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[1] Bubbles can contribute a significant fraction of meth-
ane emissions from wetlands; however the range of reported
fractions is very large and accurate characterization of this
pathway has proven difficult. Here we show that continuous
automated flux chambers combined with an integrated cavity
output spectroscopy (ICOS) instrument allow us to quantify
both CH4 ebullition rate and magnitude. For a temperate
poor fen in 2009, ebullition rate varied on hourly to sea-
sonal time scales. A diel pattern in ebullition was identified
with peak release occurring between 20:00 and 06:00 local
time, though steady fluxes (i.e., those with a linear increase
in chamber headspace CH4 concentration) did not exhibit
diel variability. Seasonal mean ebullition rates peaked at
843.5 ± 384.2 events m−2 d−1 during the summer, with a
mean magnitude of 0.19 mg CH4 released in each event.
Citation: Goodrich, J. P., R. K. Varner, S. Frolking, B. N. Duncan,
and P. M. Crill (2011), High‐frequency measurements of methane
ebullition over a growing season at a temperate peatland site,
Geophys. Res. Lett., 38, L07404, doi:10.1029/2011GL046915.

1. Introduction

[2] Natural wetlands are the largest source in the global
atmospheric CH4 budget, with highly variable estimates rang-
ing from 100–231 Tg CH4 yr−1 [Houweling et al., 2000;
Wuebbles and Hayhoe, 2002]. Emissions are the net result
of CH4 production in the anaerobic zone minus the oxida-
tion of some fraction of the CH4 as it moves from the
wetland soil to the atmosphere; CH4 transport occurs by dif-
fusion through the soil matrix, diffusion through plant aeren-
chyma that bypasses the soil matrix, and subsurface CH4

bubble movement and release or ebullition [Whalen, 2005].
Since changes in soil moisture and temperature affect the
emission of CH4 from temperate and northern peatland areas,
these ecosystems are hypothesized to produce a significant
positive feedback with climate change [Arneth et al., 2010].
The climate response of these ecosystems is complicated by
the interactions between thermal, hydrological and plant‐
ecological processes [Crill et al., 1988; King et al., 1998;
Bubier et al., 2005], which all have the potential to alter
CH4 production, oxidation and transport dynamics [Segers,
1998; Bartlett et al., 1990; Strack et al., 2005].

[3] Much uncertainty in estimates of peatland CH4 emis-
sions stems from the difficulty in adequately sampling the
high spatial and temporal variability of fluxes. In particular,
ebullition has been difficult to quantify due to the highly
stochastic nature of this flux pathway. Several methods have
been employed to estimate and characterize the magnitude
of ebullitive release as well as the frequency with which it
occurs [Coulthard et al., 2009], and reported rates range
from 0–35,000 mg CH4 m−2 day−1, though typical values
are on the order of ∼1000 mg CH4 m

−2 day−1 [Bartlett and
Harriss, 1993; Comas and Slater, 2007; Tokida et al., 2007].
Due to the variety of approaches taken to quantify ebullition
fluxes, it is unclear to what degree the reported range is the
result of site‐to‐site variation as opposed to differences in
methodology and interpretation. For instance, subsurface
gas trap funnels cannot fully characterize individual bubble
events [Strack et al., 2005], while static chamber methods
are limited to sampling at low temporal resolution within a
chamber closure and by the duration of field campaigns
[Tokida et al., 2007]. Furthermore, certain methods require
assumptions of basic characteristics such as CH4 concen-
tration within bubbles [Glaser et al., 2004].
[4] As a first step towards reducing methane flux uncer-

tainty, we have developed a new method for quantifying
both ebullition magnitude and timing using high temporal‐
resolution CH4 concentration data (0.5 Hz) within continual
(every 0.2–0.25 hr) chamber closures. Here we present an
analysis of 8 months of CH4 ebullition measurements, deter-
mining event timing and magnitude with an off‐axis integrated
cavity output spectroscopy (ICOS) laser (LGR Inc. Mountain
View, CA, USA model DLT‐100) operating in an automated
chamber system at a temperate poor fen in New Hampshire,
USA.

2. Methods

[5] Ten automated chambers (45.7 × 45.7 cm at the base
and either 68 or 34 cm tall depending on vegetation) were
installed at Sallie’s Fen (43°12.5′N, 71°03.5′W) in the spring
of 2000 [Burrows et al., 2005]. Vegetation cover varied
among chambers to accommodate the dominant species of
the fen, which included Carex rostrata, Chamaedaphne,
Vaccinium oxycoccus and a generally continuous cover of
Sphagnum spp. [Bubier et al., 2003].
[6] In 2009, an ICOS laser was incorporated into the auto-

mated chamber system. From April 27 to September 14,
2009, chambers were cycled through an 18‐minute program
(closed from minute 6 to minute 12) giving 80 closures
per day. From September 15 to December 19, 2009 the
cycle was modified to 12 minutes (closed from minute 5 to
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minute 11 during the day and minute 1 to minute 11 during
the night – 20:00 to 06:00), giving 120 closures per day.
Chamber headspace CH4 concentration was measured at
0.5 Hz, and averaged to 12‐second mean values in order to
match the frequency of environmental data collected by
the datalogger. Standard chamber flux calculations [Bubier

et al., 2002] were made for any chamber closure resulting
in linear increase of headspace CH4 over time (Figure 1a).
Chamber closures resulting in nonlinear CH4 concentration
time series were separated into episodic ebullition events or
poor quality data (Figures 1c, 1e, and 1f). Ebullition was
characterized by a sudden increase in the slope of the CH4

mixing ratio over time for short durations; generally greater
than 8 nmol mol−1 s−1 for less than 120 s (Figures 1c and 1e),
while irregular mixing ratio data were rejected (Figure 1f).
Any ebullition flux event that fell completely within the
chamber closure period was processed using a piecewise
linear fitting routine (Figure 1c). This routine provided a
linear slope of increase before and after the concentration
jump, allowing us to quantify the magnitude of the ebullition
event. This was converted to CH4 mass released (mg CH4)
using chamber volume, temperature and pressure. Methane
released could not be determined for ebullition events not
completely contained within a chamber closure (Figure 1e),
though occurrence, timing and other variables were recorded.
Continuous observations of precipitation, temperature, wind
speed, water table, relative humidity, and barometric pressure
were made at the site, and saved as hourly averages or totals.

3. Results

[7] A total of 2,727 ebullition events were identified
during 17,352 autochamber flux closures between 27 April
and 19 Dec 2009. There were 0–1,370 bubbles m−2 d−1

observed during each measurement day, with peak activity
occurring in mid‐August, which corresponded with peak
peat temperature and generally decreasing water table depth
(Figure 2). Seasonal mean ebullition frequencies, when
scaled by chamber area and closure time, were 403.5 ±
244.5 events m−2 d−1 (mean ± standard deviation) for spring
(27 April–21 June), 843.5 ± 384.2 events m−2 d−1 during the
summer (22 June–21 Sept.), and 272.1 ± 220.3 events m−2

d−1 during the fall (22 Sept.–19 Dec.). Seasonal mean peat

Figure 1. Examples of chamber closure CH4 mixing ratio
time series for (a) steady flux in which the headspace CH4

concentration is linear with time; this may represent diffu-
sion through peat, water, plants and/or steady ebullition of
micro bubbles; (c) ebullition episode fit with piece‐wise
linear function to quantify magnitude; solid red lines denote
best linear fits for each segment while the dotted red line
indicates the trajectory of the initial CH4 concentration
increase were no bubble to have occurred and the dashed
blue line indicates when the bubble has finished mixing
within the chamber and linear buildup resumes, (e) ebullition
episode that cannot be fit with piece‐wise linear function, and
(f) flux that did not meet 0.8‐R2 criteria for steady flux anal-
ysis or the short‐duration rapid increase in concentration cri-
teria for ebullition. (b) Flux magnitude frequency distribution
for 14,582 steady fluxes and (d) bubble magnitude distribu-
tion for 624 quantifiable ebullition events during 27 April–
19 Dec. 2009. There were 2,093 measurements with iden-
tifiable but not quantifiable ebullition episodes, and 2,770
rejected measurements. Numbers in Figures 1a, 1c, 1e, and
1f refer to time of chamber activation, in fractional day of
year. Vertical green and red lines in Figures 1a, 1e, and 1f
denote when the chamber closed and opened, respectively.

Figure 2. (a) Daily rate of ebullition observed by all the
chambers during April 27–December 19, 2009 (black bars),
and percentage of chamber closures accepted (blue dots).
(b) Daily water table depth relative to peat surface (red line)
and average peat temperature at 25 cm depth (blue line).
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temperature at 25 cm below the surface was 10.3 ± 1.2 °C,
14.6 ± 1.4 °C and 8.8 ± 2.1 °C (mean ± standard deviation)
for spring, summer and fall respectively. Maximum water
table depth reached 20 cm during the week of 28 Sept.
(Figure 2b).
[8] On diel timescales, the rate of ebullition had a distinct

pattern in spring, summer and fall (Figure 3a). Peak bubble
release occurred between 20:00 and 06:00 for all seasons,
with 11.4 ± 2.8, 14.9 ± 3.0 and 12.6 ± 1.6 bubbles m−2 hr−1

during spring, summer and fall respectively, while daytime
rates dropped as low as 0.24 ± 0.17 bubbles m−2 hr−1 in
summer and 0.0 bubbles m−2 hr−1 in spring and fall. There
was not a distinct diel pattern in the 14,582 measurements of
steady CH4 flux (Figure 3b).
[9] Using the piecewise linear fitting routine (Figure 1c),

the mass of CH4 released could be quantified for 364 of the
2,727 ebullition events. The mean ebullition event magni-
tude was 0.18 mg CH4 (range: 0.02–1.3 mg CH4, median:
0.15 mg CH4) with a right‐skewed, log‐normal distribution
(Shapiro‐Wilk: W = 0.9967, p = 0.6854, Figure 1d). Magni-
tude seasonality could not be determined due to the uneven
seasonal distribution of quantified events; 335 out of the
364 quantified events took place in June, July and August.
However, the mean ebullition magnitude for these summer
months of 0.19 mg CH4 is significantly greater than the
combined mean for spring and fall of 0.12 mg CH4 (t = 3.83,
p < 0.001).
[10] The error associated with the magnitude calculation

includes uncertainty in the mean temperature used in the
conversion of headspace concentration change to mass of
CH4 in mg, as well as the three slope estimates used to
isolate the initial and final concentrations with respect to the
ebullition spike (Figure 1c). Due to the accuracy of the CH4

measurement itself (total uncertainty of less than 1% of the
reading – LGR Inc.), the resulting error is dominated by the
standard deviation in temperature (<2.5%). For all ebullition
magnitude calculations, the combined error in slope esti-
mates never exceeded 1%. The lower limit for the detection
of an ebullition event is determined here by the threshold in
the slope increase in the chamber headspace CH4 time series

during a given closure that was used to identify potential
ebullition events. The smallest event identified with our
processing protocol was 0.02 mg CH4.

4. Discussion

[11] We have shown that automated chambers combined
with an ICOS instrument are able to sample both the rate
and magnitude of peatland CH4 ebullition at high tem-
poral frequency. Eight months of continual measurements at
Sallie’s Fen showed distinct seasonal and diel patterns in
ebullition frequency. Higher ebullition rates in the summer
are likely related to both higher rates of CH4 production and
the reduced solubility of CH4 at higher temperatures.
[12] The shape of the magnitude distribution of 364 ebul-

lition fluxes (Figure 1d) was similar to that generated by
a reduced‐complexity model for CH4 ebullition in porous
structured peat [Coulthard et al., 2009]. The model simu-
lated the accumulation of bubbles under non‐permeable
shelves within the bulk peat, with episodic release of bub-
bles akin to ‘landslides’ from ‘upside‐down sandpiles’ that
build up depending on the simulated pore structure (i.e.,
number and width of shelves). These model results indicate
that the measured bubble release at Sallie’s Fen may be
relatively constant and more dependent on CH4 production
rates than are ebullition rates at a site with tightly‐packed,
well‐decomposed peat material or confining layers, where
episodes may be less frequent but larger in size [Glaser
et al., 2004; Rosenberry et al., 2003].
[13] Diel patterns in peatland CH4 flux have been previ-

ously observed. Dissolved CH4 concentrations can lag CO2

uptake by wetland plants, indicating an enhancement in
CH4 production at night or a decrease in CH4 oxidation
[Waddington et al., 1996]. Methanogenesis may also lag
behind rhizospheric substrate exudation potentially by hours
depending on the plant species [Whiting and Chanton, 1992].
14C‐acetate injected into peat monoliths in northeast Green-
land was observed in CH4 flux after just 4 hours [Ström et al.,
2003]. Nighttime peaks in CH4 flux at hummock sites in a
Swedish peatland were related to lower surface oxidation

Figure 3. (a) Hourly average ebullition rates from all chambers in 2009 for spring (27 April–21 June; green), summer
(22 June–21 Sept.; blue), and fall (22 Sept.–19 Dec.; red). (b) Hourly average CH4 flux for each season based only on steady
flux data (e.g., Figure 1a). Error bars represent 1 standard error of the hourly mean.
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rates at night [Mikkela et al., 1995]. Our data support the
hypothesis that any lags occurring during carbon uptake,
exudation and subsequent utilization that result in enhanced
CH4 flux and ebullition, are on the order of hours. How-
ever, the steady flux data, including plant‐mediated diffu-
sion (e.g., Figure 1a), does not exhibit clear diel variability
(Figure 3b). This is not consistent with primary production
and subsequent root exudation playing a role in the observed
diel ebullition pattern, unless the CH4 production generating
the bubbles is deep in the peat, and the diel signal in the
diffusive flux is damped by the time it reaches the surface
(diffusive flux away from a sinusoidal source results in
damped and lagged oscillations, with a damping distance
related to the diffusivity of the medium and the frequency
of oscillations). This needs to be further investigated with
concurrent NEE measurements and, ideally, isotope analysis
of peat, pore water, and gas fluxes in order to trace source
signatures [Santoni et al., 2010].
[14] Other variables with distinct daily patterns were cor-

related with ebullition timing; horizontal wind speed, rela-
tive humidity and air temperature accounted for 63%, 76%
and 54% of ebullition variation, respectively, when hourly
averages were analyzed with non‐linear regression. Multi-
collinearity within these factors limits the utility of multiple
regression analysis for determining the most likely driver,
though the possibility that any of these factors affect ebul-
lition has not been ruled out. In particular, wind speed,
a proxy for turbulence, may affect surface layer peat metha-
notrophy by rapidly re‐oxygenating surface peat pore spaces.
Variations in turbulence have been shown to affect rates of
upland soil gas exchange on diel timescales [Kimball and
Lemon, 1971].
[15] It is important to note that ebullition may also occur

as a steady stream of relatively small bubbles, which would
result in a linear increase of chamber headspace CH4 con-
centration over time [Coulthard et al., 2009]. Thus, the data
presented here represent episodic ebullition, which may be
less than total ebullition.

5. Conclusions

[16] CH4 ebullition rates at Sallie’s Fen vary on diel and
seasonal timescales. Our results indicate that the nighttime
enhancement in ebullition may be important to the overall
CH4 budget, especially given that the bulk of CH4 fluxes
reported in the literature over the past 30 years were made
with manual chambers during the daytime. Further exami-
nation with long‐term continuous datasets from varying
sites is warranted. Work is currently underway to estimate
the total contribution of ebullition at Sallie’s Fen using the
full time series of CH4 flux and incorporating field data
into a process‐based model. We have shown that ebullition
events are not necessarily rare releases of CH4 from depth,
triggered by overburden pressure events or subsurface
buildup beneath confining layers; rather ebullition represents
a regular flux pathway for CH4 as typical as diffusion and
plant transport.
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