKUGEN
in Osaka University.

III. EXPERIMENTAL RESULTS

A. High-field magnetization

Figure 2 shows a magnetization curve at 4.2 K for H‖c.
The curve with a broken line drawn by the raw data indicates a
bending with a convex curvature at low fields, which is proba-
bly caused by paramagnetic impurities. Thus, we subtract the
paramagnetic contribution from the raw data, assuming the
Brillouin function for S = 5/2 with the impurity content of
∼0.4%. Then, the magnetization curve by the subtracted data

d
M

/d
H

16.816.416.0

up

down 16.44T

16.40 T

16.816.416.0

up

down

16.40 T

µ0H (T)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ag

n
et

iz
at

io
n

   
(µ

B
/F

e3
+
)

50403020100

Magnetic field (T)

  Raw data   
 Subtracted data   

H//c
T= 4.2 K

FIG. 2. (Color online) Magnetization curve of K-Fe-jarosite at

4.2 K for H‖c (field descending process). Broken and solid lines are

the raw magnetization curve, and the magnetization subtracted the

contribution of paramagnetic impurity from the raw data, respectively.

The inset shows the field derivative of the magnetization at 4.2 K for

H‖c.

increases almost linearly with increasing field as shown with
a solid line in Fig. 2. A steep increase, which corresponds to
the magnetic transition reported previously,29,32 is observed
at about 16 T. This abrupt increase of the magnetization is
believed to result from a change from antiferromagnetically
aligned canted moments along the c axis to ferromagnetically
aligned ones. The inset of Fig. 2 shows the field derivative
of magnetization curve (dM/dH ) observed at 4.2 K for H‖c.
The dM/dH shows a distinct peak around Hc = 16.4 T, which
we define as the critical field (Hc). Since there is a hysteresis
near Hc, this magnetic transition must be a first-order phase
transition.

B. High-field ESR

Figures 3(a) and 3(b) show the frequency dependence of
the ESR absorption spectra for H‖c at 1.6 K in static magnetic
fields and those at 1.3 K in pulsed magnetic fields, respectively.
We observed some broad resonance signals indicated by the
arrows and some sharp anomalies indicated by the open circles.
All the resonance fields are plotted in the frequency-field
plane as shown later in Figs. 6(b) and 8(b). We detected ESR
modes with zero-field gaps of about 1600 and 350 GHz. The
energy branches with the zero-field gaps were observed in the
previous neutron scattering experiments.31 We conclude that
the observed ESR modes correspond to the excitation modes
at the Ŵ point.

IV. ANALYSES

A. Dzyaloshinsky-Moriya model

First, we analyze the frequency dependence of the ESR
resonance fields and the magnetization curve, both for H‖c
orientation. In this task, we use the following spin Hamiltonian,
which we call the DM model Hamiltonian because of the
inclusion of the DM term as the anisotropy origin

H = J
∑

〈ij〉

Si ·Sj + J⊥
∑

〈lm〉

Sl ·Sm

+
∑

〈ij〉

dij ·Si × ·Sj − gμB

∑

i

Si ·H, (1)

where J is the nearest-neighbor exchange constant in the ab

plane,
∑

〈ij〉 the summation over pairs of the nearest-neighbor

spins, Si S = 5/2 spin operator of Fe3+ at i site, J⊥ the
interplane exchange constant,

∑

〈lm〉 the summation over pairs
of the nearest-neighbor spins along the c axis, dij the DM
vector between i- and j-site spins, g the g value of Fe3+

spin, μB the Bohr magneton, and H the external magnetic
field. When the magnetic ions form a kagome lattice, the
DM interaction is imperative because of no inversion center
between the neighboring sites. The direction of the DM vector
is constrained and follows the rules described by Moriya.36

The DM vectors exist in the mirror plane between the nearest
i and j sites in the kagome lattice as shown in Fig. 4. Here, we
divide the DM vector into two components: dp, the in-plane
component, and dz, the z component parallel to the c axis.

Elhajal et al.30 and Yildirim et al.37 discussed the DM
interaction in a jarosite. The directions of the DM vectors
are different in these reports. However, the definitions of
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FIG. 3. (Color online) Frequency dependence of (a) ESR absorp-

tion spectra of K-Fe-jarosite for H‖c at 1.6 K in static magnetic fields

and (b) those at 1.3 K in pulsed magnetic fields. The arrows, inverted

triangles, and circles indicate intrinsic ESR signals, paramagnetic

signals from impurities, and a baseline anomaly caused by the

magnetic transition, respectively.

the DM vectors are essentially identical. In this paper, we
analyzed the experimental results based on Elhajal’s definition,
which is different from the definitions in Ref. 32. Elhajal
et al. discussed theoretically the effects of dz and dp for
a classical Heisenberg kagome-lattice antiferromagnet using
a mean-field approximation and a classical Monte Carlo
simulation. They argued that the dz acts to create an easy-plane
anisotropy. The coplanar magnetic structure is realized when
this component exists, and the direction of the chirality vector

FIG. 4. (Color online) Dzyaloshinsky-Moriya (DM) vector (thick

green vector) and spin-canted state (red vectors) in K-Fe-jarosite. The

DM vector exists in the mirror plane between i and j sites. The green

thin vectors indicate projective components of the DM vector to

kagome plane (dp) and to the c axis (dz).

is determined by the sign of dz. Accordingly, dz > 0 and dz < 0
stabilize positive and negative chirality, respectively. In the
K-Fe-jarosite, the q = 0 structure with positive chirality was
observed in powder neutron diffraction,26 thus dz > 0 acting
on this system. Elhajal et al. also discussed that all the spins
have a weak c-axis component when dp is nonzero, resulting in
a weak ferromagnetism and no global rotational degeneracy.
Accordingly, magnetic behavior of the K-Fe-jarosite at low
temperatures seems to be described by the DM interaction.
Therefore, we carried out first the analyses by taking into
account the DM interaction. It is, however, impossible to
explain the arrangement of the spins along the c axis and
magnetic transition found in the magnetization curve merely
considering the intraplane exchange and the DM interactions.
Hence, the weak ferromagnetic interlayer coupling J⊥ is
required for the analysis as indicated in Eq. (1). This term
forces the spins to align in such a way that canted moments
on two adjacent layers are directed opposite of each other,
and the competition between the Zeeman energy and weak
ferromagnetic interlayer coupling causes the spins on the
alternating layers to rotate 180◦.32 As shown in Fig. 5, the
spin structure below Hc can be described by a six-sublattice
model, and the spin structure above Hc can be described by a
three-sublattice model. Then, the free energy F is expressed
by the following form using a mean-field approximation:

F = A
∑

〈ij〉

Mi ·Mj + B
∑

〈lm〉

Ml ·Mm

+
∑

〈ij〉

dtij ·Mi × Mj −
∑

i=1

Mi ·H. (2)

Here, the coefficients and the vectors below Hc are
given by A = 12J/[N (gμB )2], B = 12J⊥/[N (gμB)2], dt ij =
12dij/[N (gμB)2], and M i = NgμB Si/6. Above Hc, they are
written as A = 6J/[N (gμB)2], B = 6J⊥/[N (gμB)2], dt ij =
6dij/[N (gμB)2], and M i = NgμB Si/3. N is the number of
magnetic ions, and M i are the magnetic moments on the ith
sublattice.

094409-4



HIGH-FIELD MULTIFREQUENCY ESR IN THE . . . PHYSICAL REVIEW B 85, 094409 (2012)

FIG. 5. (Color online) The detail of the interaction in K-Fe

jarosite. Dzyaloshinsky-Moriya (DM) vector (thick green vector) and

spin-canted state (red and blue vectors).

The magnetization curve is calculated from this free energy.
We derive the resonance conditions by solving the equation of
motion

∂ M i/∂t = γ [Mi × Hi], (3)

where γ is the gyromagnetic ratio and Hi a mean-field applied
on the ith sublattice moment given by

Hi = −∂F/∂Mi . (4)

To solve the equation of motion, we use a method applied for
ABX3-type antiferromagnets.34 Assuming precession motions
of the sublattice moments around those equilibrium directions,
we utilize the following expressions, which represent the
motion of the ith sublattice moment:

M′
i = [|Mi |,�Miŷ exp(iωt),�Miẑ exp(iωt)], (5)

where �Miŷ,�Miẑ ≪ |Mi |, and x̂, ŷ, and ẑ are the principal
axes of the coordinate system on each sublattice moment. The
x̂ axis is defined to be parallel to the direction of the each
sublattice moment, and the ŷ and ẑ axes are perpendicular to
that.

As shown in Fig. 6, we obtained good agreement between
experiment and calculation using the following parameters:
J/kB = 42.3 K, J⊥/kB = −9.66 × 10−2 K, dp/kB = 1.62 K,
dz/kB = 1.97 K, and gc = 2.00. The details of determination
of these parameters will be described in the next discussion
section. The g value gc is determined by ESR signal at 294 K
(paramagnetic phase) as will be shown later in Fig. 9. The
canting angle at 0 T is evaluated at 1.23◦.

B. Crystal-field (CF) model

Next, we analyze the experimental data by the following
spin Hamiltonian assuming single-ion anisotropies (D and E).
We call this model a crystal-field (CF) model:

H = J
∑

〈ij〉

Si ·Sj + J⊥
∑

〈lm〉

Sl ·Sm + D
∑

i

(

Sz′

i

)2

− E
∑

i

{(

Sx ′

i

)2 −
(

S
y ′

i

)2} − gμB

∑

i

Si ·H, (6)

where the z′ and y ′ axes are taken to be parallel to O(2)-Fe-O(2)
and to be in the ab plane for each Fe3+ ion, respectively. The
x ′ axis is perpendicular to the both axes as shown in Fig. 7.
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FIG. 6. (Color online) Comparison of the magnetization curve

and the ESR modes of the K-Fe-jarosite between the experiment and

the calculation for the DM model. (a) Solid and broken lines represent

the experimental (4.2 K) and calculated (0 K) magnetization curves,

respectively. The subtracted data in Fig. 2 is used as the experimental

result. (b) Frequency-field plot of the resonance fields taken at 1.3 K

in pulsed fields and at 1.6 K in static fields for H‖c. Closed and

open circles and triangles denote the resonance fields of intrinsic

signals, those of an impurity signal and an anomaly accompanied

with the magnetic transition, respectively. The solid lines show

the calculated ESR modes and the thin broken line represents a

paramagnetic-resonance line.

The z′ axis is tilted from the c axis about 20◦. The single-ion
anisotropies were discussed in a previous paper on powder
neutron scattering experiment.26 When D > 0, we have an
easy-plane anisotropy and E determines the direction of spin
in the x ′y ′ plane. Large-D and small-E values are expected
from the crystal structure because the distortion of the FeO6

octahedron along the z′ axis is larger than that in the x ′y ′ plane.
Because of the positive D, the magnetic moments tend to lie in
the x ′y ′ plane, which is slightly tilted from the ab plane. The
positive E makes the magnetic moments direct to the x ′ axis.
Therefore, the magnetic system chooses the q = 0 structure
with +1 spin chirality and ferromagnetic component.
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FIG. 7. (Color online) Local environment and coordination

around Fe3+. The local principal z′ axis is parallel to the O(2)-Fe-O(2)

and is tilted from the c axis. The y ′ axis is in the ab plane and the x ′

axis is perpendicular to the y ′ and z′ axes.

In this manner, the single-ion anisotropies may generate
spin arrangement in this study. The free energy F is expressed
by the following form using a mean-field approximation:

F = A
∑

〈ij〉

Mi ·Mj + B
∑

〈lm〉

Ml ·Mm + K
∑

i

(

Mz′

CFi

)2

−C
∑

i

{(

Mx ′

CFi

)2 −
(

M
y ′

CFi

)2} −
∑

i=1

Mi ·H. (7)

Here, the coefficients that are different from those in the
previous section are given by K = 6D/[N (gμB)2], C =
6E/[N (gμB)2] below Hc, and by K = 3D/[N (gμB)2], C =
3E/[N (gμB)2] above Hc.

The magnetization is calculated in the same way as in
the previous section. As shown in the calculation # 1 in
Figs. 8(a) and 8(b), we obtain good agreement between
experiment and calculation for the magnetization curve using
the following parameters: J/kB = 42.3 K, J⊥/kB = −9.66 ×
10−2 K, D/kB = 8.29 K, E/kB = 0.522 K and the same
gc value as in the analysis of the DM model. The canting
angle at 0 T is evaluated at 1.21◦. However, poor agreement
is attained between experiment and calculation for the ESR
modes, especially the high-frequency ones. We have also
analyzed experimental results so that the fitting of ESR modes
might be improved as much as possible in the CF model. The
analytical results are shown by the calculation # 2 in Figs. 8(a)
and 8(b). For this fitting, we use the following parameters:
J/kB = 42.3 K, J⊥/kB = −5.51 × 10−2 K, D/kB = 4.64 K,
E/kB = 0.322 K, and gc = 2.00. The canting angle at 0 T is
evaluated at 0.70◦. The agreement between the calculated and
the experimental magnetization curves after the transition is
not good. Accordingly, we have found that a large-D value
is required to explain the large magnetization jump, while a
smaller-D value is needed for the fit of the high ESR modes.
Hence, both the high ESR modes and the magnetization curve
can not be reproduced by the same parameters.
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FIG. 8. (Color online) Comparison of the magnetization curve

and the ESR modes of the K-Fe-jarosite between experiment and

calculation for the CF model. (a) Solid line is the experimental

magnetization curve (4.2 K). Thin black dotted (calculation #1)

and thick green broken (calculation #2) lines are calculated (0 K)

magnetization curves. (b) Frequency-field plot of the resonance fields

taken at 1.3 K in pulsed fields and at 1.6 K in static fields for H‖c.

The symbols are identical to those in Fig. 6(b). The black solid and

thick green broken lines show the calculated ESR modes using the

same parameters as in the calculations #1 and #2, respectively. The

thin black dotted line represents a paramagnetic-resonance line with

g =2.

V. DISCUSSION

First, we discuss the validity of the DM model used to
analyze the experimental results. In the analysis, we determine
the J value from the slope of the magnetization curve (the
solid line in the upper panel of Fig. 2) because the slope is
proportional to 1/J . We assume that the magnetic structure
changes from the model 1 to 2 with an umbrella structure
upon increasing magnetic field as illustrated in the insets of
Figs. 6(a) and 8(a). The magnetic transition observed at 16.4 T
is interpreted as a flop of the weak ferromagnetic component.
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The relational expression30 between the canting angle η and
the intraplane exchange and DM parameters is given by

tan 2η =
2dp

(
√

3J + dz)
. (8)

When J ≫ dz, it is possible to approximate tan 2η =
2dp/

√
3J . The lowest zero-field ESR mode, which should

be equivalent to the lowest zone-center spin-wave gap in the

spin-wave dispersion, is described by S
√

12|dp|.31 Therefore,
we adjust the value of dp to meet both the magnitude of the
magnetization step at the transition field and the zero-field
value of the lowest ESR mode. Additionally, we evaluate the
dz from zero-field gap of the higher ESR mode. Then, we
extract the value of J⊥ from the comparison of the free energies
between the models 1 and 2. In this analysis, we expect the
energy crossing to occur at 16.4 T, where the dM/dH shows
a distinct peak. This field-induced transition is explained by
a competition between the interlayer coupling J⊥ and the
Zeeman energy. The following relation is given in Ref. 29:
HcS sin η = 2S2|J⊥|. Since sin η is very small, Hc becomes
large in spite of small J⊥.

In the analyses of the CF model, we evaluate the J and
J⊥ values in the same manner as the DM model. We also
determine the value of single-ion anisotropy constants D and
E from the magnetization jump and the zero-field gap of the
ESR modes. But, the magnetization jump and the high ESR
modes are not simultaneously reproduced as we described in
Sec. IV. The D value evaluated in this analysis is also too large
in typical inorganic materials. It is generally accepted that the
D and E values are small for Fe3+ (L = 0) except for a special
ligand field environment such as met-myoglobin.35 In addition,
we performed the calculations including higher-order spin
Hamiltonian term a(S4

x + S4
y + S4

z ). However, the calculated
results are far from the experimental ones, and thus the fits are
not improved. From these considerations, we conclude the CF
model is not suitable for this sample.

Next, we discuss the DM components determined by these
analyses. In Table I, the magnitudes of the DM components
evaluated in K-Fe-jarosite and other systems are summarized.
In most kagome-lattice compounds, their DM components are
of the order of 1 K. The magnitude of the d vector |d| is
roughly given by |d|∼ (�g/g)J (Ref. 36) where �g is the
difference of g values in the systems. As shown in Fig. 9, the g-
value anisotropy is quite small from the observed paramagnetic
resonance signals, and almost equivalent g values are obtained
for the a axis (ga = 2.01 ± 0.01) and the c axis (gc = 2.00 ±
0.01). The magnitude of the DM vector is evaluated to be
| d |∼ (�g/g)J = 0.275 K, which is about one tenth of the
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FIG. 9. (Color online) EPR signals of K-Fe-jarosite at 730.5 GHz

for H‖c and H‖a at designated temperatures.

value obtained from our analysis. The g-value anisotropy of
about 0.12 is required to reproduce the size of DM vector
evaluated by the analysis. However, it makes little sense that
such g-value anisotropy is present in Fe3+ ions with the orbital
momentum L = 0. This is the only contradiction point in the
analyses by the DM model. However, we can conclude that
the DM model is more suitable than the CF model for K-Fe-
jarosite.

Finally, we discuss the ground state of Heisenberg kagome-
lattice antiferromagnets. As described in the Introduction, the-
oretical studies predicted that the ground state has a

√
3 ×

√
3

120◦ spin structure for a Heisenberg kagome-lattice antifer-
romagnet with a large spin value, and has a “spin-liquid’-like
resonating valence bond (RVB) state with a small spin value.
A long-range order (LRO) was observed in most experimen-
tal studies on Heisenberg kagome-lattice antiferromagnets,
such as Cr-jarosite (Cr: S = 3/2),28,39 hexagonal tungsten
bronze(HTB)-type FeF3 (Fe: S = 5/2),40 and A2Cu3BF12 type
materials (Cs2Cu3ZrF12, Cs2Cu3SnF12, and Cs2Cu3HfF12 (Cu:
S = 1/2).23 Neutron scattering studies on (HTB)-type FeF3

clarified the q = 0 structure below TN .40 In addition, previous
studies on Cr-jarosite and some A2Cu3BF12 indicated the
presence of weak ferromagnetism.23,39 The observed q = 0
structure and weak ferromagnetism in K-Fe-jarosite must be
ascribed to positive dz and dp, respectively. When the spin
is large enough, and finite interplane interactions exist in
a real compound, it exhibits a LRO. In such case, the DM
interaction works as the main perturbation term to determine
the ground-state spin structure below TN.

On the other hand, studies carried out on herbert-
smithite (Cu: S = 1/2), volborthite (Cu: S = 1/2), vesignieite

TABLE I. The comparison of the DM components in kagome-lattice samples.

Sample | dz | (K) | dp | (K) | d | (K) (�g/g)J (K)

K-Fe-jarosite (this study) 1.62 1.97 2.55 0.275

K-Fe-jarosite (Ref. 31) 2.27 2.29 3.22

Ag-Fe-jarosite (Ref. 32) 1.97 2.09 2.87

Herbertsmithite (Ref. 38) 15 2 15.1 30.2

Cs2Cu3HfF (Ref. 23) 4.52 70.9

Cs2Cu3ZrF (Ref. 23) 6.10 61.6
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(Cu: S = 1/2), and Rb2Cu3SnF12 (Cu: S = 1/2) reported
no LRO down to sufficiently low temperatures, and thus
these materials seemed to realize some kinds of “quantum
spin-liquid state” or “quantum spin-solid state.” Recently,
Cépas et al. theoretically investigated the effect of the DM
interaction in the S = 1/2 kagome-lattice antiferromagnet and
found a quantum critical point between a moment-free phase
and an antiferromagnetic LRO one around dz ∼ 0.1J .41 Ac-
cordingly, it is expected that the ground state of a Heisenberg
kagome-lattice antiferromagnet is altered drastically by the
DM interaction, and the value of spin.

VI. CONCLUSION

We have performed high-field magnetization and ESR
measurements on a single-crystal sample of K-Fe-jarosite,
which is one of the typical classical Heisenberg kagome-lattice
antiferromagnets. We observed a number of ESR branches at
T = 1.3 and 1.6 K, and a stepwise magnetization at 4.2 K
for H‖c. We conclude that the DM interaction is the most
dominant perturbation term that works in this system from
the analysis of the experimental results. Our experimental
results (magnetization and ESR) are successfully explained
by the model having the DM interaction and the interplanar
interaction, and the following parameter values were obtained:
J/kB = 42.3 K, dp/kB = 1.62 K, dz/kB = 1.97 K, J⊥/kB =
−9.66 × 10−2 K, and gc = 2.00. The magnetic transition at
16.4 T is caused by the change of spin structure, which arises
from the competition between the DM, the interplanar, and the
Zeeman interaction.
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APPENDIX A

As already mentioned in Sec. IV A, we analyzed experimen-
tal results by the DM model using a mean-field approximation.
In this appendix, we describe the details of the analysis. In the
case of model 1, Eq. (2) can be expanded using six-sublattice
magnetic moments as

F = −
6

∑

i=1

M i ·H + A(M1·M2 + M2·M3 + M3·M1

+ M4·M5 + M5·M6 + M6·M4) + B(M1·M5

+ M1·M6 + M2·M4 + M2·M6 + M3·M4

+M3·M5) + dt12·M1 × M2 + dt23·M2 × M3

+ dt31·M3 × M1 + dt45·M4 × M5

+ dt56·M5 × M6 + dt64·M6 × M4. (A1)

When the field is applied along the c axis [z axis, H =
(0,0,H )], each sublattice moment turns to direct as shown
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FIG. 10. (Color online) The configuration of the sublattice mag-

netic moments for H‖c.

in Fig. 10. Using angles shown in the figure, we express the
sublattice magnetizations as

Mn = M0(cos θn cos ηn, sin θn cos ηn, sin ηn), (A2)

where M0 = (N/6)gμB |S|. The angles θn and ηn are given by

θ1 = 3π/2, θ2 = 5π/6, θ3 = π/6,

θ4 = π/2, θ5 = 11π/6, θ6 = 7π/6, (A3)

η1 = η2 = η3, η4 = η5 = η6.

The DM components are given by

dt12 = dt45 = (−
√

3dtp/2, − dtp/2,dtz),

dt23 = dt56 = (0,dtp,dtz), (A4)

dt31 = dt64 = (
√

3dtp/2, − dtp/2,dtz).

By substituting Eqs. (A2), (A3), and (A4) into Eq. (A1), we
have

F = −H (3M0 sin η1 + 3M0 sin η4)

+ 3
4
AM2

0 (2 − 3 cos 2η1 − 3 cos 2η4)

+BM2
0 (3 cos η1 cos η4 + 6 sin η1 sin η4)

− 3
2

√
3dtzM

2
0(cos2 η1 + cos2 η4)

+ 3
2

√
3dtpM2

0(sin 2η1 − sin 2η4). (A5)

The angles η1 and η4 are determined by ∂F/∂η1 = 0 and
∂F/∂η4 = 0 numerically. The magnetization M induced along
the c axis is expressed as

M = 3M0(sin η1 + sin η4). (A6)

The transformation of new coordinates x́, ý, and ź system of
the ith sublattice can be performed by the matrix Ri :

Ri =

⎛

⎝

cos θi cos ηi sin θi cos ηi sin ηi

− sin θi cos θi 0
− cos θi sin ηi − sin θi sin ηi cos ηi

⎞

⎠ . (A7)

The transformed interaction matrix is such that

M ′
i = Ri M i, Mi = R−1

i M
′
i, (A8)
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where R−1
i is the inverse matrix of Ri . The equation of motion

of the sublattice moments in the new coordinate can be written
as

∂ M
′
i/∂t = γ Ri[(R

−1
i M

′
i) × (R−1

i H
′
i)], (A9)

where H
′
i = RiHi . Expressing Eq. (A9) with the matrix, we

have

1/γ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂M′y
1/∂t

∂M′y
2/∂t

∂M′y
3/∂t

∂M′y
4/∂t

∂M′y
5/∂t

∂M′y
6/∂t

∂M′z
1/∂t

∂M′z
2/∂t

∂M′z
3/∂t

∂M′z
4/∂t

∂M′z
5/∂t

∂M′z
6/∂t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= M̃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M′y
1

M′y
2

M′y
3

M′y
4

M′y
5

M′y
6

M′z
1

M′z
2

M′z
3

M′z
4

M′z
5

M′z
6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A10)

where

M̃ =
(

M̃yy M̃yz

M̃zy M̃zz

)

. (A11)

Here,

M̃yy =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 −α α 0 β −β

α 0 −α −β 0 β

−α α 0 β −β 0
0 β ′ −β ′ 0 α2 −α2

−β ′ 0 β ′ −α2 0 α2

β ′ −β ′ 0 α2 −α2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (A12)

α =
M0

2
{dtp cos η1 + (

√
3A − dtz) sin η1}, (A13)

α2 =
M0

2
{dtp cos η2 + (−

√
3A + dtz) sin η2}, (A14)

β =
√

3

2
BM0 sin η1. (A15)

The β ′ in Eq. (A12) is given by the following replacement:

η1 ↔ η4, (A16)

M̃yz =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

γ δ δ 0 ǫ ǫ

δ γ δ ǫ 0 ǫ

δ δ γ ǫ ǫ 0

0 ǫ ǫ γ2 δ2 δ2

ǫ 0 ǫ δ2 γ2 δ2

ǫ ǫ 0 δ2 δ2 γ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A17)

γ = (A +
√

3dtz)M0 cos2 η1

− cos η1M0(B cos η4 + 2
√

3dtp sin η1)

+M0 sin η1(−2A sin η1 − 2B sin η4) + H sin η1, (A18)

γ2 = (A +
√

3dtz)M0 cos2 η4

− cos η4M0(B cos η1 − 2
√

3dtp sin η4) (A19)

+M0 sin η4(−2A sin η4 − 2B sin η1) + H sin η4,

δ =
M0

4
[A −

√
3dtz + (3A +

√
3dtz)] cos 2η1

− 2
√

3dtp sin 2η1, (A20)

δ2 =
M0

4
[A −

√
3dtz + (3A +

√
3dtz)] cos 2η4

+ 2
√

3dtp sin 2η4, (A21)

ǫ =
BM0

2
(2 cos η1 cos η4 + sin η1 sin η4), (A22)

M̃zy =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−γ σ σ 0 τ τ

σ −γ σ τ 0 τ

σ σ −γ τ τ 0

0 τ τ −γ2 σ σ

τ 0 τ σ −γ2 σ

τ τ 0 σ σ −γ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A23)

σ =
M0

2
(A +

√
3dtz), (A24)

τ = −
BM0

2
, (A25)

M̃zz =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 −α α 0 β ′ −β ′

α 0 −α −β ′ 0 β ′

−α α 0 β ′ −β ′ 0
0 β −β 0 α2 −α2

−β 0 β −α2 0 α2

β −β 0 α2 −α2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A26)

By substituting Eq. (4) into Eq. (A10), we have

(M̃ − iω/γ E)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�M1ŷ

�M2ŷ

�M3ŷ

�M4ŷ

�M5ŷ

�M6ŷ

�M1ẑ

�M2ẑ

�M3ẑ

�M4ẑ

�M5ẑ

�M6ẑ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (A27)

where E is a unit matrix. Theoretical ESR resonance modes in
model 1 correspond to the absolute eigenvalues of ω/γ . We
obtain the eigenvalues by solving this secular equation.
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In the case of the model 2, the angles θn and ηn are given by

θ1 = π/2, θ2 = 11π/6, θ3 = 7π/6,

η1 = η2 = η3. (A28)

The following calculation process is essentially similar to that
for the model 1. By substituting Eqs. (A2), (A4), and (A28)
into Eq. (2), we have

F = −3HM0 sin η1 + 3
4
AM2

0 (1 − 3 cos 2η1)

− 3
2

√
3dtzM

2
0 cos2 η1 − 3

2

√
3dtpM2

0 sin 2η1

+ 3
4
BM2

0(1 − 3 cos 2η1). (A29)

The angle η1 is determined by ∂F/∂η1 = 0 numerically. The
magnetization M induced along the c axis is expressed as

M = 3M0 sin η1, (A30)

where M0 = (N/3)gμB |S|. Theoretical ESR resonance
modes for model 2 of the DM model correspond to the
absolute eigenvalues for the following matrix:

M̃above =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −αab αab γab βab βab

αab 0 −αab βab γab βab

−αab αab 0 βab βab γab

ǫab χab χab 0 −αab αab

χab ǫab χab αab 0 −αab

χab χab ǫab −αab αab 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A31)

where

αab =
M0

2
{−dtp cos η1 + (

√
3A +

√
3B − dtz) sin η1},

(A32)

βab =
M0

4
{A + B −

√
3dtz + (3A + 3B +

√
3dtz) cos 2η1

+ 2
√

3dtp sin 2η1}, (A33)

γab = M0{(A + B +
√

3dtz) cos2 η1 +
√

3dtp sin 2η1

− 2(A + B) sin2 η1} + H sin η1,

ǫab =
M0

2
{A + B −

√
3dtz − (3A + 3B +

√
3dtz) cos 2η1

− 2
√

3dtp sin 2η1} − H sin η1, (A34)

χab =
M0

2
{A + B +

√
3dtz}. (A35)

We obtain the eigenvalues for the model 2 by solving this
secular equation as well.

APPENDIX B

As shown in Sec. IV B, we analyzed experimental results
by the CF model using a mean-field approximation as well
as the DM model. In this case, we have to consider the new
coordinate x ′,y ′,z′:

(

Mx ′

CFi,M
y ′

CFi,M
z′

CFi

)

= RCFiMi, (B1)
where

RCFi =

⎛

⎝

cos θcf i cos ηcf sin θcf i cos ηcf sin ηcf

− sin θcf i cos θcf i 0
− cos θcf i sin ηcf − sin θcf i sin ηcf cos ηcf

⎞

⎠ ,

(B2)

θcf 1 = θcf 4 = 3π/2,

θcf 2 = θcf 5 = 5π/6,

θcf 3 = θcf 6 = π/6, (B3)

ηcf = −20π/180 = −π/9.

By substituting Eqs. (A2), (A3), and (B1)–(B3) into Eq. (7),
we have for the model 1

F = −H (3M0 sin η1 + 3M0 sin η4)

+ 3
4
AM2

0 (2 − 3 sin 2η1 − 3 sin 2η4)

+BM2
0(3 cos η1 cos η4 + 6 sin η1 sin η4)

+ 3KM2
0[sin2(η1 − ηcf ) + sin2(η4 + ηcf )]

− 3CM2
0[cos2(η1 − ηcf ) − cos2(η4 + ηcf )]. (B4)

For the model 2, the free energy F can be written as

F = −3HM0 sin η1 + 3
4
AM2

0 (1 − 3 cos 2η1)

+ 3
4
BM2

0 (1 − 3 cos 2η1) + 3KM2
0 sin2(ηcf + η1)

− 3CM2
0 cos2(ηcf + η1). (B5)

We calculate theoretical ESR resonance modes for the CF
model by an essentially similar method to Appendix A.
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