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Abstract  

The  sca t t e r ing  of a p l ane  e l ec t romagne t i c  wave  b y  a die lectr ic  lens which  
b e h a v e s  l ike a m e t a l  re f lec tor  is considered.  A t  sho r t  wave leng ths ,  t h e  
l ead ing  t e r m  of t he  b a c k s c a t t e r e d  field c a n n o t  be d e t e r m i n e d  en t i r e ly  t h r o u g h  
s imple  geomet r i ca l  opt ics  cous idera t imls ;  ins tead ,  i t  is o b t a i n e d  b y  means  of 
a modi f ied  W a t s o n  t r a n s f o r m a t i o n  of t he  exac t  solut ion.  The  diff icul t ies  
t h a t  arise in  app ly ing  th i s  t e c h n i q u e  to o t h e r  lenses are discussed.  

§ 1. I n t roduc t i on  

The spherically symmetric dielectric lens considered in this paper 
has a refractive index N given by the relation 

N ( x )  = 2x-½(1 + x) -1, (1) 

where x = r /a  is the radial distance from the center r = 0 of the 
lens, normalized to the radius r ----- a of the rim of the lens. The 
optical and electromagnetic behaviours of a class of dielectrics to 
which this lens belongs have recently been studied Ell. In particu- 
lar, it has been shown that  tile lens with refractive index given by 
(I) behaves like a metal sphere with the same radius r = a, in the 
optical limit. While this is certainly true for bistatic scattering, in 
the case of backscattering the geometrical optics prediction is not 
very reliable, because the optical ray which is responsible for the 
leading term contribution to the high-frequency backscattered field 
follows a path that  has an infinite curvature at the center of the 
lens. In this paper, the high-frequency backscattered field is oh- 
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tained by  means of an asymptotic analysis of the exact solution of 
the electromagnetic boundary value problem, and is then compared 
with the optical answer. I t  is found that the high-frequency mono- 
static cross section of the lens is equal to that  of a metal sphere 
of radius r = a/2. 

The geometrical optics and the exact electromagnetic solutions 
for the far backscattered field produced by  an incident plane wave 
are presented in sections 2 and 3, respectively. The radial eigen- 
functions for the T E  and T M  modes are asymptotically evaluated 
in sections 4 and 5, and the high-frequency backscattered field is 
determined in section 6 by means of a modified Watson transfor- 
mation. The appendix is devoted to a brief discussion of the diffi- 
culties encountered in applying the method used here to other 
dielectric lenses. 

The rationalized MKSA system of units is adopted, and the time- 
dependence factor exp(--kot) is omitted throughout. 

§ 2. The  geomet r ica l  optics so lu t ion  

The geometry of the problem is illustrated in Fig. 1. The primary 
field is a beam of optical rays parallel to the z-axis. The ray that 
enters the lens at P at an angle of incidence ~ is smoothly deviated 
along a closed path surrounding the center C of the lens, and leaves 
the lens at P.  Thus, a point source at the rim is imaged on to itself. 
The path is symmetric with respect to the diameter PCQ, and its 
minimum distance CQ from the center is given by 

CQ = aXmi n = a sin ~ (2) 

The optical length R of the loop P Q P  is independent of ~ and 
given by  

R = 2~a .  (3) 

Let us now consider an incident plane electromagnetic wave 
propagating in the positive z direction with wavenumber k, whose 
electric vector 

E~ = d e i ~  (4)  

has unit amplitude and is polarized in the direction of the constant 
unit vector d. On the basis of simple geometric considerations and 
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Fig. 1. Geome t ry  for the  opt ical  rays.  

of formula (3), we would expect a far backscat tered field whose 
leading term at short  wavelengths (ka >~ I) is given by:  

E~:~: ,-~ d - -  exp{ik Er q- 2a(r¢ -- 1)]}, (5) 
2r 

where r = --z is the distance oI the observation point from the 
center C of the lens. I t  is instructive to compare (5) wi th  the 
geometrical optics backscat tered field from a perfectly conducting 
sphere of radius r = a: 

a 
~.s. exp{ik(r -- 2a)}. (6) EEg.o.]met~z ~ - - d  2r 

Result  (5) differs from (6) by  a factor ( - -exp i2=ka) ; the minus sign 
is due to the lack of a 180 deg phase jump at Po (see Fig. 1), where- 
as the phase increase of 2T:ka is due to the optical length of the pa th  
PoCPo. 

Considerations similar to those leading to (5) are certainly justi- 
fied in deriving the dominant  te rm of the bistatic scat tered field, 
for which a is bounded away from zero and therefore xmi n in (2) 
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is not too small compared with unity. However, if ~ is nearly zero, 
the optical ray path has a nearly infinite curvature where it bends 
around C, and the geometric optics result is no longer reliable. In 
particular, the leading term of the high-frequency backscattered 
field is obtained by multiplying the right-hand side of (5) by a 
correction factor, which we write in the form: 

D e -i(~/~)+i~, (7) 

where D is real positive and d is real. 
It  is intuitively felt that not all the energy propagating within a 

narrow beam of rays at nearly normal incidence will follow the 
sharp bend round the center C, and this implies that 

0 < D < 1. (8) 

Furthermore, it follows from (2) that  all the rays within a narrow 
cylindrical tube of diameter 2a~, (a ~ 1), and axis z will cross the 
z-axis at points in the interval 

~2 
0 < z  - - a .  (9) 

4 

If the rays of this tube were crossing a caustic, the phase would 
decrease by n/2 and therefore we would have d = 0 in (7). However, 
the region round (9) is simply a "pseudo-caustic" area in which all 
extremely high concentration of optical rays occurs, so that the 
phase will decrease by less than re~2, and therefore 

o < < T (ao) 

In conclusion, the high-frequency backscattered field produced 
by the incident field (4) is: 

a exp{i[ k r + 2 k a ( r c - 1 ) -  ~ ]}  

where D and ~ are real positive quantities subjected to the limi- 
tations (8) and (10). This result is based on physical intuition, and 
it is confirmed by the rigorous analysis of the following sections; 
in particular, the precise values of D and d are obtained in section 6. 
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§ 3. The exact solution 

The incident plane wave (4) produces the far backscattered field' 

eikr oo 
m.~. = E ~ X ( -  1) ~ (~ + 1)(a~ - b~,), (12) 

r y e 1  

where 

b'[b = - -  

Mn = ~a S(~1)(x) x=l' 

¢;(ka) -- Mn Cn(ka) 
(12) 

' k ~n( a) - -  Mn ~n(ka) 

(14) 
¢;,(ka) - ~ , ~  Cn(ka) ' 

~n(ka) = H (1) ,(ka~ ~+~k j, (15) 

1 [ T(~I)'(x)] , (16) 

and the prime indicates the derivative with respect to the argument.  
The radial eigenfunctions S~)(x) and T~)(x) are those particular so- 
lutions of the radial differential equations 

S::(x) +{[kaN(x)] 9'- n(n 4- 1)} x 2 S,dx ) = 0 (17) 

and 

N ' ( x )  , { n(n@ 1)} 
T';(x) --  2 N ~ k T - r n ( x )  + Ek~N(.)p x~ ~n(x) = o (18) 

with N(x) given by (I), which are finite over the interval 0 < x < 1 
They are given by El]: 

S~I_)}(X) = Xv+{(1 -@ X) 3 2Fl(~  ~- 29,/~; 1 -~ 29; - -x ) ,  (19) 

(1)1 x xm( T,__e( ) = 1 @ x ) f l - 1 2 F l ( f i @ y l @ y 2 ,  f i @ y l - - y 2  i + 2 y l ; - x ) ,  

(20) 
where 

V = n @_ 2'1 (21) 

fi = ½(1 -- x/l -k (4ka)2), (22) 

yl x/~ 1 x/~ q- ~-, (23) 
and 2F1 is the hypergeometric function. 
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If we consider v as a complex number,  then 7t has branch-points 

at  v = 4- 1/2 and 72 at  v = ±ix/3/2. We choose the branch-cuts in 
the complex ~ plane along the real axis between 1 and + ½, and 

along the imaginary  axis between --i~/3/2 and + ix /3 /2  (see Fig. 2). 
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Fig. 2. Contours of integration in the complex v plane. 

Re 

Now we replace the summat ion  in (12) with a line integral taken 
along the clockwise contour C of Fig. 2, which encloses those poles 

_ _  3 of the integrand tha t  are located at  v -- 3, ~, ~ . . . . .  By following a 
t ransformat ion of the type  of Watson's ,  the line integral along C is 
replaced by the sum of (i) a line integral whose contour consists of 
a pa th  C1 extending from the fourth through the first to the second 
quadrant ,  plus the arc of a circle of large radius with center at  ~ = 0 
extending from the second through the first to the fourth quadrant ,  
and (ii) a residue series due to the poles of the in tegrand which lie 
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in the first quadrant. It  can be shown that  the line integral along 
the arc of circle vanishes as the radius tends to infinity. The contour 
C1 crosses the real v axis between ½ and ~- and the imaginary v axis 

above +ix/3/2 ,  avoiding the branch-cuts (see Fig. 2). The result ob- 
tained thus far is still exact. 

We may neglect the contributions to the backscattered field due 
to the poles in the first quadrant because we only want the domi- 
nant term of the high-frequency backscattered field, and this arises 
from an asymptotic estimate of the line integral along the contour 
C1; thus we have: 

e~r2kr f cosy v (av__~ - by-:) dr, (ka >~ 1). (24) Eb.s. ~ --d ~ - - T ,  

U~ 

The quanti ty (a~_}- b~_~) in (24) must now be evaluated for 
]vl = O[(ka)}+*~ where e is an arbitrarily small positive number. 

§ 4. Asymptotic expansions for TE modes 

By substituting (19) in the first of (16) and by using the differ- 
entiation formula for 2F1, we find that 

1 + ~ + 2~ ~(~ + 2~) 
My ~--  2ha ha(1 4-2v) × 

2 F ~ ( $ + 2 v +  1 , ~ +  1 ; 2 + 2 v ; - 1 )  
× (25) 

2F1(/~ -+- 2v, t5; 1 -}- 2v; --1) 

The functions 2F1 in (25) can be expressed in terms of gamma 
functions [21: 

2F1(~ + 2~, ~; 1 + 2v; - 1 )  = 

__ r~}2_~_2 v F(I @ 2v) (26) 

valid if 2v # -- 1, --2, --3 . . . .  ; 

2F1(/~ @ 2V -~ 1, ~ -7 1; 2 -]- 2"V] - -1 )  = 7Z}/~ -1 /~(2 -~- 2t') 
21+~+2v 

;< 
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X[ 1 
[V(I+2v+~)F(I÷v2 ~) 

_ 1 I 

2 )l /27, 
valid if 2v ¢ --2, --3, --4 . . . . .  Therefore we have: 

(v--~)I'(w--~)f'(v@ l ÷ ~ f i )  
1 2 

M'-'= 2k-~÷ kaF(v÷ ~-)  ( F  v - / ~ l - - f l )  (28) 

The exact result (28) may be further simplified with the aid of 
Stirling's formula for the gamma function, yielding: 

{ [ 1 1 ] M,_~ 2kal 1 ÷ , , / ~  1 ÷ ~ - ÷  3 2 A ~ + O ( A  -a) × 

[ 1 ]} 
× 1 -- 4-B + 32--B ~ + O(B-a) ' (29) 

where 
A = 2 ~ - - f i ,  B = 2 ~ + ~ ;  (30) 

formula (29) is valid provided that 

IAI >~ 1, [B[ >~ 1. (31) 

Let us now suppose that ha >~ 1, and let us restrict f to the 
domain Iv I = O[(ka)}+e]; then result (29) becomes: 

1 L ( ~ 2  i i ( v )  4 
M,-~ ~ --i + ~-a-  + 2 \ ka 7 -- - ~  (ka)-~ + -8- kTa + 

+ 0 + 0 + O[(ka)-a]. (32) 

§ 5. Asymptotic expansions for T M  modes 

By substituting (20) in the second of (16) and by using the differ- 
entiation formula for 2F1, we find that 

711r_~= 2Tl + /~- I _ (fl+yl) ~-y~ R, (33) 
2ka ka(l ÷ 2yl) 
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where 

R = 2Fl(fl 47 yl  47 72 47 1,fl @ Yl --  Y2 @ 1 ;2  47 2yl;  --1) 

2Fl(fl @ y~ 47 y2, fi 47 yl  --  72; 1 d- 271; --1) 

2Fl(fl 47 yl  47 ~'2 47 1, 1 --  fl 47 Yl 47 ~F2; 2 47 2yl j  1) 
(34) 

22Fl(fi+yl+y2,1--fl+y~+yz;l÷2yl;½) 

For the hypergeometr ic  functions in the second line of (34), we use 
the integral representat ion [21: 

o o  

2F1 h, it; C; --  F(~) t z-1 e -at 1FI(h; C; ht) dr, (35) 

0 

which is valid for 

R e z > R e h > 0 ,  Re i t  > 0 .  (36) 

These condit ions are satisfied for ]*l = O[(ka)'~+@ and therefore we 
m a y  write:  

o o  

tvl+v=-fl e -2t 1Fl(fi 47 yl  @- ~/2 -~ 1; 2 47 2yl; t) dt 
R = o (37) 

o o  

2 5 £,,1+r2-fl e-at 1Fl(fl 27 Yt @ 72; 1 @ 271; t) dt 
0 

Now we observe tha t  [2]' 

1Fl(fl 47 71 -}- 72; 1 47 271" t) = e t/~ t - } -Y*M <~ 
, ~ - f l - 7 2 , y l k " /  - 

o o  

---- ['(1 --V(lfi -~_F 2~1)'}'1 -- ~'2) e t t - r l j  e-" r-/3-r'J,av,(2x/~r ) dr, (38) 
o 

with a similar result  for the 1/;1 in the numera tor  of (37); these 
integral  representat ions are certainly valid if 

ka ~: I~1 ~ I.  (39) 

With the change of variables 

t = u  2, r = w ~  (40) 
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relation (37) thus becomes 

o o  c o  

d u e - " ~ u  ~r~-2p 5 dwe-~'w-2V'-2eJl+~.(2uw) 
R = ( ½ + Y l )  o_ o (41) 

o o  o o  

5 d u  e -~= u 2~=- ~e+'  5 d w  e -  ~= w - 2r=- ~e+ 1j~r,  (2uw) 
0 0 

B y  using S o m m e r M d ' s  integral representat ion 

1 f J~(2uw) = ~ -  dr e i~r - i2uws in '~  (42) 

Z 

where  the contour  E begins a t ' r  = - - r : -} - ioo  and ends at r----- 
= q-r: -}- ioo, making the change of variables 

u = (ka)~ 2, w = (ka)~ ~,  (4s)  

and interchanging orders of integration, we finally obtain:  
o o  

5 dr e i(l+2v*)* I d~ e -k~=-(2~=+2e)l~ x 
X 0 

c o  

X 5 d2 e - l ~ a ~ " - i 2 k a ~ s i n r + ( 2 y = - 2 5 ) l n ~  

R - -  ½ @ Y i 0 (44) 

ka 5 dr  e i2~*~ T d~ e -ka''-(2~2+2e-1)~n~ × 
2 0 

c o  

× 5 d2 e - k a ~ - i 2 k a @ s i n r + ( 2 y 2 - 2 ~ + l ) l n ~  

0 

This result is exact,  and certainly val id for 

[q = O[(ha)~+g. 

All the integrals appearing in (44) can be asympto t ica l ly  evalu- 
a ted b y  steepest  descents. The first two integrals in both  numera tor  
and denominator  have saddle points at 2 = 2o and ~ = ~o in the 
complex 2 and ~ planes, where:  

20 ~ 2(1 d- i s i n  r) × 

. y2 . i s in r  (2q_isinr) dY2~2 
X 1 @ 1 s--~asm r -k 2s ~ -  \ ~ - a ]  + o  E , 

(4s)  
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{ }° 
~o ~ 2(1 4- i s in  r) × 

× ~ 1 - - ( 2  , - / i s i n r )  72 2k~ ( 

4 + 2i sin r + sin 2 r 

2s 2 

here and in the following, 

272--2f i  
S - -  

ka 

2 7 2 - - 2 f l 4 -  1 

Y2 / 2 re  a 

for the numera to r  of R, 

for the denomina tor  of R. 

(46) 

(47) 

Once the first two integrals are asympto t ica l ly  evaluated,  it  is found 
tha t  the integral  along X has two saddle points at r = r0±, where 

~ - 0 _ ~  - -  _ _  

with 

r: 1 - h i  A 72 2(I 4 - i )  
2 s ka s 2 

T O +  ~'~ 

7: 1 - - i  72 2(1 - - i )  
2 + - - A - - +  s #a s ~' 

? ?l, a \kT) + o L\~7) j 

(48) 

A ( 72 )2 [( 7~ )a], 
\77) + o L\-~) J 

(49) 

1 + 2 7 i  
A - -  

7') 

7 1  
- - 2  J 

7~ 

, for the numera to r  of R, 

for the denomina tor  of R. 

(so) 

When all the integrals in (44) are evaluated,  it is found tha t  

R 

x 1 + o  + o  + o  ~-a (51) 
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and therefore from (33): 

~-~ ~ tan ~- rcka + rW1 -- ½ arctan ½ × 

× 1 + 0  + 0  + 0  . (52) 

§ 6. The high-frequency backscattered field 
The Debye  asympto t ic  expansions are used for the Bessel functions 
appearing in 

(a,-~ - b~-~). 

In particular,  for hvi = [O(ka)t+q, 

( ') H~,)(ka) ~ 2 1 -F 0 -~a + 0 , (53) 

H ~ l ) ' ( k a ) ~ @ k a  {i @O[(k~-)2]@O(k--~)}, (54) 

where 

[( 2ka X o = e x p  i ~vq -  2 

X 1 + O ~ + O . (55) 

Subst i tu t ion  of (32), (52), (53) and (54) in the integrand of (24) 
yields: 

e i k r  
E o.s. ~ d - - ~ -  r exp{i[2ka(~ -- 1) + arctan ½]} × 

x d, 
C~ 

, [ ( ) ( ) ]  0 v 1 
1 + e - i 2 ~  e- i (~' /ka)- ie~'  1 + ~ - a  -t- O ~ . (s6) 

Let us indicate b y  M a posit ive number,  large compared with uni ty  
bu t  independent  of ka, tha t  is: 

M 
M >~ 1, lim - -  = O. (57) 

ka--', oo kdg 
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Let us split the contour C1 into three parts, by singling out the 
portion near v = 0 along which I~[ < M (see Fig. 2). Along this 
central portion 

exp(--iv2/ka) ~ 1, ([~'t < M) (58) 

so that  the corresponding integral is 0(1), whereas the integral 
along the entire contour C1 is O(ka). Since we only want the leading 
term in the asymptotic estimate, we may neglect the central portion 
of C1. Along the remaining part of the contour 

vx ~ v, (l~'l > M), (59) 

~ e -i(vs/ka)-i2rc~'~ ~ d f  ~ e-i(ve/ka) 
dv 1 @ e -i27~ ~ ' ~ - - , /  1 @ e -i2=v @ 0 ( I ) .  

C~ C~ 
Jvl > M (60) 

The integrand in the right-hand side of (60) has no branch-cuts, 
and we may therefore connect the two portions of the contour with 
a line through the origin v = 0; the added term is again 0(1). Thus, 

eikr 
Eb.s.~-~--d 2k~exp{i[2ka(r~- 1) ~- arctan ½1} X 

{ f  ve-i(v'/ka) [ ( U ) (  1 )] } 
X dv i - ~ e  - i2~ 1 + 0  ~ -a  + 0  k a  - /  0(1) , (61) 

6'2 

where the contour C2 in the uncut v plane consists of that  portion 
of C1 along which I~1 > M, plus the broken line of Fig. 2. Now the 
leading term of the integral in (61) can be evaluated by the method 
of Scott [3j, and the term containing O(ffka) can be estimated by 
reducing it to a Fresnel-type integral. The final result is 

E b.s. ~d - -  exp i kr + 2ka(~ - -  1) -- + arctan × 
4r 2 -  

× {1 + O[(ka)-~}.  (62) 

A comparison between (62) and (i 1) yields: 

D = ½ ,  d = a r c t a n ~ , l  (63) 

in agreement with the intuitive limitations (8) and (10). 

and therefore 
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§ 7. Conclusion 

It  has been shown that the dielectric lens of radius r = a made of 
a material with a variable refractive index given by  (1) has a high- 
frequency monostatic cross section equal to that  of a metal sphere 
of radius r = a/2, whereas its bistatic cross section is equal to that  
of a metal sphere of radius r = a when the separation angle be- 
tween transmitter and receiver is not small. 

The backscattered field at short wavelengths has been obtained 
by means of a lengthy asymptotic analysis of the exact solution. 
However, there seems to be no easy way to derive the values of 
the constants D and 8; any at tempt to refine the limitations (8) 
and (10) on grounds of physical reasoning would lead to a compli- 
cated analysis; among other things, the internal reflections should 
then be taken into account. 

Finally, we observe that  the problem treated here has points in 
common with the non-relativistic quantum-mechanical scattering 
of a Particle by  a spherically symmetric potential V of finite range 
r : a, where 

]~2k2 [ 4 ]  ( O < x : r / a < l ) , ( 6 4 )  
V(x)  -- 2m 1 x(1 -l-x) 2 ' --  - -  

m being the mass of the particle and 2 :h  Planck's constant. The 
separation of Schr6dinger's equation in spherical coordinates leads 
to equation (17) for the n-th radial wavefunction. Observe that  
V(1) ---- 0 and V(0) : - -oo for all k, but  the value of the attractive 
potential V(x)  at any point x in 0 < x < 1 depends on the energy 
h2k2/(2m) of the incident particle. That is to say, the scattering 
center at r : 0 reacts differently to particles of different energy. 

A P P E N D I X  

The lens considered in this paper belongs to the family 

2x(ilc)-i 

N ( x ) - -  1 + x2 / c '  (h.1) 

where c is any positive real constant. In fact, the refractive index 
(t) is obtained by  putting c ---- 2 in (A. 1). The solutions of the radial 
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differential  equat ions (17) and (18) for this more general case have 
been given in [11. 

When  the asympto t i c  analysis of sections 4 and 5 is applied to 
the class of lenses with refractive index (A. I), it is found that  for 

Iv] = O[(ka) }+~] and cka >~ 1: 

( c i - /  (ha) - I  q- 
Mv-~ ~ 1 2 4 2c 

where 

i ( v ~  2 2 - - c - - 4 i  

+ 2 \ ka J + 16c 2 

2 + t an / i f )  • 

0 v 

(k~)-2 + 8 \ k~ / 

+ o[(ka)-q, 

+ 

(A.2) 

(A.7) 

yields : 

COS T~V 

G'I 

e -  igka 

c 1 
+ i  

4 2 

f v e -i(~/"~) 1 --  i tan/(v)  
× dv I - 9 e - i 2 ~  ( c )  x 

o, l q - i  1 - - ~ -  q - i t a n / ( v )  

0 v 

7: T: 
_ _  1 /(~) 4 2 cka q- T:y --  1 arctan (A.4) 

y = ½x/c2v ~ --  c @ 1. (A.5) 

We limit our considerations to the case in which i) the optical  
rays  do not  make  more than  one turn about  the center of the lens 
(first-order lenses), and ii) at least one ray  emerges in the back-  
scat ter ing direction; then 

I < c < 2 .  (A.6) 

Subst i tu t ion  of expressions (A.2) and (A.3) in the integrand of (24) 

(5.3) 
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where n o w  C 1 crosses the real ~ axis between 1 and ~ and the im- 

aginary v axis above -[-(i/c)x/c -/  1. 
If c = 2,  expression (A.7) simplifies and yields the result (56). 

If c < 2,  the integrand in (A.7) has poles at those points of the 
complex ~ plane for which 

c 3 1 (arctan 1 4 ] R e y = m + - - k a - - - - +  + a r c t a n - -  , (A.8) 
2 4 2~ \ 2 2--c ] 

1 ln{1 + 16 } (A.9) 
I m Y =  4re ( 2 ~ )  2 ' 

where m is any integer. The contributions to the backscattered field 
that  are due to the poles enclosed by  C1 and by the semicircle at 
infinity cannot be neglected when compared with the contour inte- 
gral contribution. Physically, this means that  the dominant term 
in the high-frequency backscattered field does not arise from specu- 
lar reflection as in the case of a metal sphere (or of the lens c = 2), 
and therefore is not obtainable by a saddle point evaluation of a 
contour integral. If 1 < c < 2, the leading term of the backscattered 
field is not due to a single ray, but  to all rays which impinge on the 
lens with an angle of incidence ~ given by:  

ial0  

These rays are the generators of a circular cylinder with radius 
a sin ~. The situation is somewhat similar to the phenomenon of 
glory rays that  occurs in the scattering by a uniform dielectric lens 
with a refractive index between x/2 and 2. 
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Note added in proo/. 

In a private communication to the first author (Letter of 3 No- 
vember 1969) Dr. S. M. Sherman of R. C. A. Missile and Surface 
Radar Division pointed out that  if polarization is taken into ac- 
count, the geometric-optics backscattering cross section of a metal- 
like lens should be zero. Dr. Sherman's discussion is identical to that  
commonly applied to the isotropic lens of Eaton; in our case, it 
fails to give the correct results for reasons similar to those presented 
in section 2. 


