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Abstract

In this paper we address the problem of recognising interactions between two people

in realistic scenarios for video retrieval purposes. We develop a per-person descriptor that

uses attention (head orientation) and the local spatial and temporal context in a neigh-

bourhood of each detected person. Using head orientation mitigates camera view ambi-

guities, while the local context, comprised of histograms of gradients and motion, aims

to capture cues such as hand and arm movement. We also employ structured learning to

capture spatial relationships between interacting individuals.

We train an initial set of one-vs-the-rest linear SVM classifiers, one for each interac-

tion, using this descriptor. Noting that people generally face each other while interacting,

we learn a structured SVM that combines head orientation and the relative location of

people in a frame to improve upon the initial classification obtained with our descriptor.

To test the efficacy of our method, we have created a new dataset of realistic human in-

teractions comprised of clips extracted from TV shows, which represents a very difficult

challenge. Our experiments show that using structured learning improves the retrieval

results compared to using the interaction classifiers independently.

1 Introduction

The aim of this paper is the recognition of interactions between two people in videos in

the context of video retrieval. In particular we focus on four interactions: hand shakes,

high fives, hugs and kisses. Recognising human interactions can be considered an extension

of single-person action recognition and can provide a different criteria for content-based

video retrieval. Two-person interactions can also be used directly or as a building block to

create complex systems in applications like surveillance, video games and human-computer

interaction.

Previous work in two-person interaction recognition is scarce compared to closely related

areas such as single-person action recognition [7, 10, 12, 22], group action recognition

[14, 24] and human-object interaction recognition [16, 23]. Closer to our work are [4,
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Figure 1: Dataset snapshots. Note the variation in the actors, scale and camera views.

17, 19], where interactions are generally recognised in a hierarchical manner putting special

attention on higher level descriptions and using very constrained data. These approaches

rely heavily upon many low level image pre-processing steps like background subtraction

and segmentation of body parts which are, by themselves, very difficult problems to solve

when working with more complex scenarios. In contrast, recent publications on single-action

recognition have shown a natural move from simplified and constrained datasets to more

realistic ones [11, 12, 13, 21, 22]. One of the contributions of this paper is the compilation

of a realistic human interaction dataset extracted from a collection of TV shows (Section 2).

Working with realistic datasets introduces a new set of challenges that have to be addressed

in order to achieve successful recognition: background clutter, a varying number of people

in the scene, camera motion and changes of camera viewpoints, to name a few.

Our approach is to introduce a person-centred descriptor that uses a combination of sim-

ple features to deal in a systematic way with these challenges. An upper body detector [6]

is first used to find people in every frame of the video (Section 3). The detections are then

clustered to form tracks. A track is defined as a set of upper body bounding boxes, in con-

secutive frames, corresponding to the same person. The aim of this first step is to reduce the

search space for interactions to a linear search along each track in an analogous way as [9].

We then calculate descriptors along these tracks and use them to learn a Support Vector Ma-

chine (SVM) classifier for each interaction. Then interaction scores are computed for each

bounding box of each track. We also use the head orientation of people detected in two novel

ways: first to achieve a weak view invariance in the descriptor (see Section 3), and second

to learn interaction-based spatial relations between people (Section 4). The latter is based

on our assumption that people generally face each other while interacting. This assumption

is used to learn a structured SVM [20] that is trained to obtain the best joint classification

of a group of people in a frame. We show that using structured learning (SL) can improve

the retrieval results obtained by independently classifying each track. An additional char-

acteristic of our structured formulation is that it provides information about which people

are interacting. In Section 4.2 we show the retrieval results obtained by the individual and

structured track classification. Section 5 presents our conclusions and future work.

2 Dataset

We have compiled a dataset of 300 video clips extracted from 23 different TV shows1. Each

of the clips contains one of four interactions: hand shake, high five, hug and kiss (each

1http://www.robots.ox.ac.uk/∼vgg/data/tv_human_interactions
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appearing in 50 videos). Negative examples (clips that don’t contain any of the interactions)

make up the remaining 100 videos. The length of the video clips ranges from 30 to 600

frames. The interactions are not temporally aligned (i.e. a clip containing a hand shake

might start with people walking towards each other or directly at the moment of the hand

shake). There is a great degree of variation between different clips and also in several cases

within the same clip (Figure 1). Such variation includes the number of actors in each scene,

their scales and the camera angle, including abrupt viewpoint changes (shot boundaries).

To have a ground truth for the evaluation of the methods developed in this paper, we

have annotated every frame of each video with the following: the upper body, discrete head

orientation and interaction label of all persons present whose upper body size is within a

certain range. This range goes from far shots that show the whole body to medium shots

where only the upper body is visible and is equivalent to 50-350 pixels in our videos. We

have also annotated which persons are interacting, if any, in each frame. For the purposes

of training and testing, the dataset has been split into two groups, each containing videos

of mutually exclusive TV shows. The experiments shown in the following sections were

performed using one set for training, the other for testing and vice versa.

3 Modeling human activity

Because of the complexity and variability of the videos in our dataset, finding relevant and

distinctive features becomes increasingly difficult. The descriptor has to be simultaneously

(i) relatively coarse to deal with variation, and (ii) to some extent focused to avoid learning

background noise when codifying the interaction. We address these points by making our

descriptor person-centred, and by further organising the data based on head orientation.

The person-centred descriptor focuses on the area around the upper body of a single

person, enabling us to localise regions of potential interest and to learn relevant information

inside them. Our descriptor does this by coarsely quantifying appearance and motion inside

this region. This is in contrast to other approaches in single-action recognition [7, 11,

12, 15, 22], where features are estimated in the whole frame or video and then clustered

to localise where the action is happening. Another advantage for implementing a person-

centred descriptor is that, depending on the camera angle, both persons are not always visible

in a given frame, and we would like to be able to provide a classification in these instances.

For the moment, we assume that we know the location and scale of people in each frame and

leave the detection method for section 3.2.

3.1 Person-centred descriptor

The following describes the process for obtaining a descriptor given an upper body location,

which is repeated for each person detected in a frame. Our descriptor superimposes an 8×8

grid around an upper body detection. The size of the grid, being dependent on the detection

size, deals with changes of scale. We then calculate histograms of gradients and optical

flow in each of its cells. An example of this can be seen in Figure 2b. This technique of

using histograms of gradients and flow is a coarse analog to the descriptor used in [3, 11].

Gradients are discretised into five bins: horizontal, vertical, two diagonal orientations and a

no-gradient bin. Optical flow is also discretised into five bins: no-motion, left, right, up and

down. The histograms are independently normalised and concatenated to create an initial

grid descriptor g (Note on notation: whenever a vector is used in this paper is considered

to be in row format by default). We also experimented with several variants of the grid
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(a) (b)

Figure 2: (a) Upper body detections and estimated discrete head orientation. (b) Grid show-

ing dominant cell gradient and significant motion (red cells) for a hand shake.

descriptor: using only motion, only gradients, only information of the cells outside the upper

body detection as well as different normalisations. The experiments described in Section 3.3

show the results obtained by selecting different parameters.

To obtain the final descriptor d, we take into account the head orientation, discretised

into one of five orientations: profile-left, front-left, front-right, profile-right and backwards.

Perfect frontal views are very rare and they are included in either of the two frontal cate-

gories. Effectively, we want to create a compact and automatic representation from which

we can learn a different classifier for each discrete head orientation. To do this, the discrete

head orientation, θ , is used to perform the following operation:

g+ = g⊗δδδ θ , d = [g+ g] (1)

where ⊗ is the Kronecker product, δδδ θ is an indicator vector with five elements (corre-

sponding to the discrete head orientations) having a one at position θ and zero everywhere

else. By using the head orientation, we are aiming to capture information correlated with it.

Assuming that an interaction occurs in the direction a person is facing (Figure2a) this can

provide us with a weak kind of view invariance. We add an extra copy of g at the end of the

descriptor d to account for any information that is independent of the head orientation and

to help in cases where the automatic estimation of the head orientation is wrong. We can

duplicate the amount of examples used for training by horizontally flipping the video frames

resulting in oposite head orientations (i.e. profile-left becomes profile-right).

The descriptor d is used as a data vector for training a linear SVM classifier. An illustra-

tive example of the results that we obtain, Figure 3, shows the motion regions (outside the

upper body detection) learnt by a linear SVM classifier trained to discriminate between hand

shakes and high fives. As expected, important motion regions are correlated with the head

orientation and occur in lower locations for hand shakes and higher ones for high fives.

3.2 Localising humans and estimating head orientation

To be able to use the descriptor proposed above, we need to pre-process our video clips. The

pre-processing follows the same steps as in [6], and we briefly explain them here for com-

pleteness. First we run an upper body detector in each frame. This detector is trained using

a standard Histogram of Oriented Gradients (HOG) descriptor [2] and a simple linear SVM

classifier. We train two such detectors at a different initial scale (to improve the detection

rate). Next, we cluster these detections using clique partitioning to form tracks. Very short

tracks and tracks with low average SVM scores are eliminated, and those that remain are

used in the experiments. As in [1, 18] we learn a classifier for discrete head orientations,
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Figure 3: Motion weights outside upper body detection (blue square) learnt by a linear SVM

classifier trained to discriminate between hand shakes and high fives. Higher weights are

indicated by lighter areas. As expected, the more important motion regions are in lower

locations for hand shakes and in higher ones for high fives. These also follow the direction

of the face.

however we simply train a one-vs-the-rest linear SVM using HOG descriptors. Once the

classifier is learnt, we estimate the head location in each bounding box of each track and

obtain a discrete head orientation classification.

3.3 Experiments

Given that people’s tracks have been calculated in every video as previously described, we

want to evaluate the accuracy of our descriptor when classifying interactions. We have de-

signed a set of experiments to show the effect of: (i) not using head orientation information vs

adding it either by manual annotation or by automatic classification; (ii) changing descriptor

information: using only motion, only gradients or both; (iii) adding weak temporal infor-

mation by concatenating descriptors of consecutive frames to form a single descriptor. The

term n-frame descriptor refers to a concatenation of n descriptors from consecutive frames.

To be able to compare the results obtained, all of the experiments follow the next steps.

We manually select from each clip five consecutive frames that are inside the temporal region

where the interaction is happening. From these frames we extract descriptors from a track

of one of the people performing the interaction (again we manually select the track). The

same process is applied to the negative videos. As described in Section 2, the dataset is

divided into two sets for training and testing. We use in turn the descriptors of each set to

train a one-vs-the-rest linear SVM classifier for each interaction in a supervised way. The

classification of a clip is done by adding the SVM classification scores of each one of the

descriptors extracted from its five selected frames.

Figure 4 provides a visual representation of the results. Column-wise we observe accu-

racy results obtained using different n-frame descriptors. Row-wise represents the average

accuracy when choosing different information to include in the descriptor: only motion, only

gradients and both. Each row is an average over tests using full or external cells and differ-

ent normalisations (L1, L2 or no-norm). The table itself is an average of the results obtained

when testing on both sets.

Several things can be concluded from this representation. First, we can readily observe

that the use of head orientation improves the classification accuracy when correctly esti-
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Figure 4: Average classification accuracy results with different parameter combinations. No

consistent improvement is noticed by using higher n-frame descriptors. Motion information

is a more discriminative feature than gradients in three of the four interactions. On average

using head information improves the accuracy. (Best viewed in color).

mated, but errors when automatically classifying the head orientation reduce it. Taking the

best combination of parameters for each interaction (using 1-frame descriptors), the aver-

age accuracy when using manually annotated head orientation is 59.4%, for automatic head

orientation 52.2% and for no head orientation 48.8%. We noted that the concatenation of

descriptors did not consistently improve the classification results.

Another easily distinguishable characteristic is that the use of motion features alone has

better performance when classifying high fives and kisses, while a combination of both works

better for hugs. This is very intuitive because hugs contain minimal motion in contrast to

the other actions. The bad performance of using only gradients could be explained by the

coarseness of our descriptor, which results in learning gradients that are too general to be

distinctive. We tried to improve these results by increasing the number of cells. The resulting

increased size of the descriptor combined with a reduced number of training examples led to

worse classification results.

4 Learning human interactions

As mentioned before, sometimes only one of the two people performing an interaction ap-

pears in the video clip. However, when the location of two or more people is available in a

specific frame, we should use this to improve our classification. The assumption we make

is that people face each other while interacting. Thus we want to learn relative locations of

people given both their head orientation and an interaction label. We propose to do this by

using a structured learning (SL) framework similar to the one described in [5]. The goal is to

simultaneously estimate the best joint classification for a set of detections in a video frame

rather than classifying each detection independently. In contrast to [5], where SL is used

to learn spatial relations between object classes, we want to learn spatial relations between

people given their interaction class and head orientation.

4.1 Structured learning

We pose the SL problem in the following terms: in each frame we have a set of upper body

detections X = [x1 ...xM]. Each detection xi = [lx ly s θ v], has information about its upper

left corner location (lx, ly), scale (s), discrete head orientation (θ ), and SVM classification



PATRON-PEREZ ET AL.: RECOGNISING INTERACTIONS IN TV SHOWS 7

Figure 5: (a) Spatial relations (δi j) used in our structured learning method. The black square

at the centre represents the head location inside an upper body detection. (b) Weights (βββ )

learnt for each interaction class and head orientation combination. Lighter intensity indicates

a higher weight.

scores (v) obtained by classifying the descriptor associated with this detection using the in-

teraction classifiers previously learnt. Associated with each frame is a label Y = [y1 ...yM yc].
This label is formed by a class label yi ∈ {0, ..,K} for each detection (where K is the number

of interaction classes, with 0 representing the no-interaction class) and a configuration label

yc that serves as an index for one of the valid pairings of detections. For example, for three

detections there are four valid configurations: {(1,0) , (2,0), (3,0)}, {(1,0) , (2,3)} , {(1,3) ,

(2,0)} and {(1,2) (3,0)}, where (i, j) indicates that detection i is interacting with detection

j and the 0 index means there is no interaction. We measure the match between an input X

and a labeling Y by the following cost function:

S(X,Y) =
M

∑
i

α0
yiθi

vyi
+

M

∑
i

α1
yiθi

+ ∑
(i, j)∈Pyc

(δδδ i jβββ
T
yiθi

+δδδ jiβββ
T
y jθ j

) (2)

where vyi
is the SVM classification score for class yi of detection i, Pyc is the set of

valid pairs defined by configuration index yc , δδδ i j and δδδ ji are indicator vectors codifying the

relative location of detection j with respect to detection i (and vice versa) into one of R = 6

spatial relations shown in Figure 5a. α0
yiθi

and α1
yiθi

are scalar weighting and bias parameters

that measure the confidence that we have in the SVM score of class yi when the head discrete

orientation is θi ∈ {1, ...,D}. βββ yiθi
is a vector that weights each spatial configuration given a

class label and discrete head orientation. Once the weights are learnt, we can find the label

that maximises the cost function by exhaustive search, which is possible given the small

number of interaction classes and number of people in each frame.

Learning. We use the SV Mstruct package [8] to learn the weights α and βββ described

previously. To do this, we must first re-arrange equation 2 to define a single weight vector

and encapsulate the X and Y components into a potential function Ψ (see [20]), and second

we need to define a suitable loss function. We start by defining: δδδ
+
i j = δδδ i j ⊗δδδ yiθi

and δδδ
+
ji =

δδδ ji⊗δδδ y jθ j
, where ⊗ means the Kronecker product and δδδ yiθi

is an indicator vector of size KD

having a one at position yi ∗K + θi and zeros everywhere else. Also, let ααα0
∗ = [α0

01 ... α0
KD],

ααα1
∗ = [α1

01 ...α1
KD] and βββ ∗ = [βββ 01 ...βββ KD]. By substituting into equation 2 we obtain:

S(X,Y) = [ααα0
∗ ααα1

∗ βββ ∗]
︸ ︷︷ ︸

w

[
M

∑
i

vyi
δδδ yiθi

M

∑
i

δδδ yiθi ∑
(i, j)∈Pyc

(δδδ+
i j +δδδ

+
ji) ]T

︸ ︷︷ ︸

Ψ

(3)
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A key element of a SL framework is to define an adequate loss function for the problem in

consideration. Here we would like the loss function not only to penalise wrong assignments

of interaction labels but configuration labels as well. We also want additionally to penalise

a label mismatch between detections that are labeled as interacting. Taking these elements

into consideration, we define our loss function as:

∆(Y, Ŷ) =
M

∑
i

∆01(yi, ŷi)+ ∑
(i, j)∈Pyc

∆c(i, j) (4)

∆c(i, j) =







1 if (i, j) /∈ Pŷc

1 if (i, j) ∈ Pŷc and ŷi 6= ŷ j

0 otherwise

(5)

were ∆01 is the zero-one loss, Y is the ground truth labeling and Ŷ is a labeling hypoth-

esis. Consider a frame with three people, two of them interacting. A candidate label that

assigns an incorrect interaction label to a person that is not interacting will result in a loss

of 1 from ∆01. If instead this error occurs in one of the people that are interacting the loss

will be 2 (1 for the incorrect label in ∆01 plus 1 for assigning different labels to interacting

people in ∆c). Errors in the configuration label (yc) tend to increase the loss significantly

depending on the number of actors present. An example of the spatial weights learned using

this method can be seen in Figure 5b.

4.2 Experiments

In this section we compare the retrieval results obtained by individual classification and

by SL. As indicated in Section 3.3, the concatenation of descriptors did not consistently

improve the classification accuracy. Therefore, we selected a simple 1-frame descriptor that

uses both motion and gradients with L1 normalisation and all cells in the grid. The classifiers

were trained to discriminate between five classes: the four interactions and a no-interaction

class. For a retrieval task we need to define a scoring function for a video clip. We propose

a score based on the classification of each track extracted from the clip. In each frame a

detection belonging to a track is classified either independently using the classifiers learned

in Section 3.3 or using the SL framework. The score of each interaction in a track is simply

the percentage of its detections that were classified as that interaction. The overall interaction

scores of a clip are the average of the track scores. The average is calculated over the tracks

where at least one frame was classified as an interaction. This is to avoid assigning low

Method HS HF HG KS AVG

M + ID 0.5433 0.4300 0.4846 0.5349 0.5032

M + SL 0.5783 0.5108 0.7116 0.7654 0.6415

M + ID + N 0.4069 0.3348 0.3952 0.5003 0.4093

M + SL + N 0.4530 0.4507 0.6200 0.7058 0.5574

A + ID 0.4765 0.3194 0.4184 0.3153 0.3824

A + SL 0.4423 0.3255 0.4462 0.3592 0.3933

A + ID + N 0.3981 0.2745 0.3267 0.2613 0.3151

A + SL + N 0.3517 0.2569 0.3769 0.3250 0.3276

Table 1: Average precision results for the video retrieval task, when using manual (M) or au-

tomatic (A) annotations, independent (ID) or structured (SL) classification and when includ-

ing the negative (N) videos as part of the retrieval task. In every case, the use of structured

learning improves the average results.
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Figure 6: Highest ranked true and false positives for each interaction obtained using the

automatic method. The red square indicates negative videos.

interaction scores to videos with many actors (most of whom are not interacting). The score

for no-interaction is an average over all tracks. The same process is used for scoring the

negative videos and evaluate the effect that including these clips has on the overall ranking.

Average precision (AP) results obtained using this ranking measure are shown in Table 1.

We tested the influence of using SL when we have manually labeled upper body detections

and head orientations, and when we use the automatic method described in Section 3.2.

Considering the substantial challenges of the task, our results fall within those obtained by

state-of-the-art methods in single-action recognition that use similar datasets [7, 10, 12, 22],

although a direct comparison is not possible.

In every case the mean AP is improved by the use of SL. This improvement is more

obvious in the manually labeled case. When using the automatic method, there are many

factors that can account for the smaller degree of improvement when using SL, namely: the

inability to always detect both people performing the interaction (SL, as we have employed

it, can’t improve the results in this case), the appearance of false positives and the incorrect

automatic classification of head orientation. In the last two cases, the input to the SL method

is corrupted, and attempts to derive a joint classification will most likely produce incorrect

results. To give an insight into the difficulty of this task Figure 6 shows the best ranked true

and false positives when generating tracks automatically and using the full dataset including

negative videos (complete average precision results for this setup are shown in the last two

rows of Table 1). We observed that hand shakes tend to be detected where no interaction is

happening, this could be because the natural motion of the arms (when walking or talking)

resembles the motion pattern of a hand shake in some frames.
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5 Conclusion and future work

In this paper we have proposed a new descriptor for human interactions that captures infor-

mation in a region around a person and uses head orientation to focus attention on specific

places inside this region. We have also introduced a new dataset of realistic interactions ex-

tracted from TV shows, and have shown good classification and retrieval results using our

descriptor. Furthermore, we have shown that using SL to incorporate spatial relationships be-

tween detected people in the scene improves the retrieval results obtained by independently

classifying each detection.

Several ideas for future work are readily available by analysing the results obtained in

Sections 3.3 and 4.2. It’s clear that an improvement in the automatic head orientation classi-

fication and the automatic generation of video tracks will have a positive effect on the clas-

sification and retrieval results. Although concatenating descriptors of consecutive frames

didn’t improve the classification scores in a consistent way, this may be due to the fact that

there wasn’t much temporal variance to be captured in the five frames of an interaction that

these experiments considered. It is likely that capturing motion and appearance information

in longer periods of time could give us a better classification.
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