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This article proposes a consistent and efficient estimator of the high-frequency covariance (quadratic covariation) of two arbitrary assets,
observed asynchronously with market microstructure noise. This estimator is built on the marriage of the quasi–maximum likelihood
estimator of the quadratic variation and the proposed generalized synchronization scheme and thus is not influenced by the Epps effect.
Moreover, the estimation procedure is free of tuning parameters or bandwidths and is readily implementable. Monte Carlo simulations
show the advantage of this estimator by comparing it with a variety of estimators with specific synchronization methods. The empirical
studies of six foreign exchange future contracts illustrate the time-varying correlations of the currencies during the 2008 global financial
crisis, demonstrating the similarities and differences in their roles as key currencies in the global market.
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1. INTRODUCTION

The covariation between asset returns plays a crucial role in
modern finance. For instance, the covariance matrix and its in-
verse are the key statistics in portfolio optimization and risk
management. Many recent financial innovations involve com-
plex derivatives, like exotic options written on the minimum,
maximum or difference of two assets, or some structured fi-
nancial products, such as CDOs. All of these innovations are
built upon, or in order to exploit, the correlation structure of
two or more assets. As technological developments make high
frequency data commonly available, much effort has been put
into developing statistical inference methodologies for continu-
ous time models with intra-day data, enabling us to capture the
daily variation of some interesting statistics that were otherwise
unobservable from daily or weekly data.

Realized variance estimation is an example of such statis-
tics. Unfortunately, unlike those low frequency time series that
are homogeneously spaced, tick-by-tick transactions of differ-
ent assets usually occur randomly and asynchronously; in ad-
dition, with high frequency data comes market microstructure
noise. These factors make it difficult to employ a Realized
Covariance (RC) estimator directly. Popular estimators in the
univariate variance case include Two Scales Realized Volatil-
ity (TSRV) of Zhang, Mykland, and Aït-Sahalia (2005), the
first consistent estimator for integrated volatility in the presence
of noise, Multi-Scale Realized Volatility (MSRV), a modifica-
tion of TSRV which achieves the best possible rate of conver-
gence proposed by Zhang (2006), Realized Kernels (RK) by
Barndorff-Nielsen et al. (2008a) and the Pre-Averaging (PA)
approach by Jacod et al. (2009), both of which contain sets of
nonparametric estimators that can also achieve the best con-
vergence rate. In contrast with these nonparametric estimators,
Xiu (2010) has extended the Maximum-Likelihood Estimator
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of Aït-Sahalia, Mykland, and Zhang (2005) designed for para-
metric volatility to a Quasi-Maximum Likelihood Estimator
(QMLE), as a misspecified maximum likelihood estimator in
the setting of stochastic volatility. This parametric estimator has
also proved to be consistent and efficient without any tuning
parameters. Related work includes Bandi and Russell (2003),
Delattre and Jacod (1997), Fan and Wang (2007), Gatheral and
Oomen (2009), Hansen and Lunde (2006), Kalnina and Lin-
ton (2008), Li and Mykland (2007), Aït-Sahalia, Mykland, and
Zhang (2009), Zhang, Mykland, and Aït-Sahalia (2009), and Li
et al. (2010).

These advances in variance estimation pave the way for the
efficient estimation of covariance with noisy data. Studies of
correlation estimated from asynchronous high frequency stock
price returns date back to at least Epps (1979), who docu-
mented the Epps effect, i.e., the fact that the sample correla-
tion tends to have a strong bias towards zero as the sampling
interval progressively shrinks. The same effect has been doc-
umented for exchange rates, see, e.g., Guillaume et al. (1997)
and Muthuswamy et al. (2001). Since then, researchers have
been trying to resolve this puzzle. There are at least two pos-
sible approaches. First, dealing with asynchronous data can be
achieved with subsampling, using previous tick or other inter-
polation methods. This procedure may induce a potential bias.
Hayashi and Yoshida (2005) have proposed a modification of
the Realized Covariance (RC) estimator (HY), which is consis-
tent and immune to this bias. Also, it is reasonable to conjec-
ture that microstructure noise might be at least partly respon-
sible for the documented bias as well, based on the fact that
the magnitude of the noise relative to that of the price signal
will increase the realized variance estimator, which serves as
the denominator in the correlation calculation: see Large (2007)
and Griffin and Oomen (2008), for example. Voev and Lunde
(2007) provided a bias correction procedure for the HY es-
timator to correct for the effect of the noise, but the estima-
tor does not achieve consistency. Zhang (2009) has demon-
strated theoretically that there may be a bias associated with
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the RC estimator with the previous tick method due to asyn-
chronocity of the data. Zhang (2009) has put forward a con-
sistent Two Scales Realized Covariance estimator (TSCV) us-
ing the previous tick method, which is capable of dealing with
asynchronous and noisy data. Recently, Barndorff-Nielsen et al.
(2008b) suggested to synchronize the high frequency prices us-
ing a Refresh Time scheme, and implemented Multivariate Re-
alized Kernels (MRK) to provide a consistent and semi-definite
estimator of the covariance matrix, while Christensen, Kin-
nebrock, and Podolskij (2010) proposed a multivariate PA es-
timator. These nonparametric estimators involve the selection
of bandwidths or other tuning parameters, and implementation
can therefore raise subtle issues in practice.

This article proposes another consistent and rate-efficient es-
timator based on the QMLE and generalized time synchroniza-
tion method. Unlike some of the alternatives, it involves no tun-
ing parameters to be set and is very easy to implement. The arti-
cle is organized as follows. Section 2 summarizes the univariate
QMLE of integrated volatility. Section 3 details the proposed
covariance estimator and the synchronization method. Section 4
includes Monte Carlo simulations to compare different covari-
ance estimators. Section 5 provides a detailed empirical study
of six foreign exchange futures contracts. Section 6 concludes.
The Appendix contains the mathematical proofs.

2. QMLE REVIEW

Assume that the logarithm of the transaction price X̃ is ob-
served at 0 = τ0 < τ1 < · · · < τn = T and is related to the la-
tent true asset log-price X and the microstructure noise U in
an additive way, X̃t = Xt + Ut. This simple model resembles
the model of Roll (1984), where the efficient price is a ran-
dom walk. See also Hasbrouck (2007) for many extensions of
this basic reduced-form microstructure model. Unlike these dis-
crete time models, we assume that the latent log-price follows
a continuous time Itô process. More precisely,

Assumption 1. The true log-price process satisfies

dXt = μt dt + σt dWt

with the volatility process a positive and locally bounded Itô
semimartingale, and the drift a locally bounded and progres-
sively measurable process. The noise Ut is iid, and independent
of price and volatility processes, with mean 0, variance a2 and
a finite fourth moment. The observations are equally spaced,
denoted by �.

Unfortunately, the classical maximum likelihood estimation
is not feasible in this general setting, since the parameter of
interest

∫ T
0 σ 2

t dt is a random variable, and the volatility process
is left unspecified. Xiu (2010) has suggested to analyze model
misspecification, where volatility is stochastic, in the context
of the parametric MLE, which assumes that volatility is a fixed
parameter. For this purpose, consider the following (potentially
misspecified) model:

Assumption 2. The volatility of the observed log return
process is constant, that is,

dXt = σ dWt.

The noise Ut is iid Gaussian, with mean 0 and variance a2 and
independent of the stock price.

The simple Assumption 2 is of course most certainly unreal-
istic, but its main advantage is that the parameters σ 2 and a2 can
easily be estimated by using maximum-likelihood, as proposed
by Aït-Sahalia, Mykland, and Zhang (2005). Specifically, under
this model, the observed log-return Yi = X̃τi − X̃τi−1 follows an
MA(1) process, and the log likelihood function for Y’s is

l(a2, σ 2) = −1

2
log det(�) − n

2
log(2π) − 1

2
Y′�−1Y, (1)

where

� =

⎛⎜⎜⎜⎜⎜⎜⎝

σ 2� + 2a2 −a2 0 · · · 0

−a2 σ 2� + 2a2 −a2
. . .

.

.

.

0 −a2 σ 2� + 2a2
. . . 0

.

.

.
. . .

. . .
. . . −a2

0 · · · 0 −a2 σ 2� + 2a2

⎞⎟⎟⎟⎟⎟⎟⎠ .

The optimization algorithm can be efficiently implemented
since the matrix inverse of � is explicit and hence (1) is ex-
plicit.

The QMLE is obtained by maximizing the above quasi-
likelihood function, even when the data generating process
follows Assumption 1 rather than the more restrictive As-
sumption 2. Aït-Sahalia, Mykland, and Zhang (2005) showed
that this estimation approach is robust to departure from the
Gaussian noise assumption. But the other part of Assumption 2
that is questionable is the constancy of volatility. In practice,
volatility is expected to be stochastic, but Xiu (2010) has shown
that even in that situation, the QMLE (σ̂ 2, â2) remains consis-
tent and optimal in terms of its rate of convergence under the
fairly general Assumption 1. This provides a simple and easily
implementable method for estimating the integrated volatility,
with the following Central Limit Theorem:

Theorem 1. Given Assumption 1, we have(
n1/4(σ̂ 2 − 1

T

∫ T
0 σ 2

t dt)

n1/2(â2 − a2
0)

)
LX−→ MN

((
0
0

)
,

( 5a0
∫ T

0 σ 4
t dt

T(
∫ T

0 σ 2
t dt)1/2

+ 3a0(
∫ T

0 σ 2
t dt)3/2

T2 0

0 2a4
0 + Cum4[U]

))
,

where MN is a mixed Normal, LX denotes σ(X)-stable conver-
gence in law, and Cum4[U] = EU4

t − 3(EU2
t )2.

Remark 1. If the log-price process is driven by two or more
Brownian factors, i.e.,

dXt = σ1t dW1t + σ2t dW2t,

where E(dW1t · dW2t) = ρt dt, then Theorem 1 continues to
hold, namely, with σ 2

t = σ 2
1t + σ 2

2t + 2ρtσ1tσ2t, we have

n1/4
(

σ̂ 2 − 1

T

∫ T

0
σ 2

t dt

)
LX−→ MN

(
0,

5a0
∫ T

0 σ 4
t dt

T(
∫ T

0 σ 2
t dt)1/2

+ 3a0(
∫ T

0 σ 2
t dt)3/2

T2

)
.
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The distribution of the time intervals between observations
would not affect the consistency, if the time intervals remain
iid and independent of the prices. However, the sequence of
log-returns does matter since it determines the autocorrelation
structure of the observations.

3. COVARIANCE/CORRELATION ESTIMATION
VIA THE QMLE

3.1 Model Setup

We now extend the previous results to incorporate a two-
dimensional log-price process Xt = (X1t,X2t), discretely ob-
served over the interval [0,T]. Suppose that the observations
are recorded at times 0 = ti,0 ≤ ti,1 ≤ ti,2 ≤ · · · ≤ ti,ni = T , re-
spectively, where i = 1,2. As in the univariate case, one can
only observe X̃i,t, contaminated by an additive error Ui,t, asso-
ciated at each observation point. Further, we make the following
assumption:

Assumption 3. The latent log-price process satisfies

dXit = μit dt + σit dWit

with E(dW1t ·dW2t) = ρt dt, and the volatility processes positive
and locally bounded Itô semimartingales, and the drifts locally
bounded and progressively measurable processes. The noise Ut

is an iid 2-dimensional vector with mean 0, diagonal covariance
matrix � and has a finite fourth moment.

3.2 Covariance/Correlation Estimator for
Synchronized Data

The estimator is based on the following identity:

Cov(X1,X2) = 1
4

(
Var(X1 + X2) − Var(X1 − X2)

)
.

Therefore, we propose

Ĉov(X̃1, X̃2) = 1
4

(
V̂ar(X̃1 + X̃2) − V̂ar(X̃1 − X̃2)

)
, (2)

where Ĉov(·, ·) is our estimator, V̂ar(·, ·) denotes the QMLE of
the quadratic variation, and “·” indicates the data we are actu-
ally using. However, in order to compute the prices X̃1 + X̃2

and X̃1 − X̃2, we need the two assets be synchronically traded.
We will discuss in details the next subsection how to deal with
nonsynchronized trading.

Straightforwardly, the correlation estimator is given by:

Ĉorr(X̃1, X̃2) = Ĉov(X̃1, X̃2)√
V̂ar(X̃1)

√
V̂ar(X̃2)

. (3)

Remark 2. It may be more efficient to consider linear com-
binations

Ĉov(X̃1, X̃2) = 1

4γ (1 − γ )

(
V̂ar(γ X̃1 + (1 − γ )X̃2)

− V̂ar(γ X̃1 − (1 − γ )X̃2)
)
, (4)

where γ can be selected to minimize the asymptotic vari-
ance. If γ = 1/2, (4) recurs to (2). One alternative γ may be
V̂ar(X̃2)/(V̂ar(X̃1) + V̂ar(X̃2)).

The constructed covariance matrix estimates may not be pos-
itive semi-definite. This property is nevertheless essential to
many applications in practice. To enforce it, one possibility con-
sists in projecting the resulting symmetric matrix onto the space
of positive semi-definite matrices: see for example an applica-
tion to portfolio allocation in Fan, Li, and Yu (2010).

In Section 2, we have shown consistency and a central
limit theorem for the QMLE of the variance. Based on Theo-
rem 1 and Remark 1, we can show that this estimator is n1/4-
consistent for the covariance and correlation. This rate is the
optimal one. The following theorem provides the central limit
results for the covariance estimator under an idealized data ob-
servation scheme where the two assets are observed at synchro-
nized times:

Theorem 2. Given Assumption 3, and that the data are syn-
chronized and equally spaced, that is, n := n1 = n2 and τj :=
t1,j = t2,j, and that � = τj − τj−1, for 1 ≤ j ≤ n, then the follow-
ing Central Limit Theorem holds:

n1/4
(

Ĉov(X̃1, X̃2) − 1

T

∫ T

0
ρtσ1tσ2t dt

)
LX−→ MN(0,V), (5)

n1/4
(

Ĉorr(X̃1, X̃2) −
∫ T

0 ρtσ1tσ2t dt√∫ T
0 σ 2

1t dt
√∫ T

0 σ 2
2t dt

)
LX−→ MN(0, Ṽ), (6)

where V and Ṽ are given in the Appendix.

3.3 Data Synchronization

We would stop here if the data were synchronized, mean-
ing that the prices of the two assets were observed at the same
times. However, this is not the case in practice, at least for high
frequency financial data. In most cases, high frequency trans-
actions for two assets occur at times that are not synchrone.
This practical issue may induce a large bias for the estimation,
and may be (at least partly) responsible for the Epps effect. We
note further that both terms on the right side of (2) need syn-
chronized data. The remaining question is what kind of data
synchronization procedure one should use. Clearly, if we ap-
ply the QMLE to estimate the diagonal elements in the covari-
ance matrix, it would be better to cross out a small number of
data points rather than adding more through an interpolation
method, because the former strategy may suffer from efficiency
loss, while the latter one may result in inconsistency due to the
change in the autocorrelation structure. We define the following
concept, which we then use to propose a general synchroniza-
tion scheme.

Definition 1. A sequence of time points {τ0, τ1, τ2, . . . , τn} is
said to be the Generalized Sampling Time for a collection of M
assets, if

1. 0 = τ0 < τ1 < · · · < τn−1 < τn = T .
2. There exists at least one observation for each asset be-

tween consecutive τi’s.
3. The time intervals, {�j = τj − τj−1,1 ≤ j ≤ n}, satisfies

supi �i
P−→ 0.
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The Generalized Synchronization method is built upon the
Generalized Sampling Time by selecting an arbitrary observa-
tion X̃i,ťj for the ith asset between the time interval (τj−1, τj].
The synchronized data sets are, therefore, {X̃τ

i,τj
,1 ≤ i ≤ M,1 ≤

j ≤ n} such that X̃τ
i,τj

= X̃i,ťj .

The concept of Generalized Synchronization method is more
general than that of the Previous Tick approach discussed
in Zhang (2009), and the Refresh Time scheme proposed
by Barndorff-Nielsen et al. (2008b), namely, the Replace All
scheme in deB. Harris et al. (1995).

More precisely, if we require {τj} to be equally spaced be-
tween [0,T], the previous tick for each asset before τj to be
selected, we are back to the Previous Tick approach. Or, if we
choose τj recursively as

τj+1 = max
1≤i≤M

{
ti,Ni(τj)+1

}
,

where τ1 = max{t1,1, t2,1, . . . , tM,1} and Ni(t) measures the
number of observations for asset i before time t, and if we se-
lect those ticks that occur right before or at τj’s, we return to the
Refresh Time scheme. In both cases, the previous ticks of the
assets, if needed, are regarded as if they were observed at the
sampling time τj’s. By contrast, we advocate choosing an arbi-
trary tick for each asset within each interval. In practice, it may
happen that the order of consecutive ticks is not recorded cor-
rectly. Because our synchronization method has no requirement
on tick selection, the estimator is robust to data misplacement
error, as long as these misplaced data points are within the same
sampling intervals.

It is apparent that the Refresh Time scheme is highly depen-
dent on the relatively illiquid asset. On the one hand, the num-
ber of the synchronized pairs are smaller than the number of the
observations of this asset, inducing an inevitable loss of data for
the other asset. More importantly, it is very likely that the Re-
fresh Time points are determined by the occurrence of the rel-
atively more illiquid asset, rendering the selected observations
of the other asset always ahead of the corresponding illiquid as-
set. This hidden effect may induce some additional bias in the
estimation.

Alternatively, we can design the synchronization scheme re-
quiring each asset to lead in turn. Take two assets, for example.
If we require the first asset to lead, we choose τ1 = t2,N2(t1,1)+1.
Recursively,

τi = t2,N2(t1,N1(τi−1)+1)+1.

Literally, it means that right after τi−1, we find the first obser-
vation of X̃1t , which should happen at t1,N1(τi−1)+1, and then the
next Generalized Sampling Time is defined to be the point when
the first X̃2t is observed right after t1,N1(τi−1)+1. In this case, at
all sampling time points, the second asset would always have
records. The previous tick of the first asset, if needed, is re-
garded as if it were observed a bit later at the sampling time.
Hence, in the synchronized pairs, the first asset always leads
the second one.

Remark 3. Refresh Time includes the largest amount of data
among all Generalized Sampling Time.

Combining the synchronization scheme with our estimator,
we make the following assumption:

Assumption 4. The Generalized Sampling Time {τj} is in-
dependent of the price process, the volatility process and the
noise. The time intervals, {�j = τj − τj−1,1 ≤ j ≤ n}, are iid
with mean �̄. The number of observations n is therefore ran-
dom, of order OP(1/�̄).

Replacing the idealized data with the products of the Gener-
alized Sampling Time, we obtain:

Theorem 3. Given Assumptions 3 and 4, the QMLE of the
quadratic variation for X̃τ

1 + X̃τ
2 is consistent, that is,

V̂ar(X̃τ
1 + X̃τ

2 ) − 1

T

∫ T

0
σ 2

1t + σ 2
2t + 2ρtσ1tσ2t dt = OP

(
�̄1/4).

Therefore,

Ĉov(X̃τ
1 , X̃τ

2 ) − 1

T

∫ T

0
ρtσ1tσ2t dt = OP

(
�̄1/4),

Ĉorr(X̃τ
1 , X̃τ

2 ) −
∫ T

0 ρtσ1tσ2t dt√∫ T
0 σ 2

1t dt
√∫ T

0 σ 2
2t dt

= OP
(
�̄1/4).

In other words, the rate of convergence of the estimators are
the same as those given in Theorem 2.

3.4 Synchronization Comparison With the HY Estimator

It is interesting to compare the synchronization method em-
bedded in the HY estimator and the synchronization scheme
proposed here. Recall that Hayashi and Yoshida (2005) pro-
posed

〈X1,X2〉HY =
∑
i,j

(
X1,t1,j − X1,t1,j−1

)(
Y1,t2,i − Y1,t2,i−1

)
× 1{(t1,j−1,t1,j]∩(t2,i−1,t2,i]�=∅}, (7)

where X1 and X2 are the observations, in an estimator that as-
sumes no noise and is therefore infeasible in our setting. Nev-
ertheless, the synchronization method proposed therein may be
applicable. A priori, the HY method has advantages over the
Refresh Time scheme in that the former utilizes all possible
data. However, this ignores the fact that the HY method effec-
tively deletes data through some cancelation in the calculation
as well. If we fix index j and sum over i at first, we can rewrite
the formula (7) in the following way:

〈X1,X2〉HY =
∑

j

(
X1,t1,j −X1,t1,j−1

)(
Y1,t2,j+ −Y1,t2,(j−1)−

)
, (8)

where t2,j+ = inf{t2,k : t2,k ≥ t1,j} and t2,j− = sup{t2,k : t2,k ≤
t1,j}.

It follows from (8) and Figure 1 that at least any records for
the second asset that occur in (t2,(j−1)+, t2,j−) will not play a
role in the calculation due to cancelation. Similarly, if three con-
secutive observations of the first asset form two intervals which
share the same corresponding interval of the second asset, then
the middle observation of the first asset will not be used either.
In the simulation and empirical studies, we will compare the
effective sample size of the HY method and the Refresh Time
scheme.
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Figure 1. These two graphs illustrate how the HY synchronization method delete data points. The online version of this figure is in color.

4. SIMULATION STUDY

We now conduct Monte Carlo simulations to verify the ap-
plicability of the above theoretical results in realistic settings.
The data is generated using stochastic volatility models, and for
this purpose we consider mainly the Heston Model. For i = 1,2,
the data generating process is

dXit = σit dWit,

dσ 2
it = κi(σ̄i

2 − σ 2
it ) + siσit dBit + σit−JV

it dNit,

where E(dWit · dBjt) = δijρi dt and E(dW1t · dW2t) = ρ dt.
We generate sample paths using the Euler method, where

the first observation for volatility process σ 2
i0 is sampled from

a Gamma distribution 
(2κiσ̄i
2/s2

i , s2
i /2κi). The jump size in

volatility is JV
t = exp(z), where z ∼ N(θi,μi), and Nit is a Pois-

son Processes independent of Brownian motions with intensity
λi. The noise of each asset is iid N(0,a2

i ). The parameter values
are reported in Table 1.

First, we generate N random intervals from the exponential
distribution for both processes. The data are equally spaced and
therefore, there are no issues with synchronization and we can
easily estimate the true covariance using the RC method. Then
we randomly select about N/2 observations for X1 and 2N/3
for X2 from the whole sample using Bernoulli trials, and conta-
minate the data with noise. Next we synchronize the data using
the Refresh Time procedure and apply the QMLE estimator to
X̃τ

1 ± X̃τ
2 , X̃τ

1 , and X̃τ
2 , respectively, and construct the estimator

for the covariance. We also include a modified version QMLE*
as defined in (4).

Alternatively, we also implement the TSCV estimator by
Zhang (2009) for comparison. Suppose the number of subsam-
ples are K and J, respectively. Define

[X̃τ
1 , X̃τ

2 ]S
T = 1

S

n∑
i=S

(
X̃τ

1,τi
− X̃τ

1,τi−S

)(
X̃τ

2,τi
− X̃τ

2,τi−S

)
and then the TSCV estimator is given by

〈X̃τ
1 , X̃τ

2 〉TSCV =
(

[X̃τ
1 , X̃τ

2 ]K
T − n̄K

n̄J
[X̃τ

1 , X̃τ
2 ]J

T

)
,

where 1 ≤ J � K = O(n2/3) and n̄S = (n − S + 1)/S, S = K, J.
We also implement the MRK proposed in Barndorff-Nielsen

et al. (2008b) for comparison. Suppose we have n number of ob-
servations for each asset after synchronization. First we redefine
the initial and final time points to control the edge effect asso-
ciated with realized kernels. Fix m ∈ N, with N = n + 1 − 2m.
Define X̃τj = (X̃τ

1,τj
, X̃τ

2,τj
)′,

X̌0 = 1

m

m∑
j=1

X̃τj ,

X̌N = 1

m

m∑
j=1

X̃τn−m+j ,

and X̌j = X̃τj+m , where j = 1,2, . . . ,N − 1. Let xj = X̌j − X̌j−1,
j = 1,2, . . . ,N.

The multivariate realized kernel estimator is

K(X) =
H∑

h=−H

k

( |h|
H + 1

)
�h,

where

�h =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
j=|h|+1

xjx′
j−h, h ≥ 0

N∑
j=|h|+1

xj+hx′
j, h < 0,

and the kernel function is chosen to be the Parzen kernel:

k(x) =
⎧⎨⎩1 − 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1 − x)3, 1/2 ≤ x ≤ 1
0, x > 1 or x < 0.

Also, we make the choice of bandwidth H = max(H1,H2), with

Hi = c∗ξ4/5
i n3/5, where ξ2

i = a2
i /

√
T

∫ T
0 σ 4

it dt and c∗ = 3.5134.
Here, in order to optimize the behavior of the MRK, we try the
infeasible case, i.e., Hi is calculated using the true values.

The benchmark is the RC estimator using the original com-
plete synchronized data set without being contaminated by the

Table 1. Summary of the parameter values in the Monte Carlo simulation

Asset Xi0 κi si σ̄ 2
i ρi λi θi μi ai ρ

i = 1 log(100) 6 0.5 0.16 −0.6 12 −5 0.8 0.005 0.5
i = 2 log(40) 4 0.3 0.09 −0.75 36 −6 1.2 0.001 —

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2010.tm10163&iName=master.img-000.jpg&w=393&h=102
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Table 2. Simulation comparisons of the estimates

�̂11 �̂12 �̂22

�̄ = 2 s RC 0.1603 0.0583 0.0904
n = 11,700 (0.0032) (0.0018) (0.0018)

QMLE 0.1603 0.0584 0.0906
n̄1 = 5853 (0.0242) (0.0112) (0.0074)

n̄2 = 7801 MRK 0.1967 0.0584 0.0920
n̄ = 5573 (0.0466) (0.0147) (0.0147)

TSCV 0.1565 0.0569 0.0883
(0.0306) (0.0148) (0.0146)

m1 = 5151 HY 0.0584
m2 = 5307 (0.0028)

Span = 1.92 s QMLE* 0.0582
(0.0108)

�̄ = 30 s RC 0.1600 0.0581 0.0901
n = 781 (0.0121) (0.0068) (0.0068)

QMLE 0.1606 0.0582 0.0904
n̄1 = 392 (0.0509) (0.0241) (0.0178)

n̄2 = 522 MRK 0.2116 0.0575 0.0923
n̄ = 372 (0.0732) (0.0270) (0.0264)

TSCV 0.1504 0.0543 0.0847
(0.0536) (0.0256) (0.0247)

m1 = 345 HY 0.0581
m2 = 355 (0.0106)

Span= 28.7 s QMLE* 0.0575
(0.0232)

NOTE: This table reports the summary statistics for the simulation results. �̄ is the sam-
pling frequency for the original data. n is the size of the whole sample. n̄i is the average
number of observations for the ith asset. n̄ is the average number of synchronized obser-
vations using the Refresh Time scheme. m1 and m2 are the effective sample sizes for two
series, respectively, using the HY method. Span measures the average difference between
the refresh time and the real observation time. �̂ij is the component of the estimated covari-
ance matrix. The data in parenthesis are the RMSE. RC is the benchmark method applied
to the no noise and the whole data (Synchronized). The Monte Carlo sample size is 10,000.

market microstructure noise. This ideal estimator is only avail-
able in simulations, and is unfeasible in practice. This bench-
mark estimator is only computed here so that other estimators
can be compared to it. We also implement the HY estimator
with asynchronous data but no noise. The comparison results
with various sampling frequencies are shown in Table 2.

It is clear from the RMSE reported here that the QMLE,
the TSCV and the MRK behave quite well from the simula-
tion studies and that neither of them suffers from a synchro-
nization problem. But in some case, the bias cannot be ignored.
One common drawback for the two nonparametric estimators is
the choice of bandwidth, in that the selected bandwidth is sub-
optimal when trying to estimate the diagonal elements of the
covariance matrix.

By contrast, the QMLE has no tuning parameters, and is
asymptotically unbiased at least for synchronous data, and is
designed to have a smaller asymptotic variance since the rate
is higher than that of the n1/5-consistent MRK and the n1/6-
consistent TSCV. The comparison of the TSCV and the MRK
indicates that the asymptotic bias associated with the MRK es-
timator overcomes its edge from its higher convergence rate in
finite sample.

As to the synchronization comparison, Table 2 provides an
example where the Refresh Time scheme may actually outper-

Table 3. Comparison between Refresh Time and HY
synchronization scheme

AUD CAD EUR GBP JPY CHF

Refresh Time
% of AUD 56.9% 87.2% 73.7% 70.0% 58.6%
% of CAD 59.2% 86.6% 74.3% 74.9% 58.8%
% of EUR 31.3% 21.7% 52.2% 53.7% 34.4%
% of GBP 43.1% 41.7% 84.9% 64.3% 47.3%
% of JPY 40.5% 37.8% 78.6% 57.9% 42.7%
% of CHF 57.3% 55.1% 93.6% 79.1% 79.4%

HY
% of AUD 59.1% 85.5% 73.5% 76.5% 60.8%
% of CAD 61.3% 84.7% 74.0% 74.5% 60.9%
% of EUR 35.0% 33.2% 53.4% 55.1% 37.6%
% of GBP 46.4% 44.9% 81.6% 64.5% 50.0%
% of JPY 44.3% 41.3% 76.8% 58.9% 46.0%
% of CHF 59.7% 57.7% 90.7% 77.7% 78.1%

NOTE: In this table, we compare the Refresh Time and HY synchronization scheme by
calculating the percentage of data reserved.

form the HY method in terms of data inclusion. Empirically,
there is not a wide gap between the amount of data retained
by each method, as shown in Table 3. The HY method does
not account for the noise and consequently may interfere with
the autocorrelation structure introduced by the microstructure
noise; hence it is not surprising that is may be dominated in our
setting where the data are noisy.

Figure 2 verifies in simulations the central limit distribution
given in Theorem 2. We estimate the covariance and correla-
tion using synchronized assets and plot the histogram of the
standardized estimates. The histogram matches well with the
standard Gaussian distribution predicted by the theorem.

5. EMPIRICAL ESTIMATION WITH FOREIGN
EXCHANGE FUTURES PRICES

5.1 Data Description

Foreign exchange future contracts are traded on the Chica-
go Mercantile Exchange (CME) on a 24-hour clock. These

Figure 2. In this figure, we plot the histograms of the covariance
and correlation estimator. Here, the data are synchronized, and the av-
erage length of the sampling intervals is �̄ = 1 s. The online version
of this figure is in color.
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Table 4. Summary statistics of the log returns of the foreign exchange futures

FX Avg. no. Avg. freq. Mean Std. err. 1st lag 2nd lag 3rd lag

AUD 6142 14.07 s 9.97e−08 1.53e−04 −0.0769 0.0082 0.0031
CAD 5898 14.65 s 2.25e−08 1.24e−04 −0.1186 0.0033 0.0007
EUR 17,097 5.05 s 2.16e−08 5.69e−05 −0.1141 0.0099 0.0014
GBP 10,508 8.22 s 1.35e−08 7.62e−05 −0.0651 0.0123 0.0037
JPY 11,685 7.39 s −2.18e−08 8.64e−05 −0.1066 0.0089 0.0005
CHF 6284 13.75 s 2.35e−08 1.07e−04 −0.0846 0.0067 −0.0025

NOTE: The second and third columns are, respectively, the average numbers of trades and average trading frequencies per day. The fourth and fifth column are the average log-returns
and their association standards. The auto-correlation coefficients of lags 1, 2, and 3 are depicted at the sixth, seventh, and eighth columns.

marked-to-market futures contracts are very liquid. We are in-
terested in estimating the covariations among pairs of curren-
cies; we focus on the Australian dollar, Canadian dollar, Euro,
British pound, Japanese yen, and Swiss franc futures contracts.
The contracts are quoted in terms of the unit value of the for-
eign currency measured in US dollars. We use currency futures
instead of currency spot prices because the former contracts are
traded in an exchange setting. By contrast, the currency spot
markets, while extremely liquid, are over-the-counter, and may
therefore suffer from additional microstructure issues, e.g., the
financial stability of the counterparties and the quality of the
execution they provide. Another advantage with futures data is
that the interest rate differentials are embedded in them, which
facilitates the calculation of the carry trade returns, so that we
can avoid calculating them in the same way as in Brunnermeier,
Nagel, and Pedersen (2009). The cleaned data are available
from Tick Data, Inc., among other data vendors.

Timing is a critical issue in the FX future market. Our sample
period runs from January 1, 2007 to June 30, 2009, covering the
most critical stage of the recent financial crisis. The future con-
tracts are automatically rolled over to provide continuous price
records. The tick-by-tick transaction prices are recorded in ex-
change time (Chicago Time). Therefore, in a given day, trading

activity starts from Asia and Europe, followed by North Amer-
ica and then Australia. There is no overlap between the opening
hours of the Asian market and the US market. The advantage
of using the Exchange Time is that we do not need to deal with
different daylight saving rules for different continents in that
the traders on the CME are likely to adjust their trading behav-
ior according to the US time (where most of the activity takes
place) rather than their local time. The electronic trading starts
at 5 p.m. on the previous day and ends at 4 p.m. on current day.
In between, there is a one-hour gap. Therefore, we redefine the
day in accordance with the electronic trading system, so that we
can avoid including potential jumps from the market close price
to its open price.

Our data preprocessing eliminates the transactions on Satur-
days and Sundays, US federal holidays, the day after Thanks-
giving, December 24 to 26, and December 31 to January 2, be-
cause of the relatively smaller volume of activity. We are left
with 618 days in the sample. For each particular FX contract,
we take the average price for any multiple transactions that hap-
pen exactly at the same time stamp. The summary statistics for
each FX futures are listed in Table 4. It appears that there exists
an MA(1) structure for each futures contract, indicating that

Figure 3. In this figure, we plot the average hourly trading volume of the foreign exchange future contracts from Jan 2007 to Jun 2009. The
x-axis is measured in Chicago time. The online version of this figure is in color.
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Table 5. Summary of the correlation estimates

AUD CAD EUR GBP JPY CHF

AUD 0.2592 0.3783 0.3044 0.0061 0.2994
CAD 0.2584 0.2708 0.2169 0.0203 0.2282
EUR 0.3774 0.2715 0.4703 0.2138 0.6409
GBP 0.3011 0.2173 0.4724 0.1079 0.4051
JPY 0.0064 0.0201 0.2131 0.1083 0.2656
CHF 0.2955 0.2272 0.6475 0.4032 0.2635

NOTE: This table reports the average correlations among the six currencies. The numbers on the upper diagonal are based on Refresh Time scheme, while the numbers on the lower
diagonal are the average of two synchronization schemes, which in addition, require one asset to lead the other one.

our model assumptions based on market microstructure noise
are plausible.

Figure 3 plots the average hourly trading volume for each
contract over the whole sample period, indicating that traders
on CME tend to trade these currency futures simultaneously,
and that there is no clear evidence of home bias in our sample,
that is, e.g., traders tend to trade JPY instead of EUR, during
their active trading hours. Therefore, it would be reasonable to
apply the Refresh Time scheme to synchronize the data sets.

5.2 Empirical Findings

The estimation results are reported in Table 5. We find that
the correlations are all positive, which is consistent with the
findings in the literature based on lower frequency data, see,
e.g., Campbell, de Medeiros, and Viceira (2009). As shown in
Figure 4, the relationship between the Swiss franc and the Euro
exhibits a large correlation, followed by the British Pound, con-
sistently with the high degree of integration among the Euro-
pean economies as well as the exchange rate policies followed
by the Swiss Central Bank. The correlation between the Swiss

franc and the Euro slightly decreased in the middle of the crisis,
but remained at a high level. As one of the world’s major com-
modity currency, the Australian dollar has lower correlations
with the other currencies, while the Canadian dollar is even fur-
ther detached from them, owing perhaps to its close dependence
on the American economy rather than the European or Asian
economies. The large impact of the carry trade demise at var-
ious points during the financial crisis on the Australian dollar
(expecially in relation to the Japanese yen) is partly responsi-
ble for large swings in that exchange rate: high interest rates in
Australia and low interest rates in Japan combine to make this
pair of currencies an attractive target for carry traders.

Figure 4 also describes very similar patterns for those pairs
that include the Japanese yen: correlations decreased from their
respective normal levels during the period of highest uncer-
tainty. This is probably due to the characteristics of the Japanese
economy and its role in the financial crisis. The Japanese econ-
omy is strongly dependent on exports, and the yen played the
role of a reserve currency during the crisis since the Japanese
banking system emerged relatively unscathed (as did the Cana-

Figure 4. In this figure, we report the time series of correlation estimates of all six FX futures. Each curve is a 5-day moving average of the
daily correlations. The online version of this figure is in color.
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dian one). An additional factor was likely the return of yen de-
posits previously borrowed by hedge funds and similar actors
in the pursuit of carry trades that were the victims of heavy
deleveraging at the height of the crisis.

5.3 Robustness Checks

Unlike stock prices that mainly respond to individual com-
pany events, the FX markets is driven primarily by macroeco-
nomic events such as interest rate policy changes, for instance.
The correlation estimates may therefore be sensitive to specific
news announcement. The most active trading hours, as can be
seen from Figure 3, are from 7 a.m. to 11 a.m. Chicago Time
when both the Europe and US trading desks are open. In addi-
tion, most of the US macro news announcements are released
during this period, see, e.g., Andersen et al. (2003). To check
for the effect of these announcements, we divide the intraday
observations into three trading sessions: 5 p.m.–7 a.m., 7 a.m.–
11 p.m., and 11 p.m.–4 p.m. In the first session, the Asian and
Australian markets are open, with European markets joining
later. The second session is the most active period within the
day. Only the North American markets are open in the last ses-
sion. The estimates are reported in Table 6. The correlation es-
timates in the second session are mostly higher than the other
two, but the differences between the first session and last ses-
sion are not significant.

Refresh Time tends to be selected when less liquid assets
trade, hence the price of the liquid asset in the synchronized
pairs are more likely to be stale. The average time difference
between the refresh time and the real time is a measure of stal-
eness. To check the robustness of the synchronization proce-
dure, we require in addition that one asset in each pair has to
lead the other one, and then taking the average estimates given
by the two synchronization scheme. The comparison results are
reported in Table 5 (lower diagonal). The estimates do not dif-
fer significantly from the estimates given by the Refresh Time
scheme.

6. CONCLUSIONS

This article proposes a quasi-likelihood based estimator of
high frequency covariance/correlation with noisy and asynchro-
nous tick-by-tick data as well as a generalized synchronization
scheme. This is so far the only estimator that can deal with
both noise and asynchronism while maintaining optimal con-
vergence rates. Moreover, the feature of being bandwidth-free
makes this estimator advantageous in practice over other non-
parametric estimators, by removing an essentially arbitrary de-
gree of freedom. The proposed synchronization scheme is con-
servative in deleting data. Empirically, the article documents the
time-varying correlations between six major currencies during
the recent financial crisis.

APPENDIX

A.1 Proof of Theorem 2

Without loss of generality, we assume that the drift terms are zero.
Consider two new processes X̃1 ±X̃2. Apparently, each of them is a one
dimensional Itô process with additive iid noise. According to Theorem
1, V̂ar(X̃1 + X̃2), for example, is a consistent and efficient estimator of
1
T

∫ T
0 σ 2

1t + σ 2
2t + 2ρtσ1tσ2t dt with convergence rate n1/4. Therefore,

the covariance and correlation estimators are n1/4-consistent, that is,

Ĉov(X̃1, X̃2) − 1

T

∫ T

0
ρtσ1tσ2t dt = OP

(
n−1/4)

,

Ĉorr(X̃1, X̃2) −
∫ T

0 ρtσ1tσ2t dt√∫ T
0 σ 2

1t dt
√∫ T

0 σ 2
2t dt

= OP
(
n−1/4)

.

Also, the central limit theorem for V̂ar(X̃1 + X̃2) clearly holds and
the asymptotic variance is given by Remark 1 with a0 replaced by
(a2

1,0 + 2θa1,0a2,0 + a2
2,0)1/2, where θ is the correlation between U1t

and U2t . In the synchronous case, we can identify the correlation be-
tween the noises. Hence, we can work with a more general case here.

Therefore, in order to obtain the central limit theorem for the covari-
ance and correlation estimators, it is sufficient to derive the asymptotic
covariances of the four QMLE estimators:

Vα,β = Acov
(
V̂ar(αX̃1 + X̃2), V̂ar(X̃1 − βX̃2)

)
,

Table 6. Comparisons of the correlation estimates

Active markets Asia, Australia, Europe Europe, US, Canada US, Canada

Chicago Time 5 p.m.–7 a.m. 7 a.m.–11 a.m. 11 a.m.–4 p.m.
AUD–CAD 0.2476 0.2766 0.2342
AUD–EUR 0.3735 0.4042 0.3153
AUD–GBP 0.3001 0.3233 0.2534
AUD–JPY −0.0041 0.0486 −0.0321
AUD–CHF 0.3146 0.3114 0.2042
CAD–EUR 0.2618 0.2885 0.2314
CAD–GBP 0.2125 0.2294 0.1858
CAD–JPY 0.0122 0.0469 −0.0156
CAD–CHF 0.2298 0.2391 0.1747
EUR–GBP 0.4555 0.4948 0.4648
EUR–JPY 0.1801 0.2663 0.1939
EUR–CHF 0.6685 0.6341 0.5754
GBP–JPY 0.0692 0.1746 0.0929
GBP–CHF 0.3996 0.4306 0.3582
JPY–CHF 0.2198 0.3213 0.2641

NOTE: This table compares the correlations of each FX pairs in three sessions within a day.
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where α and β can be 0,1, and −1.
We start with α = β = 1. Suppose (σ 2

1 ,a2
1) and (σ 2

2 ,a2
2) are the pa-

rameters in two respective quasi-likelihood functions. It can be shown
that the QMLE for the volatility and the noise variance are asymptot-
ically independent, so we only need to consider the score functions
with respect to σ 2

k , denoted as �k,n, where k = 1,2. Let the inverse of
the covariance matrix in each likelihood (1) be �−1

k = (ω
i,j
k ). For any

process A, denote �n
i A = Aτi − Aτi−1 . Define

�k,n(ω) = 1

2
√

n

{
∂ log(det�k)

∂σ 2
k

+ Y′
k
∂�−1

k

∂σ 2
k

Yk

}
,

�̄k,n(ω) = 1

2
√

n

{
∂ log(det�k)

∂σ 2
k

+ tr

(
∂�−1

k

∂σ 2
k

�k

)}
,

where the ith components of Y1 and Y2 are

Y1,i = �n
i X̃1 + �n

i X̃2,

Y2,i = �n
i X̃1 − �n

i X̃2.

�1 = (�1,i,j) and �2 = (�2,i,j) are specified in the following way:

�1,i,i =
∫ τi

τi−1

σ 2
1,t + σ 2

2,t + 2ρtσ1tσ2t dt + 2a∗2
1 ,

�2,i,i =
∫ τi

τi−1

σ 2
1,t + σ 2

2,t − 2ρtσ1tσ2t dt + 2a∗2
2 ,

�1,i,i−1 = �1,i,i+1 = −a∗2
1 ,

�2,i,i−1 = �2,i,i+1 = −a∗2
2 ,

where a∗2
1 = a2

1,0 + a2
2,0 + 2θa1,0a2,0 and a∗2

2 = a2
1,0 + a2

2,0 −
2θa1,0a2,0.

Also, let ε1,i = �n
i U1 +�n

i U2 and ε2,i = �n
i U1 −�n

i U2. Thus, the
difference between �1,n and �̄1,n is

�1,n − �̄1,n = 1

2
√

n

{
Y′

1
∂�−1

1

∂σ 2
1

Y1 − tr

(
∂�−1

1

∂σ 2
1

�1

)}

= 1

2
√

n

{ n∑
i=1

∂ωii
1

∂σ 2
1

(
(�n

i X1 + �n
i X2)2

−
∫ τi

τi−1

σ 2
1t + σ 2

2t + 2ρtσ1tσ2t dt

)

+
n∑

i=1

n∑
j�=i

∂ω
ij
1

∂σ 2
1

(�n
i X1 + �n

i X2)(�n
j X1 + �n

j X2)

+ 2
n∑

i=1

n∑
j=1

∂ω
ij
1

∂σ 2
1

ε1,j(�
n
i X1 + �n

i X2)

+
n∑

i=1

n∑
j=1

∂ω
ij
1

∂σ 2
1

(ε1,iε1,j − Eε1,iε1,j)

}

:= 1

2
√

n
(M1

1 + M1
2 + M1

3 + M1
4), (A.1)

�2,n − �̄2,n can be decomposed in a similar way. It follows from the-
orem 7.1 in Jacod (2007) that

Acov
(
n−1/4M1

2,n−1/4M2
2
)

= a2
2σ 2

1 + a2
1σ 2

2 + 3a1a2σ1σ2

2
√

Tσ 3
1 σ 3

2 (σ1a2 + σ2a1)3

∫ T

0
(σ 2

1t − σ 2
2t)

2 dt.

Further, we can show that n−1/4(M1
1 + M1

2) and n−1/4(M2
1 + M2

2)

jointly σ(X)-stable convergence in law, due to the fact that n−1/4M1
1

and n−1/4M2
1 are asymptotically negligible.

Note that
n∑

i=1

(�n
i X1 + �n

i X2)(�n
i X1 − �n

i X2)
P−→

∫ T

0
(σ 2

1t − σ 2
2t)dt.

By conditioning on the filtration σ(X) and standard central limit
theorem, it follows that

Acov
(
n−1/4M1

3,n−1/4M2
3
)

= (a2
1,0 − a2

2,0)√
Tσ1σ2(σ1a2 + σ2a1)3

∫ T

0
(σ 2

1t − σ 2
2t)dt.

Last, the contribution of the noise terms is

Acov
(
n−1/4M1

4,n−1/4M2
4
)

= lim
n→∞

n∑
i,j=1

n∑
k,l=1

∂ω
ij
1

∂σ 2
1

∂ωkl
2

∂σ 2
2

× (
cum(ε1,i, ε1,j, ε2,k, ε2,l) + 2 cov(ε1,i, ε1,j) cov(ε2,k, ε2,l)

)
:= lim

n→∞ V1

(
∂ω1

∂σ 2
1

,
∂ω2

∂σ 2
2

)
+ V2

(
∂ω1

∂σ 2
1

,
∂ω2

∂σ 2
2

)
,

where

V1(v,ω) =
n∑

i,j,k,l=1

vijωkl cum(ε1,i, ε1,j, ε2,k, ε2,l),

V2(v,ω) =
n∑

i,j,k,l=1

vijωkl2 cov(ε1,i, ε1,j) cov(ε2,k, ε2,l)

= 2(a2
1,0 − a2

2,0)2

×
N∑

i=1

N∑
j=1

{
vij(ωj−1,i−1 + ωj−1,i+1 − 2ωj−1,i + ωj+1,i−1

+ ωj+1,i+1 − 2ωj+1,i − 2(ωj,i−1 + ωj,i+1 − 2ωj,i)
)}

.

And it follows from a similar proof of lemma 1 in Aït-Sahalia, Myk-
land, and Zhang (2005) that,

cum(ε1,i, ε1,j, ε2,k, ε2,l)

=
⎧⎨⎩

2S(U1,U2), if i = j = k = l

(−1)s(i,j,k,l)S(U1,U2), if max(i, j, k, l) = min(i, j, k, l) + 1

0, otherwise,

where S(U1,U2) = cum4[U1] + cum4[U2] − 2 cov(U2
1,U2

2) +
4 cov2(U1,U2) and s(i, j, k, l) denotes the number of indices among
(i, j, k, l) that are equal to min(i, j, k, l).

Note that for k = 1,2, we have
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where ηi and γi are given in (A.2) and (A.3), with σ 2 and a2 replaced
by σ 2

i and a2
i . Following a similar calculation as in lemma 2 of Xiu

(2010), we can obtain

V1

(
∂ω1

∂σ 2
1

,
∂ω2

∂σ 2
2

)
= O(1),

V2

(
∂ω1

∂σ 2
1

,
∂ω2

∂σ 2
2

)
= (a2

1,0 − a2
2,0)2√

T

2a1a2(a2σ1 + a1σ2)3
n1/2 + o

(
n1/2)

.

Therefore,

Acov
(
n−1/4M1

4,n−1/4M2
4
) = (a2

1,0 − a2
2,0)2√

T

2a1a2(a2σ1 + a1σ2)3
.

Combining the above results with Remark 1 and applying lemma 1
and proposition 5 in Barndorff-Nielsen et al. (2008b), we can obtain
the central limit theorem for two-dimensional case:(

n1/4(�1,n − �̄1,n)

n1/4(�2,n − �̄2,n)

)
LX−→ MN

((
0
0

)
,

(
U11 U12
U12 U22

))
,

where

U12 = a2
2σ 2

1 + a2
1σ 2

2 + 3a1a2σ1σ2

8
√

Tσ 3
1 σ 3

2 (σ1a2 + σ2a1)3

∫ T

0
(σ 2

1t − σ 2
2t)

2 dt

+ (a2
1,0 − a2

2,0)

4
√

Tσ1σ2(σ1a2 + σ2a1)3

∫ T

0
(σ 2

1t − σ 2
2t)dt

+ (a2
1,0 − a2

2,0)2√
T

8a1a2(a2σ1 + a1σ2)3
,

U11 = 5
∫ T

0 (σ 2
1t + 2ρtσ1tσ2t + σ 2

2t)
2 dt

64a1σ 7
1

√
T

+ (a2
1,0 + a2

2,0 + 2θa1,0a2,0)2√
T

64a5
1σ 3

1

+ (a2
1,0 + a2

2,0 + 2θa1,0a2,0)
∫ T

0 σ 2
1t + σ 2

2t + 2ρtσ1tσ2t dt

32σ 5
1 a3

1

√
T

,

U22 = 5
∫ T

0 (σ 2
1t − 2ρtσ1tσ2t + σ 2

2t)
2 dt

64a2σ 7
2

√
T

+ (a2
1,0 + a2

2,0 − 2θa1,0a2,0)2√
T

64a5
2σ 3

2

+ (a2
1,0 + a2

2,0 − 2θa1,0a2,0)
∫ T

0 σ 2
1t + σ 2

2t − 2ρtσ1tσ2t dt

32σ 5
2 a3

2

√
T

.

Therefore, a direct application of the Delta method yields(
n1/4(σ̂ 2

1,n − 1
T

∫ T
0 σ 2

1t + 2ρtσ1tσ2t + σ 2
2t dt)

n1/4(σ̂ 2
2,n − 1

T

∫ T
0 σ 2

1t − 2ρtσ1tσ2t + σ 2
2t dt)

)
LX−→ MN

((
0
0

)
,

(
V1,−1 V1,1

V1,1 V−1,1

))
,

where

V1,−1 = T−1/2
(

5
q∗

1
σ∗

1
+ 3σ∗3

1

)
a∗

1,

V−1,1 = T−1/2
(

5
q∗

2
σ∗

2
+ 3σ∗3

2

)
a∗

2,

V1,1 = 16a∗
1a∗

2

T(a∗
2σ∗

1 + a∗
1σ∗

2 )3

×
(

a∗2
2 σ∗2

1 + a∗2
1 σ∗2

2 + 3a∗
1a∗

2σ∗
1 σ∗

2

2
√

T

∫ T

0
(σ 2

1t − σ 2
2t)

2 dt

+ (a2
1,0 − a2

2,0)σ∗2
1 σ∗2

2√
T

∫ T

0
(σ 2

1t − σ 2
2t)dt

+ (a2
1,0 − a2

2,0)2σ∗3
1 σ∗3

2

√
T

2a∗
1a∗

2

)

with σ∗2
1 = 1

T

∫ T
0 σ 2

1t + σ 2
2t + 2ρtσ1tσ2t dt, σ∗2

2 = 1
T

∫ T
0 σ 2

1t + σ 2
2t −

2ρtσ1tσ2t dt,q∗
1 = 1

T

∫ T
0 (σ 2

1t + 2ρtσ1tσ2t + σ 2
2t)

2 dt, and q∗
2 = 1

T ×∫ T
0 (σ 2

1t − 2ρtσ1tσ2t + σ 2
2t)

2 dt.
Therefore,

n1/4
(

Ĉov(X̃1, X̃2) − 1

T

∫ T

0
ρtσ1tσ2t dt

)
LX−→ MN(0,V),

where

V = ( 1
4 − 1

4 )

(
V1,−1 V1,1

V1,1 V−1,1

)( 1
4

− 1
4

)
.

Similarly,

Vα,β = 16aα
1 aβ

2

2T3/2(aβ
2 σα

1 + aα
1 σ

β
2 )3

×
((

(aβ
2 )2(σα

1 )2 + (aα
1 )2(σ

β
2 )2 + 3aα

1 aβ
2 σα

1 σ
β
2

)
×

∫ T

0
(ασ 2

1t − βσ 2
2t + (1 − αβ)ρtσ1tσ2t)

2 dt

+ 2(αa2
1,0 − βa2

2,0 + (1 − αβ)θa1,0a2,0)(σα
1 )2(σ

β
2 )2

×
∫ T

0
(ασ 2

1t − βσ 2
2t + (1 − αβ)ρtσ1tσ2t)dt

+ (aα
1 aβ

2 )−1(αa2
1,0 − βa2

2,0 + (1 − αβ)θa1,0a2,0)2

× (σα
1 )3(σ

β
2 )3T

)
,

where aα
1 = (α2a2

1,0 +a2
2,0 +2αθa1,0a2,0)1/2,aβ

2 = (a2
1,0 +β2a2

2,0 −
2βθa1,0a2,0)1/2, σα

1 = ( 1
T

∫ T
0 α2σ 2

1t + σ 2
2t + 2αρtσ1tσ2t dt)1/2, and

σ
β
2 = ( 1

T

∫ T
0 σ 2

1t + β2σ 2
2t − 2βρtσ1tσ2t dt)1/2.

Denote the asymptotic variances of the V̂ar(X̃i) as Vi, for i = 1,2.
According to Theorem 1,

Vi = 5ai,0
∫ T

0 σ 4
i,t dt

T(
∫ T

0 σ 2
i,t dt)1/2

+ 3ai,0(
∫ T

0 σ 2
i,t dt)3/2

T2
.

Therefore, using the Delta method again, we obtain

n1/4
(

Ĉorr(X̃1, X̃2) −
∫ T

0 ρtσ1tσ2t dt√∫ T
0 σ 2

1t dt
√∫ T

0 σ 2
2t dt

)
LX−→ MN(0, Ṽ)

and Ṽ = e�e′, where

� =
⎛⎜⎝

V1 · · ·
V1,0 V1,−1 · ·

V−1,0 V1,1 V−1,1 ·
V0,0 V0,−1 V0,1 V2

⎞⎟⎠
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and

e =
(

− T
∫ T

0 ρtσ1tσ2t dt

2(
∫ T

0 σ 2
1t dt)3/2(

∫ T
0 σ 2

2t dt)1/2
,

T

4(
∫ T

0 σ 2
1t dt)1/2(

∫ T
0 σ 2

2t dt)1/2
,

− T

4(
∫ T

0 σ 2
1t dt)1/2(

∫ T
0 σ 2

2t dt)1/2
,− T

∫ T
0 ρtσ1tσ2t dt

2(
∫ T

0 σ 2
1t dt)1/2(

∫ T
0 σ 2

2t dt)3/2

)
.

A.2 Proof of Theorem 3

In order to simplify the notation and without loss of generality,
we assume that X̃it is observed at {ti,j,0 ≤ j ≤ n, i = 1,2}, where
t1,j−1 ≤ t2,j−1 ≤ τj−1 < t1,j ≤ t2,j, for each 0 ≤ j ≤ n. Otherwise, we
can just swap the subscripts 1 and 2, if needed. Denote n̄ = T/�̄. Let
�−1 = (ωij). Of course, we can add one more condition: K−1 ≤ σ 2

it ≤
K, ∀t ∈ [0,T], since one can always relax the constraint by localization
scheme.

�n = (�1
n (ω),�2

n (ω))′

=
(

1

2
√

n̄

{
∂ log(det�)

∂σ 2
+ Y′ ∂�−1

∂σ 2
Y

}
,

1

2n̄

{
∂ log(det�)

∂a2
+ Y′ ∂�−1

∂a2
Y

})′
,

where Yi = X1t1,i + X2t2,i − X1t1,i−1 − X2t2,i−1 + εi and εi = U1t1,i +
U2t2,i − U1t1,i−1 − U2t2,i−1 . Also,

�̄n =
(

1

2
√

n̄

{
∂ log(det�)

∂σ 2
+ tr

(
∂�−1

∂σ 2
�0

)}
,

1

2n̄

{
∂ log(det�)

∂a2
+ tr

(
∂�−1

∂a2
�0

)})′
,

where �0 = (�0,i,j) is given by

�0,i,i =
∫ t1,i

t1,i−1

σ 2
1t dt +

∫ t2,i

t2,i−1

σ 2
2t dt +

∫ t1,i

t2,i−1

2ρtσ1tσ2t dt + 2u2
1,

�0,i,i−1 = �0,i−1,i = −u2
1 +

∫ t2,i−1

t1,i−1

ρtσ1tσ2t dt

and u2
1 = a2

1,0 + a2
2,0. The other coefficients are 0.

On the other hand, we can write

ωij = (−η)|i−j| − (−η)i+j − (−η)2n−i−j+2 + (−η)2n−|i−j|+2

γ 2(1 − η2)(1 − η2n+2)
,

where

η = 1

2a2

{−2a2 − σ 2�̄ +
√

σ 2�̄(4a2 + σ 2�̄)
}
, (A.2)

γ 2 = 1

2

{
2a2 + σ 2�̄ +

√
σ 2�̄(4a2 + σ 2�̄)

}
. (A.3)

We consider the same decomposition of �n − �̄n as in formula
(A.1). Obviously, data synchronization has no effect on the order of the
variances for the last two terms; hence we are left with the following
two asymptotic results that are in need of verification:

n∑
i=1

ωii
{(∫ t1,i

t1,i−1

σ1t dW1t +
∫ t2,i

t2,i−1

σ2t dW2t

)2

−
∫ t1,i

t1,i−1

σ 2
1t dt −

∫ t2,i

t2,i−1

σ 2
2t dt −

∫ t1,i

t2,i−1

2ρtσ1tσ2t dt

}
= Op(1),

n∑
i=1

n∑
j�=i

ωij
(∫ t1,i

t1,i−1

σ1t dW1t +
∫ t2,i

t2,i−1

σ2t dW2t

)

×
(∫ t1,j

t1,j−1

σ1t dW1t +
∫ t2,j

t2,j−1

σ2t dW2t

)

−
n∑

i=1

(ωi,i−1 + ωi−1,i)

∫ t2,i−1

t1,i−1

ρtσ1tσ2t dt = Op
(
n̄1/4)

.

By lemma 1 in Xiu (2010) and using the tower property of the condi-
tional expectation (conditioning on {�i}), we have for any k = 1,2,

n∑
i=1

ωii
{(∫ tk,i

tk,i−1

σkt dWkt

)2
−

∫ tk,i

tk,i−1

σ 2
kt dt

}
= Op(1),

n∑
i=1

n∑
j�=i

ωij
(∫ tk,i

tk,i−1

σkt dWkt

∫ tk,j

tk,j−1

σkt dWkt

)
= Op

(
n̄1/4)

.

Hence, it is sufficient to show that
n∑

i=1

ωii
{∫ t1,i

t1,i−1

σ1t dW1t

∫ t2,i

t2,i−1

σ2t dW2t

−
∫ t1,i

t2,i−1

ρtσ1tσ2t dt

}
= Op(1),

n∑
i=1

ωi,i−1
∫ t1,i

t1,i−1

σ1t dW1t

∫ t2,i−1

t2,i−2

σ2t dW2t

−
n∑

i=1

ωi,i−1
∫ t2,i−1

t1,i−1

ρtσ1tσ2t dt = Op(1).

These two equalities are in fact similar, since ωi,i−1 = ωi,i + o(1). It

can be proved by noting that
∫ t2,i−1

t1,i−1
ρtσ1tσ2t dt is the quadratic covari-

ation of
∫ t1,i

t1,i−1
σ1t dW1t and

∫ t2,i−1
t2,i−2

σ2t dW2t.

So far, we have obtained the point-wise convergence of �n − �̄n
to 0. Following the same reasoning in the proofs of theorems 2 and 4
in Xiu (2010), we can prove the stochastic equicontinuity of �n − �̄n,
which guarantees that

sup
σ 2,a2

‖�n(σ 2,a2) − �̄n(σ 2,a2)‖ P−→ 0.

Next, we verify the identifiability condition and find the roots of �̄n.

�̄2
n = 1

2n̄

{
tr

(
�−1 ∂�

∂a2

)
+ tr

(
∂�−1

∂a2
�0

)}

= 1

n̄

{
(tr�−1 − tr�−1J) + u2

1

(
tr

∂�−1

∂a2
− tr

∂�−1

∂a2
J
)

+ 1

2

n∑
i=1

∂ωii

∂a2

(∫ t1,i

t1,i−1

σ 2
1t dt +

∫ t2,i

t2,i−1

σ 2
2t dt

+
∫ t1,i

t2,i−1

2ρtσ1tσ2t dt

)
dt

}

+ 1

2

n∑
i=1

(
∂ωi−1,i

∂a2
+ ∂ωi,i−1

∂a2

)∫ t2,i−1

t1,i−1

ρtσ1tσ2t dt,

where J = (Jij), where Ji−1,i = 1, and the other components of J is 0,
and

tr�−1 − tr(�−1J)

= n(1 + η)(1 + η2n+1) − η(1 + η2n) − 2η2(1 − η2n−1)/(1 − η)

γ 2(1 − η2)(1 − η2n+2)

= n

2a2
−

√
Ta2σ 2

4a4
n1/2 + O(1). (A.4)
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Let ωm = ωn2/3,n2/3
. Note that ωi,j = ωj,i, and for any n2/3 ≤ i ≤ n −

n2/3,

ωii = ωm(1 + o(1)) = ωi,i−1(1 + o(1)),

∂ωii

∂a2
= ∂ωi,i−1

∂a2
(1 + o(1)) = − 1

2a2
ωii(1 + o(1)),

∂ωii

∂σ 2
= ∂ωi,i−1

∂σ 2
(1 + o(1)) = − 1

2σ 2
ωii(1 + o(1)).

For i ≤ n2/3 and i ≥ n − n2/3, they are dominated by ωm, and the
integration is over an interval which shrinks at the rate n−1/3. So

1

2

n∑
i=1

∂ωii

∂a2

(∫ t1,i

t1,i−1

σ 2
1t dt +

∫ t2,i

t2,i−1

σ 2
2t dt +

∫ t1,i

t2,i−1

2ρtσ1tσ2t dt

)

+ 1

2

n∑
i=1

(
∂ωi−1,i

∂a2
+ ∂ωi,i−1

∂a2

)∫ t2,i−1

t1,i−1

ρtσ1tσ2t dt

= ∂ωm

∂a2

∫ T

0
(σ 2

1t + σ 2
2t + 2ρtσ1tσ2t)dt (1 + op(1))

= − n̄1/2(a2)−3/2

4
√

σ 2T

×
∫ T

0
(σ 2

1t + σ 2
2t + 2ρtσ1tσ2t)dt (1 + op(1)). (A.5)

By calculation, we can also obtain

�̄2
n =

(
1

2a2
− u2

1

2a4

)
+

(
3u2

1

√
σ 2T

8a5
−

√
σ 2T

4a3

−
∫ T

0 (σ 2
1t + σ 2

2t + 2ρtσ1tσ2t)dt

8a3
√

σ 2T

)
n̄−1/2 + op

(
n̄−1/2)

.

Hence, if we solve �̄2
n = 0, we get

a∗2
n = u2

1 +
(3u2

1

√
σ∗2

n T

4a∗
n

−
√

σ∗2
n Ta∗

n

2

− a∗
n
∫ T

0 (σ 2
1t + σ 2

2t + 2ρtσ1tσ2t)dt

4
√

σ∗2
n T

)
n−1/2

+ op
(
n̄−1/2)

. (A.6)

On the other hand, let � be the symmetric trigonal matrix, whose
ith element on the diagonal is 
i := ∫ t1,i

t1,i−1
σ 2

1t dt + ∫ t2,i
t2,i−1

σ 2
t dt +∫ t1,i

t2,i−1
2ρtσ1tσ2t dt − σ 2�̄, and the element off the diagonal is∫ t2,i−1

t1,i−1
ρtσ1tσ2t dt then

�̄1
n (σ 2,a2) = 1

2
√

n̄

{
tr

(
�−1 ∂�

∂σ 2

)
+ ∂ tr(�−1�0)

∂σ 2

}
= 1

2
√

n̄

{
tr

(
�−1 ∂�

∂σ 2

)

+ ∂ tr(�−1(� + (2I − J − J′)(a2 − u2
1) + �))

∂σ 2

}

= 1

2
√

n̄

{ n∑
i=1

(
∂ωi,i−1

∂σ 2
+ ∂ωi,i−1

∂σ 2

)

i,i−1 +

n∑
i=1

∂ωii

∂σ 2

ii

}

−
√

T

8a3σ
(a2 − u2

1) + Op
(
n̄−1/2)

= − 1

8aσ 3
√

T

(∫ T

0
σ 2

1t + σ 2
2t + 2ρtσ1tσ2t dt − σ 2T

)

−
√

T

8a3σ
(a2 − u2

1) + Op
(
n̄−1/2)

. (A.7)

Set �̄1
n (σ 2,a2) = 0, that is,∫ T

0
σ 2

1t + σ 2
2t + 2ρtσ1tσ2t dt − σ∗2

n T

= −σ∗2
n T

a∗2
n

(a∗2
n − u2

1) + Op
(
n̄−1/2)

= Op
(
n̄−1/2)

. (A.8)

Therefore, all the desired equalities remain as in Xiu (2010), ex-
cept that we replace a2

0 with u2
1 and

∫ T
0 σ 2

t dt with
∫ T

0 σ 2
1t + σ 2

2t +
2ρtσ1tσ2t dt. Thus, the identifiability condition holds, and hereby we
have σ̂ 2 − σ∗2

n = op(1) and â2 − a∗2
n = op(1). The desired conver-

gence rates follow from Taylor expansion of �n − �̄n as in the proof
of Theorem 2.

[Received March 2010. Revised June 2010.]
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