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Abstract—Although it is clear that the volatility of asset returns is serially
correlated, there is no general agreement as to the most appropriate
parametric model for characterizing this temporal dependence. In this
paper, we propose a simple way of modeling � nancial market volatility
using high-frequency data. The method avoids using a tight parametric
model by instead simply � tting a long autoregression to log-squared,
squared, or absolute high-frequency returns. This can either be estimated
by the usual time domain method, or alternatively the autoregressive
coef� cients can be backed out from the smoothed periodogram estimate of
the spectrum of log-squared, squared, or absolute returns. We show how
this approach can be used to construct volatility forecasts, which compare
favorably with some leading alternatives in an out-of-sample forecasting
exercise.

I. Introduction

ALTHOUGH asset returns generally appear to be close
to a martingale difference sequence, there is over-

whelming evidence that asset returns are not independently
distributed over time because of volatility clustering. Serial
correlation in the volatility of asset returns has been docu-
mented in an enormous number of papers, going back to
Mandelbrot (1963) and Fama (1965), and, more recently,
the ARCH literature pioneered by Engle (1982). Recent
survey articles include Bollerslev, Chou, and Kroner (1992),
Bollerslev, Engle, and Nelson (1994), and Diebold and
Lopez (1995). Many parametric models have been proposed
for modeling this persistence of volatility in asset returns.
These include the ARCH and GARCH models (Engle,
1982; Bollerslev, 1986), the EGARCH model (Nelson,
1991) and stochastic volatility models (Taylor, 1986;
Andersen, 1994). Some researchers have proposed models
with long memory in the volatility process (including Bail-
lie, Bollerslev, and Mikkelsen (1996), Breidt, Crato, and de
Lima (1998), Harvey (1998), and Robinson (1991)). Other
authors, such as Engle and Lee (1999) have proposed
models in which the volatility process has two components:
one of which is nearly nonstationary whereas the other is
much less persistent. A number of papers have considered
nonparametric approaches to representing time-varying
conditional heteroskedasticity (Pagan & Schwert, 1990;
Gallant, Rossi, & Tauchen, 1992, 1993). In these models,
squared asset returns are modeled as a nonparametric func-
tion of lagged returns. However, in practice it is necessary
to choose a relatively small number of lags, because of the
well-known problems in applying nonparametric methods
to high-dimensional models. When working with high-

frequency data, there are also important intradaily patterns
in volatility (Andersen & Bollerslev, 1997). So, although it
is clear that the volatility of asset returns is highly persistent,
there is no consensus as to the best model for representing
these volatility dynamics.

A different approach to modeling volatility dynamics is
proposed in this paper, explicitly utilizing the additional
information in high-frequency data. The idea is to model
volatility dynamics by � tting a long AR representation to
log-squared, squared, or absolute high-frequency asset re-
turns. This can be implemented by � rst estimating the
spectrum of log-squared, squared, or absolute returns and
then using a numerical method, sometimes known as the
Wiener-Kolmogorov � lter, to solve for the coef� cients in
the corresponding AR representation. Alternatively, the AR
representation may simply be estimated by the usual time
domain method. These approaches are not fully nonpara-
metric, but they may allow for � exible dynamics. We
emphasize that they are appropriate only in the presence of
a very large sample of high-frequency data, so that � tting
very long autoregressions is both feasible and necessary to
reasonably approximate the observed patterns of volatility
clustering. Indeed, these methods fare poorly with a sample
of daily returns, as shall be demonstrated below. In a related
context, Andersen and Bollerslev (1998) showed that intra-
daily data was vitally important in the meaningful ex post
evaluation of daily volatility forecasts. Moreover, Andersen,
Bollerslev, and Lange (1999) have recently shown that,
although the gains in forecast error accuracy from correctly
speci� ed high-frequency GARCH volatility models can be
very large from a theoretical perspective, the standard mod-
els tend to perform very poorly when applied directly to
high-frequency data. This paper shows how the high-fre-
quency data may easily be used to construct superior daily
volatility forecasts.

The plan for the remainder of the paper is as follows. The
proposed method for modeling volatility is introduced in
section II. In section III, it is used to predict future values of
the volatility of the Deutschemark–U.S. Dollar spot ex-
change rate based on a ten-year sample of � ve-minute
returns. Section IV concludes.

II. Estimation of Volatility Dynamics

A. The Assumed Model

We begin by making a high-level primitive assumption
that an appropriate proxy for the time series of volatilities,
such as the log-squared returns, has an AR representation.
Speci� cally, we assume that { y t} t51

T is a martingale differ-
ence sequence of asset returns such that
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Assumption A1: a(L)(log ( y t
2) 2 m1) 5 et.

Here and throughout, a(L) 5 1 2 a1L 2 a2L2 . . .
denotes a (possibly in� nite-order) lag polynomial such that
¥ j50

` u a j u j1/ 2 , ` ,1 L is the lag operator, and et is a serially
uncorrelated white noise sequence with mean zero, variance
s2, and � nite fourth moment. As alternatives to assumption
A1, we could instead specify that the squared or absolute
returns have an AR representation, modi� ed so that the
squared or absolute returns cannot be negative.2 To accom-
modate this, we introduce alternative assumptions A19 and
A10:

Assumption A1*: a(L)( zt 2 m2) 5 e t and yt
2 5 max

( zt, 0).

Assumption A1(: a(L)( zt 2 m3) 5 et and u y t u 5
max ( zt, 0).

Assumption A1 nests some standard models of stochastic
volatility as special cases. For example, the standard autore-
gressive stochastic volatility (ARSV) model speci� es that

yt 5 exp~ht/ 2!suut

~1 2 fL!h t 5 s t

where u t and t are i.i.d. N(0, 1) and u f u , 1. This implies
that log ( y t

2) 5 h t 1 log (su
2) 1 log (u t

2) which has a
representation as an ARMA(1, 1) reduced form (see, for
example, Harvey, Ruiz, and Shephard (1994)), and assump-
tion A1 is satis� ed.

One approach to estimating a(L) is simply to � t an
AR( p) to the observed sample, where the order of the
estimated autoregression, p, goes to in� nity but at a rate
slower than T1/3, as the sample size T goes to in� nity.3 Let
the resulting estimates for a1, a2, . . . be denoted by ã1,
ã2, . . . . The Wiener-Kolmogorov � lter provides an alter-
native approach to estimating these coef� cients, which may
potentially work better when a(L) is not in fact a small-
order autoregressive polynomial.

B. The Wiener-Kolmogorov Filter

Suppose that assumption A1 holds and that the spectrum
of log ( yt

2) 2 m1 is known. Call this spectrum f(l). Of
course, the spectrum of any time series contains, in princi-
ple, the same information as its AR representation, and
going from the AR representation to the spectrum is numer-

ically straightforward, as f~l! 5
s2

2p
u a~eil! u 22. Inverting

this transformation is harder, but there is a standard result
(see, for example, Brillinger (1981, p. 79)) that provides a

closed-form representation for the autoregressive coef� -
cients in terms of the spectrum of a univariate time series.
Speci� cally,

a j 5
1

2p E
2p

p

B~l!21 exp~ijl!dl (1)

where

B~l! 5 exp S 1

2
c~0! 1 O

51

`

c~ ! exp~2i l! D (2)

and

c~ ! 5
1

2p E
2p

p

log ~ f~l!! exp~i l!dl. (3)

This algorithm is sometimes referred to as the Wiener-
Kolmogorov � lter (Bhansali & Karavellas, 1983). Naturally,
in empirical applications, no researcher ever knows the true
spectrum of the log-squared returns. However, the spectrum
may be estimated by smoothing the periodogram, and the
estimated spectrum may then be substituted into the Wiener-
Kolmogorov � lter. In particular, de� ne the periodogram of
the log-squared data as

I~l! 5
1

2pT
u O
t51

T

~log ~yt
2! 2 m̂1!e

itl u 2, (4)

where m̂1 denotes the sample average of log ( yt
2). The

associated smoothed estimate of the spectrum is then given
by

f̂~l! 5
1

Th
O

k52n

n

K S l 2 lk

h D I~lk!, (5)

where n 5 [T/ 2],

lk 5
2pk

T
,

K[ is a kernel function, and
h is a bandwidth parameter which converges to zero but

at a rate slower than O(T21).
In this paper, we use the Epanechnikov kernel which sets

K~v! 5 0.75~1 2 w2!1~ u v u # 1!. (6)

Under the given conditions, f̂(l) is consistent for f(l)
uniformly on [2p, p] (Brillinger, 1981).4

Let the resulting estimates for a1, a2, . . . obtained by
substituting this estimated spectrum into the Wiener-Kol-

1 1

2
-summability of these coef� cients is required to enable the spectrum

of the log-squared data to be uniformly consistently estimable.
2 It is of course an advantage of assumption A1 that no such modi� cation

is required.
3 See Berk (1974).

4 Other kernels will, of course, also guarantee the uniform consistency of
f̂(l), as discussed by Brillinger (1981).
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mogorov � lter in equations (1), (2), and (3) be denoted by
â1, â2, . . . . Because each of these coef� cients is a contin-
uous function of f(l), it follows that, if f̂(l) is uniformly
consistent for f(l), then each â j is consistent for a j. Under
assumption A19 or A10, exactly the same approach may be
used to solve for the AR coef� cients of squared returns or
absolute returns from the estimated spectrum of squared or
absolute returns, respectively. The approach of estimating
the spectrum by smoothing the periodogram and then back-
ing out the implied AR coef� cients has previously been
used by Bhansali (1973, 1974, 1977), among others. More
recently, a similar idea has also been applied by Wright
(1999) in the context of impulse response analysis. The
present paper shows how this frequency domain approach
may be applied to modeling the volatility of asset returns.5

C. The Modi� ed Log-Squared Transformation

Assumption A1 applies to log-squared asset returns. An
inlier problem often arises when dealing with the log-
squared transformation; if the asset return is very close to
zero, then the log-squared transformation yields a large
negative number. Such an observation can then greatly
affect the results of subsequent data analysis. In the extreme
case, if the asset return is equal to zero, then the log-squared
transformation is not even de� ned. Consequently, Fuller
(1996) proposes a slight modi� cation of the log-squared
transformation, which does not converge to minus in� nity
as the argument converges to zero. This speci� es that the
transformed series of asset returns is

y*t 5 log ~yt
2 1 ts2! 2

ts2

yt
2 1 ts2

where s2 is the sample variance of y t and t is a small
constant. In all empirical work in this paper, we use y*t with
t 5 0.02, instead of the log-squared returns.6 However, for
convenience, we adopt the shorthand of referring to y*t as the
log-squared returns.

III. Forecasting Integrated Volatility

A. Integrated Volatility and Alternative Volatility Measures

A leading motivation for studying models of time-varying
conditional heteroskedasticity is to be able to forecast future
volatility. One common measure of the quality of a forecast
of an arbitrary variable, x t, is the R2 in a regression of the ex
post realized values of x t on its forecast values (and a
constant). We refer to this procedure as the Mincer-Zarno-
witz method (Mincer and Zarnowitz, 1969). The R2 in the
Mincer-Zarnowitz regression indicates that GARCH and
other standard volatility models provide poor forecasts of
future squared returns. (See, for example, Jorion (1995) and
Andersen and Bollerslev (1998).)

However, the squared one-period return is generally a
very noisy measure of the true latent volatility and is, as
such, virtually unforecastable. Meanwhile, if the researcher
is interested in the volatility of the return of an asset over
any � xed time period from t0 to t1 (such as a day, or the life
of an option), and if the researcher has access to high-
frequency intradaily data on the asset returns, then the
squared high-frequency returns, summed over the period
from t0 to t1, constitute a much more accurate estimate of
the true ex post volatility of the returns over that � xed time
period.7 We refer to this measure as the integrated volatility.
In a related context, Andersen and Bollerslev (1998) point
out that standard GARCH models provide good forecasts of
future values of integrated volatility. In particular, they
show that the R2 in the Mincer-Zarnowitz regression is quite
high for some standard data sets of asset returns. In addition
to allowing for more meaningful ex post volatility forecast
evaluation, this integrated volatility measure also corre-
sponds directly to the theoretical notion of volatility enter-
tained in the diffusion models proposed by Barndorff-
Nielsen and Shephard (2001). This same measure also
� gures prominently in the stochastic volatility option pric-
ing literature (such as Hull and White (1987)) and its formal
estimation has recently been explored by Gallant, Hsu, and
Tauchen (1999).

In this section, we consequently focus on forecasting
integrated volatility. For concreteness, and to tie in with the
data set analyzed later, let y t denote a � ve-minute return
series. With 24-hour markets, there are 288 � ve-minute
observations in a day. It is also convenient to use the
notation ys,n to refer to the nth � ve-minute return on day s,
s 5 1, . . . S, n 5 1, . . . 288. Clearly, yt 5 ys,n with t 5
288(s 2 1) 1 n. The integrated volatility over the day s is
then de� ned as VI(s) 5 1

288
¥n51

288 ys,n
2 .

5 Long-memory in the volatility process is not strictly speaking allowed
for, as we have assumed that the coef� cients in a(L) are 1

2
-summable.

Concretely, if f(l) is not bounded away from zero at the origin, then f̂(l)
is not uniformly consistent. For example, the fractionally integrated
stochastic volatility model of Breidt, Crato, and de Lima (1998) yields an
AR representation for log-squared returns, but the 1

2
-summability require-

ment is not satis� ed. Nevertheless, from a practical empirical perspective,
the estimated a(L) coef� cients may get arbitrarily close to a true long-
memory process. Moreover, in a recent paper, Hidalgo and Yajima (1999)
have shown how to adapt the Wiener-Kolmogorov � lter to admit long
memory; this involves using an alternative spectral density estimator. We
have reworked the empirical results in this paper using their spectral
density estimator and have found that it makes very little difference in
practice.

6 The choice of t follows Fuller (1996) and Breidt and Carriquiry
(1996).

7 As discussed more formally in Andersen et al. (2001), if the returns
follow a special semimartingale, the quadratic variation of the process
constitutes a natural measure of the ex post realized volatility.
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B. The Data

The spot Deutschemark–U.S. Dollar exchange rate data
was collected and provided by Olsen and Associates in
Zürich, Switzerland. The full sample spans the period from
December 1, 1986 through December 1, 1996. The returns
are calculated as the difference between the linearly inter-
polated average of the midpoint of the logarithmic bid and
ask for the two nearest quotes, resulting in a total of 288
� ve-minute return observations per day.8 Although the for-
eign exchange market is of� cially open 24 hours a day and
365 days a year, the trading activity slows decidedly during
the weekend period. To avoid confounding the evidence by
such weekend patterns, we simply excluded all returns from
Friday 21:00 Greenwich Mean Time (GMT) through Sun-
day 21:00 GMT; a similar weekend no-trade convention
was adopted by Andersen and Bollerslev (1997). Further-
more, the market slows decidedly over certain holiday
periods. Excluding the most important of these days9 leaves
us with a sample of 2,445 complete days, for a total of T 5
2,445 3 288 5 704,160 � ve-minute y t return observa-
tions.

Consistent with the notion of ef� cient markets, the
� ve-minute returns are approximately mean zero and
serially uncorrelated. At the same time, the evidence
for volatility clustering is overwhelming. For instance,
the lag-1 sample autocorrelation coef� cient for the
squared � ve-minute returns equals 0.195, which is over-
whelmingly signi� cant at any level. The autocorrelo-
grams of the squared, log-squared, and absolute returns,
in � gure 1, all show a rapid initial decay but then decay
only slowly. Additionally, these autocorrelograms have a
distinct seasonal pattern. Similar periodic autocorrelo-
grams for other speculative returns and time periods have
previously been reported in the literature by Dacorogna
et al. (1993) and Andersen and Bollerslev (1997), among
others, who attribute the periodicities to the existence of
strong intradaily volatility patterns associated with the
opening and closing of the various � nancial centers
around the world.

C. Volatility Forecasts with Daily Data

Arguably, the most common approach to volatility
forecasting is based on the estimation of daily GARCH
models. Speci� cally, let ys

(D) 5 ¥n51
288 ys,n denote the daily

return for day s. The GARCH( p, q) model then speci� es
that

ys
~D! 5 sshs

ss
2 5 v 1 O

i51

p

a iss2i
2 hs2i

2 1 O
j51

q

b jss2j
2 ,

where hs is serially uncorrelated with mean zero and vari-
ance one,

v . 0,
a i $ 0,
b j $ 0, and
the parameters satisfy the conditions in Nelson and Cao

(1992) for ss
2 to be positive (almost surely).

The quasi-maximum likelihood estimates of these param-
eters, obtained under the auxiliary assumption of condi-
tional normality, may be calculated, and the estimated value
of ss

2 can be viewed as a forecast of VI(s).10 This forecast
can then be evaluated in terms of its mean bias and mean
square prediction error, or in terms of the R2, coef� cient
estimates and their standard errors in the Mincer-Zarnowitz
regression of VI(s) on a constant and ss

2.
Table 1 shows the resulting quasi-maximum likelihood

estimates of the parameters of GARCH(1, 1), GARCH(1,
2), GARCH(2, 1), and GARCH(2, 2) models, estimated
using the full sample of 2,445 days.11 Table 2 shows the
out-of-sample forecast evaluation criteria for these speci� -

8 See Dacorogna et al. (1993) and Müller et al. (1990) for a more
detailed description of the activity patterns in the foreign exchange market
and the method of data capturing and � ltering that underlie the return
calculations.

9 For further discussion of the speci� c exclusions, we refer to Andersen
et al. (2001), in which the same data is analyzed from a different
perspective.

10 As discussed in Andersen et al. (2001), if the returns follow a special
semimartingale, then ss

2 5 E s21( ys
(D)2) 5 Es21(VI(s)), but ys

(D)2 is a much
more noisy measure of this expectation than V I(s); see also Andersen and
Bollerslev (1998).

11 Among all GARCH( p, q) models for daily data with p, q # 3, the
Akaike and Schwartz information criteria both selected the GARCH(2, 1)
speci� cation.

FIGURE 1.—AUTOCORRELOGRAM OF VOLATILITY MEASURES

FOR DM-DOLLAR RETURNS

This � gure gives the autocorrelogramof the squared, log-squared,and absolute � ve-minute demeaned
DM–$ returns, as described in the text.
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cations, estimating the model parameters with the � rst half
of the data and evaluating the forecasts over the remainder
of the sample. In table 2, we also report the forecast
evaluation criteria for an EGARCH(1, 1) model and for
forecasts constructed by simply � tting an AR(10) to daily
squared returns. For each forecast in table 2, we tested the
signi� cance of the difference in the mean square prediction
error between that forecast and the forecast obtained from
the GARCH(1, 1) model using the procedure described by
Diebold and Mariano (1995).

In table 2, we can see that the GARCH(1, 1) model
provides the forecast with the lowest mean square predic-
tion error and the highest R2 in the Mincer-Zarnowitz
regression.12 Most of the forecasts in table 2 do signi� cantly
worse than the GARCH(1, 1) model, in terms of mean
square error. Simply � tting an AR(10) to the daily squared
returns produces forecasts with quite low bias but very high
variance, so that these forecasts do poorly in terms of mean
square error. (The forecasts using autoregressions of other
orders do worse again.) Overall, we conclude that the
simple GARCH(1, 1) model forecasts best, when working
with daily data.

D. Volatility Forecasts using the Intradaily Data

We now turn to volatility forecasts, explicitly constructed
from the � ve-minute returns. One forecasting strategy is to
start with assumption A19, estimate the spectrum of t 5 y t

2

2 m̂2 (where m̂2 denotes the sample mean of y t
2), and then

use the Wiener-Kolmogorov � lter to calculate {â j}, the
associated estimates of {a j}. Let ˆ t1k u t denote the resulting
forecast of t1k given t and lagged values, as given by the
recursions

ˆ t11 u t 5 O
j51

`

â j t2j (7)

and

ˆ t1k u t 5 O
j51

k21

â j ˆ t1k2j u t 1 O
j5k

`

â j t1k2j. (8)

The integrated volatility at date s, VI(s), conditional on
returns from day s 2 1 and earlier may then be fore-
cast13 as

V̂ I~s! 5
1

288
O

n51

288

max ~m̂2 1 ˆ288~s21!1n u 288~s21!, 0!. (9)

Forecasts of VI(s) may equally be formed using { ã j}, the
estimates of the AR coef� cients obtained from the usual
time domain autoregression. Let this forecast be denoted
ṼI(s).

Table 3 shows the forecast evaluation criteria for V̂I(s)
and ṼI(s) in the out-of-sample forecasting exercise. (As in
table 2, the models were estimated using the � rst half of the
data, whereas the forecasts were evaluated using the second
half of the data.)14 In constructing these forecasts, the
spectrum of the squared returns was estimated using a
bandwidth h 5 0.0009 , and the � tted time domain autore-
gression was of order 2,050. These parameters were chosen
so as to minimize the out-of-sample mean square prediction
error. This leaves open the question of how a researcher
should select these parameters in practice, but it ensures that
we can make a fair comparison between V̂I(s) and ṼI(s).

12 The GARCH(1, 1) forecasts of integrated volatility have an R2 in the
Mincer-Zarnowitz regression similar to that found by Andersen and
Bollerslev (1998).

13 In the empirical work, we truncated the in� nite sum in equation (7)
after 10,000 terms, although the results are virtually identical using just
5,000 terms.

14 Counterparts of tables 2 and 3 for in-sample forecasts and for the
Japanese Yen–U.S. Dollar exchange rate are similar, and are available on
request.

TABLE 2.—OUT-OF-SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATES

OF VI(s) USING DAILY DATA

Forecasting Method b̂0 b̂1 Bias MSPE R2

GARCH(1, 1) 20.322 1.758 0.050 0.180 39.5
(0.033) (0.062)

GARCH(1, 2) 20.145 1.379 0.044 0.197† 27.4
(0.034) (0.064)

GARCH(2, 1) 20.249 1.606 0.050 0.189† 33.3
(0.034) (0.065)

GARCH(2, 2) 20.013 1.125 0.048 0.188 29.1
(0.028) (0.050)

EGARCH(1, 1) 20.219 1.571 0.058 0.190† 32.7
(0.033) (0.064)

AR(10) � tted to yt
(D)2 20.305 1.691 0.041 0.218† 20.7

(0.049) (0.095)

The table reports the estimated intercept and slope coef� cients from the Mincer-Zarnowitz regression,
b̂0 and b̂1, respectively, along with their estimated standard errors (in parentheses) and the percentage R2

from this regression, for all of the alternative forecasting procedures. The table also reports the bias
(sample mean of the forecast minus the ex post realized value) and mean square prediction error (MSPE)
for each of these forecasts. The superscript * indicates that the mean square prediction error is
signi� cantly lower than that of the GARCH(1, 1) forecast, and the superscript † indicates that it is
signi� cantly higher (at the 5% level, using the test of Diebold and Mariano (1995)). The details of the
construction of these alternative volatility forecasts are provided in the text. The GARCH and EGARCH
models are all estimated using the daily data y t

(D ). All parameters are estimated using the � rst 1,222 days
of data, and the forecasts are evaluated using the remaining 1,223 days in the sample.

TABLE 1.—QUASI-MAXIMUM LIKELIHOOD GARCH PARAMETER ESTIMATES

WITH DAILY DATA (STANDARD ERRORS IN PARENTHESIS)

Parameter GARCH(1, 1) GARCH(1, 2) GARCH(2, 1) GARCH(2, 2)

v 0.0069 0.0049 0.0072 0.0125
(0.0017) (0.0021) (0.0017) (0.0034)

a1 0.0449 0.0313 0.0313 0.0472
(0.0054) (0.0119) (0.0158) (0.0053)

a2 0.0151 0.0424
(0.0165) (0.0054)

b1 0.9414 1.2819 0.9395 20.0564
(0.0075) (0.2709) (0.0077) (0.0075)

b2 20.3229 0.9423
(0.2560) (0.0072)

AIC 2.0579 2.0584 2.0585 2.0561
SIC 2.0650 2.0679 2.0680 2.0679

This table reports the quasi-maximum likelihood estimates of the GARCH parameters using the full
2,445 days of daily data, along with the associated standard errors. TheAkaike and Schwartz information
criteria (AIC and SIC) are also included.
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Assumption A19 is the natural starting point for forecast-
ing integrated volatility as it relates directly to the squared
returns. Alternatively, assumption A1 or A10 can be used to
justify the corresponding forecasts of the future log-squared
or absolute � ve-minute returns. These forecasts may then in
turn be transformed into ad hoc forecasts of the future
squared � ve-minute returns by exponentiating or squaring
the forecasts, followed by multiplication by a scaling fac-
tor.15 In the case of assumption A1, the scaling factor is the
ratio of the mean of the squared returns to the exponent of
the mean of the log-squared returns. In the case of assump-
tion A10, it is the ratio of the mean of the squared returns to
the square of the mean of the absolute returns. The forecasts
of future squared � ve-minute returns can be summed up to
obtain forecasts of future integrated volatility, based on
assumptions A1 or A10. These forecasts are ad hoc, but their
practical usefulness is an empirical question. Of course,
these forecasts could alternatively be based on � tting a long
autoregression to the log-squared or the absolute returns in
the time domain. Table 3 also shows the results for these
forecasts, which we refer to (in obvious notation) as
V̂ I

LOG2SQ(s), Ṽ I
LOG2SQ(s), V̂ I

ABS(s), and Ṽ I
ABS(s).

Table 3 also shows the results for the forecasts of daily
integrated volatility obtained by � tting an AR(10) model
directly to the daily integrated volatility, VI(s). This is still
a forecast based on high-frequency data in the sense that it
cannot be constructed by a researcher who has access to
only daily data. As a � nal comparison, we also used
GARCH models � tted directly to the high-frequency, � ve-
minute returns to construct the daily volatility forecasts.
However, to conserve space, we omit these results, as they
yielded very unreasonable forecasts. Consistent with the
earlier � ndings in Andersen, Bollerslev, and Lange (1999),
a small-order GARCH model is grossly underparameterized

as a model of intradaily asset returns.16 For each forecast in
table 3, we tested the signi� cance of the difference in the
mean square prediction error between that forecast and the
forecast obtained from the commonly employed daily
GARCH(1, 1) model using the procedure described by
Diebold and Mariano (1995), as we did in table 2.

The forecast evaluation criteria for V̂I(s) and ṼI(s) shown
in table 3 are very similar, although the frequency domain
forecasts give a slightly higher R2 in the Mincer-Zarnowitz
regressions. Meanwhile, both work much better than any of
the forecasts in table 2, based on daily data alone (in terms
of bias, mean square error, and the � t of the Mincer-
Zarnowitz regression). The out-of-sample mean square error
of V̂I(s) is 19% below that of the standard GARCH(1, 1)
forecast; this improvement in forecasting performance is
highly signi� cant. Both V̂I(s) and ṼI(s) are virtually unbi-
ased forecasts, unlike any of the forecasts in table 2.

The forecasts based on � tting autoregressions to log-
squared and absolute high-frequency returns have consider-
able bias, which is not surprising in view of their ad hoc
justi� cation. Among these forecasts, the frequency domain
forecasts consistently have a slight edge over the time
domain forecasts (in terms of bias, mean square error, and
the � t of the Mincer-Zarnowitz regression). Both
V̂ I

LOG2SQ(s) and Ṽ I
LOG2SQ(s) have higher mean square error

than V̂I(s) and ṼI(s), whereas V̂ I
ABS(s) and Ṽ I

ABS(s) both
have lower mean square error than V̂I(s) and ṼI(s). The
mean square error of V̂ I

ABS(s), the best of all the forecasts, is
20% below that of the standard daily GARCH(1, 1) fore-
cast.17 Simply � tting an autoregression to VI(s) produces
forecasts that are clearly superior to any of the forecasts in
table 2, but yields a higher mean square error and a lower R2

in the Mincer-Zarnowitz regression than most of the other
forecasts using intradaily data in table 3. It is crucial to
volatility forecasting to have a good estimate of current
conditional volatility, obtained from high-frequency data,
but the additional � exibility of a full high-frequency model
can be of some extra help.

IV. Concluding Remarks

In this paper, we have proposed modeling volatility
dynamics with high-frequency data by simply � tting an
autoregression to log-squared, squared, or absolute returns.
This autoregression can be estimated in the usual way, or it
can be backed out from a nonparametric smoothed perio-
dogram estimate of the spectrum. We conclude that, when
working with high-frequency intradaily data, these simple
autoregressions tend to work better in forecasting future
volatility than standard GARCH and EGARCH models,

15 The scaling factor is a simple attempt to correct for the fact that the
expectation of a nonlinear function of a random variable is not equal to the
nonlinear function of the expectation of that random variable.

16 For instance, � tting a GARCH(1, 1) model to � ve-minute returns, the
sum of the GARCH coef� cients was 1.04, and the in-sample mean square
prediction error of the associated forecasts was 2.4 3 106!

17 We attribute the good performance of the forecasts based on � ve-
minute absolute returns to the fact that absolute returns are relatively
outlier resistant.

TABLE 3.—OUT-OF-SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATES

OF VI(s) USING FIVE-MINUTE DATA

Forecasting Method b̂0 b̂1 Bias MSPE R2

ṼI(s) 20.131 1.257 0.007 0.145* 46.5
(time domain) (0.023) (0.039)
ṼI

LOG2SQ(s) 20.158 0.954 20.192 0.179 45.7
(time domain) (0.024) (0.030)
ṼI

ABS(s) 20.042 0.900 20.107 0.148* 48.1
(time domain) (0.020) (0.027)
V̂I(s) 20.182 1.356 0.008 0.146* 47.1
(frequency domain) (0.024) (0.041)
V̂I

LOG2SQ(s) 20.216 1.059 20.174 0.171 46.3
(frequency domain) (0.026) (0.033)
V̂I

ABS(s) 20.066 0.955 20.095 0.144* 48.5
(frequency domain) (0.021) (0.028)
AR(10) � tted to VI(s) 20.122 1.241 0.007 0.156* 45.9

(0.023) (0.039)

See notes for table 2.
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� tted either to daily or intradaily data. Overall, this general
conclusion is not very sensitive to whether the autoregres-
sions are estimated in the time domain or in the frequency
domain, although the latter procedure results in the lowest
mean square prediction error. In sum, Andersen and Boller-
slev (1998) showed that intradaily data were vitally impor-
tant in the meaningful ex post evaluation of daily volatility
forecasts; this paper shows how the high-frequency data
may easily be used to construct superior daily volatility
forecasts. Meanwhile, the approach to modeling volatility
dynamics advocated here can of course be used in applica-
tions other than volatility forecasting; for example, it could
be used to construct bootstrap distributions for test statistics.
It will be interesting to further explore these issues in future
research.
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