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Abstract

Purpose—To presents and validates a new method that formalizes a direct link between k-space

and wavelet domains to apply separate undersampling and reconstruction for high- and low-

spatial-frequency k-space data.

Theory and Methods—High- and low-spatial-frequency regions are defined in k-space based

on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is

transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity,

CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-

spatial-frequency regions. Fourier undersampling is also customized to better accommodate each

reconstruction method: random undersampling for CS and regular undersampling for parallel

imaging.

Results—Examples using the proposed method demonstrate successful reconstruction of both

low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net

acceleration of 11 to 12.

Conclusion—The proposed method improves the reconstruction accuracy of high-spatial-

frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This

new formulation also reduces the reconstruction time due to the smaller problem size.

Keywords

Image reconstruction; Compressed sensing; Wavelet transformation; Parallel imaging; Iterative

reconstruction

Introduction

The speed of magnetic resonance imaging (MRI) is critical in many clinical applications and

depends on the amount of acquired k-space data. However, if one does not fully acquire k-

space data, the MR image using a conventional Fourier reconstruction experiences aliasing

artifacts whose severity depends on the k-space undersampling pattern used. However, these

artifacts can be reduced by using sampling and reconstruction techniques that exploit

information redundancy or prior knowledge.

One common way to mitigate the undersampling artifacts is to design sampling trajectories

that produce less visually prominent aliasing artifacts, often called incoherent artifacts.
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Typically by using irregular k-space sampling such as projection reconstruction imaging (1,

2), variable density spiral imaging (3), or random sampling (4), aliasing can be made less

coherent than in Cartesian imaging. A point spread function is commonly used to evaluate

the undersampling trajectories, where dominant side lobe amplitudes are associated with

more coherent aliasing. However, selection of the irregular sampling pattern can be

heuristic, and application-dependent. The severity of artifacts is often subjective, and their

noise-like behavior can make it difficult to distinguish them from real signal.

Many reconstruction methods have been proposed to further reduce the undersampling

artifacts by exploiting prior knowledge. Partial k-space reconstruction synthesizes

uncollected k-space data by using Hermitian symmetry after applying a phase correction (5,

6). Parallel imaging has been widely used to reconstruct undersampled k-space data,

acquired from multiple coils with spatially-varying sensitivities, using knowledge of the coil

sensitivities or data correlation between coils (7–9).

Compressed sensing (CS) is an alternative acquisition and reconstruction technique to

Nyquist sampling that can dramatically reduce the measurement size without causing

aliasing artifacts when the underlying signal is sparse (10, 11). Its promise to improve the

speed of MRI has been successfully demonstrated using a wavelet transform (12). However,

depending on implementation and application, conventional CS MRI is limited in some

cases by complexity of integration with parallel imaging (13–24), residual incoherent

artifacts due to possible reconstruction failure (25), and high computational costs for the

reconstruction (26).

In this paper, we describe a novel undersampling and reconstruction scheme to address the

above issues. Our proposed k-space undersampling scheme (quadruplet sampling) enables k-

space data to be decomposed into local regions that correspond to different wavelet

subbands using the time-frequency localization of wavelet transforms. Our new

reconstruction method (high-frequency subband CS) then transforms the original L1-

minimization problem to reduce both its size and complexity, and independently estimates

each localized region of k-space data.

We combine CS and parallel imaging by employing different methods in different k-space

regions: parallel imaging for low-spatial-frequencies and CS for high-spatial-frequencies.

This localized method is an efficient way to combine both methods since it allows selective

application of different undersampling patterns and reconstructions in different k-space

regions. This not only improves the reconstruction accuracy by exploiting the wavelet

sparsity characteristics (27) and the wavelet tree structure (28–30), but also avoids possible

CS failure in the low-spatial-frequency region by applying parallel imaging in the low-

spatial-frequency region. In addition, the computational complexity is lower, mainly due to

the smaller problem size. Applied to high-resolution 3D breast imaging, we demonstrate that

this method successfully recovers image features with a net acceleration factor of 11 to 12.

THEORY

Compressed Sensing MRI

CS allows accurate reconstruction of images with far fewer measurements than traditional

methods when two requirements are met: sparsity and incoherence (10, 11, 27). Sparsity

refers to the fact that the image information can be represented using a small number of

coefficients without compromising the image quality. Incoherence expresses the idea that

the energy of objects in the sparse representation domain is spread out in the measurement

domain. Practical CS MRI typically employs a wavelet transform to promote sparsity, and

random k-space sampling to ensure incoherence (12). If conditions of sparsity and
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incoherence are satisified, an image can be recovered to high accuracy, even when k-space

is significantly undersampled, by solving the following convex optimization:

(1)

Here, y consists of the acquired k-space samples, x is a 2D or 3D image, Ф is the

undersampled Fourier transform, Ψ is a sparse transformation such as a wavelet transform or

a total variation, and ∊ bounds the amount of noise in the measurement.

Denoting Ψ and Ψ−1 for the forward and inverse wavelet transform, wavelet coefficients w

are related to an image x by w = Ψx or x = Ψ−1w, and Eq. 1 can be rewritten in terms of w

instead of x:

(2)

Note that the minimization in Eq. 2 includes two domains, wavelet (sparse basis) and k-

space (data acquisition), where the two domains are connected by the inverse wavelet

transform followed by the undersampled Fourier transform (ФΨ−1), which we refer to as a

Fourier-Wavelet transform. We first describe mathematical derivations on the Fourier-

Wavelet transform using a one-dimensional signal to explain the wavelet subband

decomposition, a key operation of this work. More details on wavelet basis functions of the

continuous and discrete wavelet transforms are described in Appendix A.

1D Fourier-Wavelet Transform, ФΨ−1—The fast wavelet transform can be

implemented using discrete filters, h[n] and g[n], a pair of quadrature mirror filters (low and

high pass filters), if the form of scaling and wavelet function is known. If we use the

notation [·]↓2 as downsampling by a factor of 2 (only even samples are kept), [·]↑2 as

upsampling by a factor of 2 (insert one zero between each two samples) and ★ as discrete

convolution, the approximation coefficients cj and the detailed coefficients wj at an arbitrary

scale j can be computed by,

(3)

where  and  are defined as h[−n] and g[−n]. We can also generalize the fast inverse

transform by introducing biorthogonal bases,

(4)

where  and  are defined to be dual to  and . Note that the biorthogonal wavelet

transform becomes orthogonal when h = h1 and g = g1. Figure 1a shows a schematic

diagram to realize the fast wavelet transform (an orthogonal basis) with a single scale using

a one-dimensional discrete signal x[n], defined in [0, N-1].

When the Fourier transform (FT) is applied, we can explore the subband coding (analysis)

and decoding (synthesis) in frequency domain (Figure 1b). After multiplying spectral

weightings  and  to the one-dimensional k-space data y,

defined in [−N/2, N/2-1], and downsampling by 2, we can describe y3 and y7 as,
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(5)

where y3 = FT{w0} and y7 = FT {c0}, defined in [−N/4, N/4-1]. With upsampling and

multiplying by the spectral weightings, we can express y as a sum of two components,

(6)

where y4 and y8 are the decomposed k-space data, corresponding to h and g.

We can decompose y into y4 and y8 as long as we sample both k1 and k2, where k1 is any

integer between −N/4 and N/4-1, and k2 is a periodic location of k1 with fundamental period

N/2 (i.e., k2 = k1 − N/2 if k1 ≥ 0 and k2 = k1 + N/2 if k1 < 0). Introducing notation uH2 = y4

and uL2 = y8 (equivalently, uH = y3 and uL = y7), the upsampling assures un and un2 have the

same value at the two locations,

(7)

and y can be formulated in a matrix-vector form using Eq. 6:

(8)

All the spectral weightings (DL and DH) are known based on the wavelet basis, and uL and

uH can be computed by inverting the matrix D, called the wavelet subband decomposition.

This wavelet decomposition is always possible when we sample both k1 and k2, and, by

definition, uL and uH have a direct Fourier relationship with wavelet subbands, c0 and w0.

Note that D is typically close to a diagonal matrix and becomes exactly diagonal if the

wavelet filters have zero-transition-band (i.e., DH[k] is zero for any k1, and DL[k] is zero for

any k2).

2D Fourier-Wavelet Transform, ФΨ−1—The fast wavelet transform algorithm can be

easily extended to two dimensions using two-dimensional separable convolutions followed

by subsamplings (analysis; forward transform), and upsamplings followed by two-

dimensional separable convolutions (synthesis; inverse transform). The two-dimensional

separable convolution determines the localized k-space data from each wavelet subband n,

where n represents one of the four separable two-dimensional filters (e.g., LH consists of

low- and high-pass filters, where L represents a low-pass filter between the rows and H

represents a high-pass filter between the columns). Figure 2a shows the mapping of wavelet

coefficients into k-space data using ФΨ−1. High-frequency wavelet subbands (wLH, wHL,

wHH) and their localized k-space data (yLH, yHL, yHH) are shown in colors. This mapping of

the high-frequency subbands into the k-space regions is determined by spectral weightings

(DLH, DHL, DHH), as shown in Fig 2b.

Figure 3 illustrates the 2D Fourier-Wavelet transform ФΨ−1, consisting of upsamplings and

two-dimensional separable convolutions in frequency domain. If we denote Dn as the

spectral weighting between wavelet subbands and k-space regions, and un as frequency

components of each wavelet coefficients wn (i.e., un = FT {wn}), we can describe ФΨ−1 as a

series of the inverse wavelet transform steps in frequency domain. As shown in Fig 3a,

starting from wn, the localized k-space data yn can be constructed by a multiplication of Dn

and un2,
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(9)

where un2 is the upsampled version of un. The upsampling by two in 2D space is equivalent

to replicating four times in frequency domain. Finally, the sum of yn becomes the k-space

data y, as shown in Fig 3b,

(10)

The key here is that if we are able to decompose y into yn (equivalently, un), ФΨ−1 can be

converted into the individual Fourier transform Фs between wn and un (i.e., y = ФΨ−1w

becomes un = Фswn). Note that due to the overlap of the spectral weightings Dn, the exact

decomposition requires careful sampling. We will show that “quadruplet sampling,” in

which all four replicas (bn in Fig. 3a) are sampled, is a sufficient condition for this

decomposition.

2D Wavelet Subband Decomposition—As shown previously, un2 is repetitive with

respect to un, so at a “quadruplet” of locations (b1, b2, b3, and b4) the values of un2 are

identical. An example of a quadruplet set for uLH2 is shown in Figure 3a. The k-space data

at the quadruplet set can then be formulated in a matrix-vector form by using Eq. 9 and 10:

(11)

where the matrix, which we refer to as D, consists of spectral weightings. Eq. 11 is always

invertible because the wavelet filters were designed to satisfy the (bi-)orthogonal conditions

of dealiasing and exact reconstruction (31).

When random Fourier undersampling is used, k-space data typically do not always form

quadruplet sets (i.e. some of y(b1), y(b2), y(b3), and y(b4) are missing) and the solution of

Eq. 11 may not be always possible to obtain. Although an approximate estimation of un may

be possible, quadruplet sampling guarantees exact decomposition without much sampling

penalty. The wavelet decomposition with quadruplet undersampling enables construction of

an independent Fourier relationship between un and wn for each high-frequency wavelet

subband. Since the undersampled data y can be decomposed to un, with a direct transform to

wavelet subband, each un can be independently reconstructed using a wavelet sparsity

constraint.

Wavelet Tree Structure—The wavelet coefficients can be organized into a tree structure

by the nature of concatenated filters (28–30). One easy way to see this is to consider the

wavelet transform as a set of local discontinuity detectors: a smooth image region produces

small wavelet coefficients while an image region with discontinuities creates a chain of large

wavelet coefficients along a branch of the wavelet tree. It follows that the wavelet

coefficients are monotonically nonincreasing along the tree branches out from the root. This

connected tree property has been successfully exploited in many wavelet-based image

compression algorithms.

Figure 4a shows the wavelet tree structure with the tree branches. A wavelet coefficient is

non-zero only if the wavelet coefficient in the coarser scale is non-zero (with very few

exceptions) (32) and therefore the high-frequency subbands (leaves of the tree) are typically
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the most sparse. Secondly, possible non-zero locations of the high-frequency subbands can

be limited based on knowledge of the coarser-scale wavelet subbands. Figure 4b illustrates

one way to estimate non-zero locations (or support region) of the high-frequency subbands (j

= 2) using the coarser-scale wavelet subbands (j = 1) after applying a wavelet thresholding

method, denoted by MLH, MHL, and MHH. After increasing the size twice by duplicating the

same binary values, these non-zero location masks can be used as an additional prior for the

reconstruction (33).

High-Frequency Subband (HiSub) CS

The wavelet subband decomposition forms a direct Fourier relationship between the

decomposed k-space data (un) and the high-frequency subband (wn). We can rewrite Eq. 2

by accommodating this Fourier relationship and non-zero locations:

(12)

where Фs is the smaller random Fourier undersampling, ∊n bounds the amount of noise in

the subband measurement, and Mn is the estimated non-zeros location mask (1 for non-zeros

and 0 for zeros). We named this newly derived minimization problem High-frequency

Subband (HiSub) CS, which applies each reconstruction only in a certain k-space region,

called the outer k-space region (LH or HL or HH). This local reconstruction method allows

us to use a different reconstruction method for the inner k-space region (LL). Note that in

Eq. 12 the wavelet transform Ψ has been removed, resulting in greatly reduced

computational complexity. HiSub CS solves the three independent problems (Eq. 12) where

each problem without the wavelet transform is four times smaller than the conventional CS

(Eq. 1) minimization. This is advantageous due to smaller memory requirements and the

option of parallel computing for independent calculations. Furthermore, the independent

reconstruction allows incorporation of different prior knowledge for each wavelet subband

such as the non-zero locations based on the wavelet tree structure.

MATERIALS AND METHODS

HiSub CS: Quadruplet Sampling

In the theory section, we have shown that the wavelet subband decomposition is possible if

random undersampling forms quadruplet sets. Figure 5a shows a process to generate a

quadruplet sampling pattern (ky-kz) for HiSub CS. Assuming the full matrix size is Ny × Nz,

we first generate four times smaller uniform density random undersampling Фs (Ny/2 × Nz/

2). Фs is duplicated four times (or “tiled”) to make the full sized random undersampling.

Note that the wavelet subband decomposition is now possible, and Eq. 12 uses Фs as the

random Fourier undersampling. To accommodate autocalibrating parallel imaging (9, 34)

for the low-spatial-frequency content (the inner k-space) estimation, we replace the inner k-

space region (Ny/2 × Nz/2) with regular Fourier undersampled data, and finally add a small

fully sampled region to allow the kernel calibration.

The HiSub CS undersampling pattern consists of three different k-space regions: a small

fully sampled region for the kernel calibration, an inner k-space region for parallel imaging,

and an outer k-space region for HiSub CS. The inner k-space region is regularly

undersampled (RPI) to estimate low-spatial-frequency content whereas the outer k-space

region is randomly undersampled (RCS) to estimate high-spatial-frequency content. An

overall reduction factor (Rnet) is a combination of RPI and RCS including the small fully

sampled region. Here, we empirically chose the size of the fully sampled region to be 24 ×
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24 (ky × kz), RPI to be 2 to 6 depending coil sensitivities, and RCS to be 16. Note that RCS is

much higher than RPI due to the wavelet-domain sparsity property in high-frequency

subbands.

HiSub CS: Reconstruction

For autocalibrating parallel imaging, we applied autocalibrated reconstruction for Cartesian

sampling (ARC) (34). Figure. 5b shows the serial reconstruction of ARC and HiSub CS. We

used a regularization factor of 0.01 for the ARC calibration and a kernel size of 3 × 7 × 7 (kx

× ky × kz) for all ARC reconstructions. With ARC, the inner k-space region is recovered

well due to the regular undersampling. With HiSub CS, the high-spatial-frequency

information is then recovered to restore the fine structure of the image.

After ARC, we can assume the inner k-space region estimated by ARC is fully acquired.

Solving Eq. 11 at every point of Фs for each high-frequency subband is equivalent to

computing:

(13)

where  is the high-frequency subband using the image reconstructed using ARC. When

the quadruplet sampling is used, this equivalence always stands because frequency

components of  at the random locations are not perturbed by the analysis process (shown

in Fig 1). Once un is computed,  is only used for the initial guess to solve Eq. 12. Note

that this decomposition approach is almost instantaneous and adds only minimal

computational cost.

For HiSub CS reconstruction, an approximate message passing (AMP) algorithm (26) was

modified to solve Eq. 12 for each of the three subbands. We have added a non-zero location

constraint (as shown in Fig 4b) to AMP to improve the reconstruction accuracy (33). The

AMP method is a variation of iterative soft-thresholding methods (35–37) and is known to

be faster than the conventional L1 minimization algorithms (26). The non-zero location

masks Mn were estimated from the coarser scale wavelet coefficients using an adaptive

wavelet threshholding method, called VisuShrink (38). The threshholding value was

empirically scaled by 1.25 times larger than the value that the wavelet denoising suggests to

completely remove small wavelet coefficients in the coarser scale. Any wavelet coefficients

above the threshold were considered to be significant, and a binary image (non-zero mask)

was set to be one at locations that contained significant wavelet coefficients. The software

implementation of the HiSub CS reconstruction is available at http://bmr.stanford.edu/

software/. Note that the HiSub CS reconstruction is completely compatible with other CS

algorithms (39) that incorporate prior non-zero location information.

For complex-valued images, we used a dual wavelet transform pair: real wavelet coefficients

are transformed from the real image and imaginary wavelet coefficients are transformed

from the imaginary image. This creates complex-valued wavelet coefficients. HiSub CS

minimizes the L1-norm of complex-valued wavelet coefficients in the high-frequency

subband, and directly estimates complex-valued wavelet coefficients.

Experimental Methods

All reconstructions were implemented on a Linux PC equipped with a dual six-core 2.66

GHz CPU (Intel Xeon) and 64 GB of memory using Matlab (R2011b; The MathWorks Inc.,

USA). All MRI experiments were performed on two MR scanners: 1.5T GE Signa Excite

and 3.0T GE MR 750 (GE Healthcare, Waukesha WI, USA). We used the normalized root

mean squared error (nRMSE) to evaluate the differences between original by the maximum

signal of the original:
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(14)

where N is the total number of pixels. All reconstructions were performed separately on

each coil and the square root of the sum of squares (SOS) was used to combine all the

individual coil images. The nRMSE was computed based on the SOS images.

Optimization of Standard CS

The unconstrained L1-minimization of Eq. 1, which we refer to as Standard CS, was solved

by using YALL1 (40). YALL1 is a freely available MATLAB software package that

provides a collection of fast L1 minimization algorithms based on the dual alternative

direction method. The random undersampling densities and the regularization parameters for

Standard CS were first examined to find an optimal set that generates the maximum

reconstruction accuracy. Two variable density functions were evaluated: an α-valued

Gaussian window where the width of the window is inversely related to α, and a power of

the distance from the origin. Utilizing the optimal sampling density selected above, we next

optimized the regularization parameter. nRMSE was measured 30 times using 30 different

regularization values where the values were logarithmically equally spaced between 10−4

and 10−1.

HiSub CS: Comparison of ARC, Standard CS, and HiSub CS

An image of a resolution phantom (GE Healthcare) was acquired using a 2D gradient-echo

sequence with a matrix size of 512 × 512. A single channel head coil was originally used

and the multi-coil images were synthesized by multiplying eight different simulated

sensitivity profiles. We assumed the 2D plane to be the y-z plane to enable two directional

random undersampling. We used the Daubechies-6 wavelet transform.

We first compared ARC and Standard CS to show the reconstruction accuracy and the

behavior of the residual artifacts as a function of the reduction factor. For Standard CS, we

applied the optimal set that was previously selected, and randomly undersampled k-space

(repeated 30 times) by a reduction factor of 2 through 9.2. For ARC, we regularly

undersampled k-space in both ky and kz directions. Each direction was undersampled by a

factor of 1 to 3, which created six different reduction factor combinations (minimum of 2

and maximum of 9). The proposed undersampling pattern, described in Figure 5a, was

generated 30 times to evaluate two reconstruction methods: ARC and ARC+HiSub CS. The

ARC-only method represents good low-spatial-frequency content estimation but poor high-

spatial-frequency content estimation, and ARC+HiSub CS is our proposed reconstruction

method, which follows the serial reconstruction described in Figure 5b.

HiSub CS: 3D Imaging

High resolution 3D images were acquired with multiple receiver coils for further evaluation.

The 3D data were divided into ky-kz planes for each x location, and each ky-kz plane was

reconstructed separately. We used the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet

transform, which supports a non-power of two matrix size. We evaluated three

reconstruction cases: ARC (regular undersampling), L1-SPIRiT (variable density Poisson-

disk sampling) (23), and ARC+HiSub CS (quadruplet sampling). L1-SPIRiT was chosen as

an example of a standard CS with PI reconstruction approach using the same overall

reduction factor as HiSub CS.
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In a grid phantom, we acquired 3D images with a RF-spoiled gradient echo (SPGR)

sequence with the following scan parameters: TR/TE = 7.3/5 ms, FOV = 20 cm, matrix = 8

× 512 × 512 (kx × ky × kz), and BW = 125 kHz. The imaging plane was coronal with a

superior-inferior readout direction (the axial plane was the y-z plane). A standard 8-channel

head coil was used, and the acceleration factor for ARC (RPI) was 2 (1 × 2; ky × kz) due to

limited coil sensitivity.

For breast imaging, a custom-fitted 16-channel breast array coil was used (41), which

enabled parallel imaging in two dimensions (left-right and superior-inferior directions) and

RPI was 6 (3 × 2). We acquired high-resolution 3D scans in a total of 7 subjects (four T1-

weighted and three T2-weighted scans). For T1-weighted imaging, we used 3D SPGR with

fat saturation (matrix size = 360 × 360 × 240) and 3D SPGR (elliptical full k-space; matrix

size=252 × 488 × 152). The imaging plane was axial with an anterior-posterior readout

direction (the coronal plane was the y-z plane). For T2-weighted imaging, we used a 3D

FSE sequence in combination with parallel imaging (ky × kz = 3 × 2 and matrix size = 512 ×

320 × 152).

RESULTS

HiSub CS: Comparison of ARC, Standard CS, and HiSub CS

Figure 6a shows four reconstruction methods: ARC1, ARC2, Standard CS, and ARC+HiSub

CS. ARC2 and ARC+HiSub CS share the same undersampling pattern: the inner region was

regularly undersampled by 2 × 2 (RPI = 4) and the outer region was randomly undersampled

by different reduction factors (RCS) as Rnet changes. The previous test showed that RPI = 4

does not cause any serious residual artifacts. Standard CS has a larger fully sampled region

(64 × 64) than HiSub CS (24 × 24) to better phase-correct the complex-valued image.

Figure 6b plots the nRMSE curve (mean ± SD) as a function of the reduction factor for all

reconstruction methods. ARC2 has the worst reconstruction performance since it is unable to

recover any high-spatial-frequency content. Standard CS has similar performance, but better

than ARC2. In all cases, ARC+HiSub CS is superior to all other reconstruction methods and

also does not require any data dependent parameter adjustments. This is interesting because

the undersampling pattern for Standard CS here is nearly optimal whereas ARC+HiSub CS

follows a simple principle of undersampling, which does not require an optimal selection.

Note that ARC2 (HiSub CS undersampling) has larger nRMSE than ARC1 (regular

undersampling), which confirms parallel imaging works better when regular undersampling

is used.

Figure 7 shows the reconstructed images with Rnet = 6 and 10. The high-spatial-frequency

content (“comb” shape) and the low-spatial-frequency content (slice thickness bar) are

zoomed in to illustrate the separate k-space estimation using the different reconstruction

methods. ARC (RPI = 4) shows excellent performance recovering both the low- and high-

spatial-frequency content. For Rnet = 6, all reconstruction methods show excellent

reconstruction accuracy except that Standard CS still includes a few low-resolution residual

artifacts. For Rnet = 10, Standard CS shows a resolution loss, while ARC+HiSub CS has

good estimation both for the low- and high-spatial-frequency content with the acceptable

nRMSE.

HiSub CS: 3D Imaging

Figure 8 shows a reconstruction result for a grid phantom with resolution elements. The

reconstructed axial plane (y-z plane) image using HiSub CS is similar to the fully-sampled

and ARC (RPI = 2) images. HiSub CS has a net reduction factor (Rnet) of 5.8 (RCS is 16 and

RPI is 2) and skipping the k-space corners further increases Rnet to 6.3. The k-space
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sampling patterns for all three reconstruction methods are shown at the bottom. The zoomed

images at a different location also show that all three reconstructions maintain the fine

structure well, indicated by the arrows. The reconstruction time for HiSub CS (excluding the

ARC processing) is 2 - 3 seconds per coil.

Figure 9 demonstrates a reconstruction result for high resolution 3D breast imaging. The

custom fitted breast coil allows high parallel imaging acceleration with no visible residual

artifacts up to RPI = 6 (3 × 2). The fully sampled and ARC (RPI = 6) images are shown in

the axial (x − y plane) and coronal (y-z plane) as a comparison. The ARC+HiSub CS image

shows that HiSub CS maintains fine structures (see the arrows) and is close to the fully

sampled and ARC acquisitions, even with the extremely high acceleration factor, Rnet = 10.7

(RCS = 16 and RPI = 6). We applied various undersampling patterns to L1-SPIRiT, including

uniform density Poisson-disk sampling and quadruplet sampling, and the variable density

Poisson-disk sampling produced the lowest nRMSE. Nonetheless, HiSub CS shows better

qualitative reconstruction performance (see the arrows) and has lower nRMSE (0.0152) than

L1-SPIRiT (nRMSE = 0.0171). The reconstruction time for HiSub CS is 20 - 30 seconds per

coil.

Figure 10 shows an example of T1-weighted images. The fully sampled and ARC images

are shown in the coronal (y-z plane) as a comparison. HiSub CS has the similar nRMSE

(0.00416) to L1-SPIRiT (nRMSE = 0.00424), but the depiction of fine structures was

limited in L1-SPIRiT (see the arrow), while morphology on the HiSub CS image closely

resembled the fully sampled and ARC acquisitions. HiSub CS has a net reduction factor

(Rnet) of 12.2 (RCS is 16 and RPI is 6). The reconstruction time for HiSub CS is 40 - 45

seconds per coil.

DISCUSSION

One major advantage of HiSub CS compared with CS is that the reconstruction is localized

to parts of k-space, making it more easily separable from (and more compatible with) other

local k-space estimation methods such as parallel imaging. Each reconstruction method can

be assigned to an appropriate k-space region and an undersampling pattern can be

customized for each method. Here, we applied parallel imaging for the low-spatial-

frequency region with regular undersampling, and HiSub CS for the high-spatial-frequency

region with random quadruplet undersampling.

The initial idea to apply separate reconstructions for each wavelet subband has been

described by Candes et al. (27). This applies different undersampling factors based on the

wavelet subbands to take advantage of the wavelet-domain sparsity. We have expanded the

idea by introducing the wavelet subband decomposition using quadruplet undersampling to

exactly separate local k-space components. Secondly, we have reformulated the original L1

reconstruction problem into Eq. 12 to exclude the reconstruction of the low-frequency

subbands. This allows use of parallel imaging to estimate low-spatial-frequency signal,

which avoids any estimation errors (i.e. incoherent artifacts) in low-spatial-frequency

content that may result from CS.

Another advantage of HiSub CS is fast reconstruction due to its lower computation cost than

CS. HiSub CS removes the wavelet transform in the minimization by reformulating Eq. 1

into Eq. 12 and solves three independent smaller sized problems (four times smaller than

original). This lowers the overall computational cost, and in addition, we used the AMP

method in conjunction with the non-zero location constraint to further reduce the

reconstruction time (26). The reconstruction time using Matlab was around 500 - 800 msec

for each 2D plane (512 × 512), which is much faster than conventional L1-minimization
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solvers using wavelet transforms. We anticipate further improvements will result from code

optimization.

As explained in the theory section, quadruplet sampling is necessary when the exact wavelet

subband decomposition is desired. With arbitrary k-space undersampling, approximate

wavelet decomposition is still possible due to the nature of the time-frequency localization,

and can be done by dividing each subband spectral weighting (i.e. approximate the matrix D
in Eq. 11 as a diagonal matrix) (27). The reconstruction accuracy using the approximate

wavelet decomposition depends on wavelet filters and is slightly lower compared to the

reconstruction using the exact wavelet decomposition, but allows more flexible choice of

undersampling patterns.

High-frequency subbands typically have smaller amplitudes due to the wavelet tree structure

and therefore are more sensitive to noise. When SNR or contrast is not sufficiently high, the

reconstruction tends to eliminate more of the wavelet coefficients, resulting in resolution

loss. This SNR and contrast limitation is a common issue for both conventional CS and

HiSub CS, and HiSub CS is superior to conventional CS methods in various measurement

noise levels. High-resolution post contrast imaging, where SNR and contrast are high, is

therefore a logical application for HiSub CS.

The serial reconstruction of ARC and HiSub CS can be easily implemented in a modular

scheme that generates quick initial feedback (ARC only) and a slower, but better final result

(ARC+HiSub CS). This setup could be more attractive in practice since the initial response

is quick and has adequate image quality to confirm patient position and successful contrast

administration, while a better resolution image is ultimately reconstructed using HiSub CS.

This also could be thought of as a resolution enhancement process.

We have chosen a 2D discrete wavelet transform as the sparse transformation but other

sparse transformations can be also used for HiSub CS, as long as the transform supports

time-frequency localization. A 3D discrete wavelet transform is an easy extension, and can

allow better sparsity in the three dimensional domain. The number of high-frequency

subbands becomes seven (LLH, LHL, LHH, HLL, HLH, HHL, and HHH) instead of three

and therefore there are seven different spectral weightings to decompose. HiSub CS would

also further reduce the reconstruction time compared to CS, since the 3D wavelet transform

is not included in the minimization. Other sparse transformations to consider are dual tree

complex wavelets (42), curvelets (43), and contourlets (44), which are known to have better

time-frequency localization for images.

Non-decimated wavelet transforms can be another option to consider (45). The non-

decimated wavelet transforms can be a better sparse transformation than the discrete wavelet

transform due to the noise reduction effects of non-decimated wavelet transforms. However,

the quadruplet sampling is not directly applicable for the wavelet subband decomposition

since the non-decimated wavelet transforms do not include the downsampling and

upsampling steps. In addition, the problem size does not become smaller, and the

computational complexity can be either marginally reduced or increased.

HiSub CS can be modified to accommodate additional constraints such as total variation

(TV). The iteration process for solving each of the three subbands can be combined to

promote the wavelet sparsity at each iteration, and the TV constraint can be enforced after

combining the current estimates of the three subbands. However, it may not be possible to

take full advantage of exploiting the Wavelet-Fourier transform to lower the computational

cost because TV promotes its sparsity based on the image domain (i.e., the inverse wavelet

transform should be applied to enforce the TV constraint).
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HiSub CS directly estimates complex-valued wavelet coefficients in the high-frequency

subband. Because this does not involve any a priori phase estimation processes, the high-

spatial-frequency content of phase images can be also recovered. Although we have not

acquired any data containing high-spatial-frequency phase variations, we did observe that

the phase images using HiSub CS are sharper and finer than the phase images using CS. We

believe that any applications that need accurate and high-resolution phase estimation, such

as susceptibility weighted imaging and phase contrast imaging, can benefit from this

complex-valued minimization.

CONCLUSION

HiSub CS formalizes a direct link between k-space and wavelet domains to enable the use of

separate undersampling and reconstruction for inner and outer k-space data. Quadruplet

undersampling allows exact separation between two k-space regions based on wavelet

subbands. The result is an efficient combination of CS and parallel imaging that can avoid

possible CS reconstruction errors in the low-spatial-frequency k-space region, and can

improve reconstruction accuracy in high-spatial-frequency k-space regions. This new

formulation also reduces the reconstruction time, mostly due to the smaller problem size and

replacement of the wavelet transform with a fast Fourier transform in iterations. Applied to

high resolution breast imaging, we have demonstrated that HiSub CS can recover fine

structures with a net acceleration of 11 to 12.
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APPENDIX A: Wavelet Basis Functions

The continuous wavelet transform for a one-dimensional signal x(t) can be described as,

(15)

where W (a, b) is the wavelet coefficient, ψ*(t) is the complex conjugate of the mother

wavelet function, and a and b are the scaling and translating parameters. With a = 2j for an

integer value of j, the multiresolution representation constructs a series of embedded

subspaces Vj, where each Vj has an orthogonal complement, called Wj, in Vj+1 (Vj⊂Vj+1;

Vj+1 = Vj ⊕ Wj). We can now express the space of all measurable, square-integrable

functions as the union of infinite vector spaces (Vj ⊕ Wj ⊕ Wj+1 ⊕ Wj+2 · ·), and each

vector space is spanned by the scaled and translated version of either the scaling function

ϕ(t) or wavelet function ψ(t),

(16)

where we define ϕj,b(t) = 2j/2ϕ(2jt − b) and ψj,b (t) = 2j/2ψ(2jt − b.). The multiresolution

analysis requires that two basis functions satisfy the following property:
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(17)

where h[n] and g[n] are conjugate mirror filters (low and high pass filters). Note that both

functions are designed properly such that we apply a low pass filter h[n] to a basis function

of V1 to construct a basis function of V0, whereas we apply a high pass filter g[n] to a basis

function of V1 to construct a basis function of W0.

In the discrete case, a signal x[n], defined in [0, N-1], can be represented using the vector

spaces described above,

(18)

where cj0[b] are the approximation coefficients at an arbitrary starting scale j0 and wj[b] are

the detailed coefficients. The first sum uses the scaling functions to provide an

approximation of x[n] at the scale j0 and, for each higher scale j ≥ j0, the second sum uses

the wavelet functions to provide increasing detail to the approximation. The expansion

functions form an orthogonal basis, and the wavelet coefficients can be computed by the

inner product of x[n] with the basis functions:

(19)

This simply shows that any discrete signal x[n] can be decomposed into a set of bandlimited

components, called subbands, which can be reassembled to reconstruct the original signal

without error.
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Figure 1.
1D discrete wavelet transform using an orthogonal basis: (a) the schematic diagram to

realize the fast wavelet transform with a single scale, and (b) its behavior in frequency

domain.

Sung and Hargreaves Page 16

Magn Reson Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2.
Illustration of the domains used in CS MRI and the property of wavelet transforms. (a) The

relationship among three domains (x: image, y: k-space, and w: wavelet). High-frequency

subbands and the corresponding k-space data are colored (LH: green, HL: red, and HH:

blue). (b) High-frequency subband spectral weightings. The Daubechies-6 wavelet has been

used here and an ideal set of the zero-transition-band filters is indicated by the dotted lines.
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Figure 3.
Illustration of the 2D Fourier-Wavelet transform, ФΨ−1, consisting of (a) 2D upsampling

and convolution, and (b) the sum of the localized k-space data. The upsampling in 2D space

is the same as the replication in frequency domain, and the 2D convolution is the same as

the multiplication of the spectral weighting Dn in frequency domain. The sum of all the

localized k-space data regions (yn) becomes a full k-space data set (y).
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Figure 4.
Illustration of (a) the wavelet tree structure and (b) the non-zero location estimation.

Wavelet coefficients naturally form a tree structure flowing from the coarsest scale to the

finest scale, described by the arrows, and are typically non-increasing along the branches of

the tree. This results in two main observations: the high-frequency subbands are the most

sparse, and possible non-zero locations of the high-frequency subbands are limited by the

coarser scale wavelet subbands.
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Figure 5.
HiSub CS: quadruplet sampling and reconstruction. (a) The generation of k-space under-

sampling consists of the duplication of Фs, the addition of regular undersampling, and the

addition of a fully sampled region. The proposed undersampling pattern is customized to

accommodate the separate reconstruction methods, CS and parallel imaging. (b) The serial

reconstruction of ARC and HiSub CS shows how each reconstruction method recovers two

different k-space regions (low- and high-spatial-frequency contents).
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Figure 6.
Comparison of ARC, Standard CS and ARC+HiSub CS: (a) illustration of each method with

associated k-space undersampling patterns and (b) nRMSE (mean ± SD) plots with different

reduction factors. For all reduction factors, ARC+HiSub CS shows the best performance

based on this metric.
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Figure 7.
Reconstruction examples of the two methods (Standard CS and ARC+HiSub CS). The

original image and ARC (2 × 2) are shown on the left as references. Different regions of

reconstructed images are zoomed in to better depict high-frequency (comb shape) and low-

frequency (slice thickness bar) contents. For R = 6 and R = 10, Standard CS contains

residual artifacts, indicated by the arrows, while ARC+HiSub CS shows excellent

reconstruction.

Sung and Hargreaves Page 22

Magn Reson Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 8.
High-resolution 3D grid phantom images using the three reconstruction methods: ARC,

ARC+HiSub CS, ARC+HiSub CS with cutting the k-space corners. (a) Reconstructed

images, (b) zoomed-in versions of reconstructed images in a different slice location and (c)

associated k-space undersampling schemes. Note that an example of high-resolution

features, indicated by the arrows, is well maintained.
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Figure 9.
High-resolution 3D breast imaging with fat saturation using the different reconstruction

methods: (a) fully sampled, (b) ARC (R = 5.8), (c) L1-SPIRiT (R = 10.7), and (d) ARC

+HiSub CS (R = 10.7). The k-space undersampling patterns are placed on the left to

describe different ky − kz sampling schemes for different reconstruction methods. Note that

L1-SPIRiT and HiSub CS have the different sharpness of the breast images (see the arrows).
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Figure 10.
High-resolution 3D T1-weighted breast imaging without fat saturation using: (a) fully

sampled, (b) ARC (R = 5.8), (c) L1-SPIRiT (R = 12.2), and (d) ARC+HiSub CS (R = 12.2).

Images are shown in the coronal plane, and fine structures are magnified to show the

differences (see the arrows).
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