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Abstract

Part I of this report continues the investigation, initiated in pre-

vious reports, of scattering from rectangular plates coated with lossy

dielectrics. The hard polarization coefficients given in the last report

are incorporated into a model, which includes second- and third-order

diffractions, for the coated plate. Computed results from this model are

examined and compared to measured data. A breakdown of the con-

tribution of each of the higher-order terms to the total RCS is given.

The effectiveness of the UTD model in accounting for the coating effect

is investigated by examining a Physical Optics (PO) model which in-

corporates the equivalent surface impedance approximation used in the

UTD model. The PO, UTD, and experimental results are compared.

Part II of this report presents a radar cross section (RCS) model,

based on Physical Optics (PO) and the Method of Equivalent Currents

(MEC), for a trihedral corner reflector. PO is used to account for the

reflected fields, while MEC is used for the diffracted fields. Single,

double, and triple reflections and first-order diffractions are included

in the model. A detailed derivation of the E0-polarization, monostatic

RCS is included. Computed results are compared with finite-difference

time-domain (FDTD) results for validation. The PO/MEC model of

this report compares very well with the FDTD model, and it is a much

faster model in terms of computational speed.



Io HIGH-FREQUENCY TECHNIQUES
FOR RCS PREDICTION

OF PLATE GEOMETRIES

A. INTRODUCTION

Scattering from a rectangular plate and from simple targets composed of rect-

angular plates are important and useful problems to study because specific scat-

tering mechanisms can be isolated and closely analyzed. Some of the scattering

mechanisms of current interest in developing high-frequency asymptotic modeling

techniques are diffractions from electrically thin (thickness _ _), lossy dielectrics

backed by a perfect conductor; equivalent impedance representations for this ge-

ometry; nonprincipal-plane scattering; and corner diffractions. These topics have

been addressed in previous reports [1] - [8]. This part of the report details the

continuing work on the problem of scattering from a rectangular plate backed by

an electrically thin, lossy dielectric.

To determine the effectiveness of the Uniform Theory of Diffraction (UTD)

expressions for a coated wedge, these diffraction coefficients are used to model

the principal-plane scattering from a strip/plate geometry coated with a lossy

dielectric. The hard polarization case is examined in this report. Terms for higher-

order diffractions are included in the model. A breakdown of the various terms is

used to determine the contibution of the higher-order terms to the overall radar

cross section (RCS). Computed results are compared to measured RCS data for

validation.



One of the primary concerns in the modeling of coated conductors is the

boundary condition describing the coating. This investigation has focused on

using the Impedance Boundary Condition (IBC) and approximating the equiv-

alent impedance of the coating backed by a perfect conductor in terms of a short-

circuited transmission-line model [8]. This is considered to be an accurate approx-

imation near and at normal incidence to the surface. In order to verify this, a

physical optics (PO) model for the plate is compared to experimental data and to

the UTD model.

B. THEORY AND RESULTS

1. Coated Plate UTD RCS Model -- Hard Polarization

In the last report [8], UTD coefficients for hard polarization scattering from the

coated wedge of Fig. 1 were presented. These coefficients were derived from

Griesser and Balanis' UTD coefficients [9] for a general dielectric wedge. Adapting

these coefficients for the special case of a coated wedge resulted in simplification

of the expressions involved, which led to faster computational times. In a previous

report [7], a model for the principal-plane RCS of the coated plate of Fig. 2 was

presented. This model used only first-order diffraction terms. Results from this

model, shown in the last report [8], revealed good agreement with experimental

data near and at normal incidence to the plate. It was thought that the addition of

terms to account for higher-order diffractions and surface waves would immensely

improve the results away from normal incidence.

Terms to account for second- and third-order diffractions have been added

to the RCS model of the coated plate for the hard polarization case. The fields

for the various orders of diffraction are given below. An e j_t time convention is

assumed and suppressed throughout. The incident field is:



Incident Field

Ei = -ffeEoe jk(_e°'6'+u'in_'') (1)

The diffracted fields are formed in the usual way for a UTD solution as a product of

the incident field, an amplitude spreading factor, a phase factor, and the diffraction

coefficient. The necessary diffraction coefficients will not be repeated here as they

can be found in the previous report [8]. As has been discussed in the last report,

the equivalent impedance of the coated surface is modeled using a short-circuited

transmission-line approximation. The appropriate equation is given also in the last

report [8].

The first-order diffracted field is:

First-Order Field

,, e -jkp

Edl = -aeEoV/k-_ [e-J_(¢°_¢+¢°'¢)D,_H (¢'x,¢x,00h, 2)

Dp_.tI (¢',¢,Oho,n) refers to the diffraction coefficient for plane-wave incidence,

far-field observation. The explicit expression is given in Eq. (15) of the previous

report [8]. This coefficient is analogous in form to the Keller GTD diffraction

coefficient for perfectly conducting wedges. The parameters needed in Eq. (1) are

defined in Figs. 1 and 2, where Oh is the Brewster angle for the coated side of the

plate. This is described in Section II.A of [8].

The second- and third-order diffraction terms are expressed in terms of

\ " /(d'¢" ¢' O_' n'] and Dp,old (d, ¢', ¢, Oh, n'}, the diffraction coefficients fork--v/



cylindrical-wave incidence, far-field observation and for plane-wave incidence, ob-

servation at a finite distance, respectively. The expression for De,oil() results from

the appropriate modification, discussed in Section II.B.3 of [8], of Eq. (16) of [8].

Dp_ofd() is given by Eq. (16) of [8]. The second- and third-order fields are:

Second-Order Field

^ _ 17 e-jkp e-jkwv/k

Ed2 = --a¢/_oV/C-_

× [_-_._o'_'-_-_._.(_._,..0O.eo_.2)D_.(_.0o._.0o_._)

+ _o._,_oo.,,_o.(_,_,,o,0,_o,_)_. (_,0°,_,,_o_,_)1
Third-Order Field

(3)

e-Jkp e-j2kw v/_

Ed3 = -ff_EoV_--_pp W

o _) (_.0o.0o.0o_._)x Dp,ola (w,0°,0 ,0 o, Devil

× [__,_,co._,+_o._,,_,(_.0o._..0o_._)

The RCS, computed using the preceding fields, is shown in Fig. 3 for a square,

coated plate with a width of 2A. The coating has thickness t = 0.0423A with ma-

terial parameters _, = 1.539 - jl.2241 and _, = 11.826 - j0.16639. The frequency

of operation is 10 GHz. Comparisons are made in Fig. 3 among the measured

RCS, the RCS computed using the first-order field of Eq. (1) only, and the RCS

computed using the fields of Eqs. (1)-(3). It is obvious that the addition of higher-

order diffractions did not improve, or even noticeably change, the modeled RCS



values. The reasonfor this is shownin Fig. 4, which showsa breakdownof the

field contributions. The second-and third-order fields are muchsmaller than the

first-order fields; therefore, they are negligible. During the next reporting period,

the surface-waveterms will be added to the model to seeif these terms improve

the model.

2. Coated Plate PO RCS Model

Thus far, the analysis of the coated plate incorporates a model of the impedance

of an electrically thin coating backed by a perfect conductor that uses a short-

circuited transmission-line approximation. This is considered a valid and conve-

nient approximation for this geometry [10]; however, the peak experimental and

theoretical UTD RCS values on the coated side of the plate do not agree exactly

for the example considered in Fig. 3. Reasons for this could be the difficulty in

accurately determining the constituitive parameters of the coating material and

the extreme sensitivity of the theoretical model to even very small changes in the

values of these parameters. Another reason could be inaccuracy in the UTD model.

In order to validate the UTD model at this point, a PO model that incorporates

the short-circuited transmission-line approximation for the coating impedance was

derived for the plate; and the results were compared to the UTD and experimental

results.

The PO model was derived in the usual manner [11]. The resulting monos-

tatic RCS equations for the perfectly conducting and coated side of the plate are:

Perfectly Conducting Side

2

c°s'° k / (5)



Coated Side

(_w._)2 (sin(kwsinO)) 2kwsinOIr l cos O\ (6)

where w is the plate width, L is the plate length, k is the propagation constant

in free space, and 0 is the incidence/observation angle measured from the nor-

mal to the plate. F_ is the reflection coefficient [11] at a material interface with

an impedance, r/,q. For the results in Fig. 5, _7_qis taken as the short-circuited

transmission-line equivalence. The expression for this is given in Eq. (1) of the last

report [8].

The results in Fig. 5 indicate that the UTD solution incorporating the short-

circuited transmission-line approximation is accurate at normal incidence because

the model agrees fairly well with the PO model at normal incidence to the coated

side of the plate (¢ = 90°). The two models differ by approximately 0.84 dB

at this point; however, the experimental results at this point are 1.15 dB higher

than the PO results, indicating that most of the difference between the UTD and

experimental results is due to inaccuracy in characterizing the coating material. It

is encouraging to note that the UTD model agrees with the experimental results

much better than the PO model in most areas.

C. FUTURE WORK

Future work will focus on three areas -- the coated plate, nonprincipal-plane scat-

tering, and the coated dihedral corner reflector. The analysis of the coated plate

will be completed so that the UTD model includes both polarizations, surface-wave

terms, and surface-wave transition region terms. It may be necessary to explore

the use of higher-order boundary conditions to obtain accurate results at scattering

angles that are not in the vicinity of normal incidence to the plate. Another area



of considerationwill be accuratelypredicting the scattering at and near grazing

incidence, a region which involves overlapping transition regions in which the tra-

ditional application of UTD fails.

Nonprincipal-plane scattering from both perfectly conducting and coated

plates will be investigated using the Method of Equivalent Currents (MEC) and

hybrid techniques. Much work has already been presented on nonprincipal-plane

scattering from perfectly conducting plates in previous reports. Future work will

involve completing the perfectly conducting plate model by incorporating corner

scattering, either in terms of a revised equivalent currents model or through the

use of a hybrid technique such as a combination of MEC and Moment Method

(MM) or of the UTD and the Finite-Difference Time-Domain (FDTD) technique.

Nonprincipal-plane scattering from a coated plate will be investigated using newly

developed Incremental Length Diffraction Coefficients (ILDC) for the dielectric

wedge [12] and other techniques.

The primary objective of investigating plate scattering is to refine modeling

techniques for scattering configurations that are part of more complicated target

geometries so that the scattering from complex targets can be more completely

understood and predicted using high-frequency techniques. To this end, the work

that has been done on scattering from the coated plate will be incorporated into

modeling the RCS of a coated dihedral corner reflector. This geometry will even-

tually serve as a building block in even more complicated geometries.

8
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Figure 1: Impedance wedge geometry.
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Figure 2: Geometry for principal-plane scattering from a strip/plate with a

finite-thickness coating backed by a perfect conductor.
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II. A PHYSICAL OPTICS/

EQUIVALENT CURRENTS MODEL

FOR THE RCS OF A

TRIHEDRAL CORNER REFLECTOR

A. INTRODUCTION

Corner reflectors are very interesting radar targets because they provide a large

bistatic or monostatic radar cross section over a broad range of observation angles

and frequencies. The two most well-known corner reflectors are the dihedral and

the trihedral corner reflectors. The dihedral is formed by the intersection of two

flat plates, whereas the trihedral is formed by the intersection of three flat plates.

The fact that the trihedral has one plate more than the dihedral is also the reason

why its backscatter cross section is much larger than that of the dihedral. In

addition, the trihedral has a large radar cross section for any incident angle Oi,

whereas the dihedral has a large radar cross section only for the case where the

direction of the incident plane wave is normal to the dihedral axis (Oi -- 90°).

Several researchers in the past have analyzed the scattering properties of

dihedral corner reflectors using either Geometrical Optics (GO) together with Ge-

ometrical Theory of Diffraction (GTD), or Physical Optics (PO) together with

Physical Theory of Diffraction (PTD) [13]-[15]. In all those cases, the direction of

incidence was always normal to the dihedral axis and therefore the analysis was

carried out as if the object were two-dimensional. On the other hand, the trihe-

dral corner reflector requires a full three-dimensional analysis whose formulation

is much more complex than that of the dihedral.

12



In this analysis, Physical Optics (PO) and Method of Equivalent Currents

(MEC) wereappliedona squaretrihedral cornerreflector to evaluateits monostatic

radar crosssection. PhysicalOptics wasusedfor the calculation of first-, second-,

and third-order reflectionsfrom the trihedral plates,whereasMethod of Equivalent

Currents wasusedfor the calculation of the first-order diffractions from the edges.

It is important to mention that for a relatively large trihedral corner reflector

the first-order diffractions are very small comparedto the backscatter fields due

to internal reflections;therefore,the diffracted fields canbe considerednegligible.

However,asthe sizeof the trihedral becomessmaller,the first order diffractions can

contribute significantly to the total backscatterfields. Furthermore, in the analysis

of the trihedral corner reflector, it wasassumedthat higher order diffractions, as

well asdiffraction-reflectionsand reflection-diffractions,are negligible.

B. ANALYSIS AND RESULTS

The backscatter cross section of the square trihedral corner reflector, shown in Fig.

6, is evaluated by considering single, double, and triple reflections as well as first-

order diffractions. The Physical Optics approximation was used for the calculation

of the reflected fields in the far-field region. For the evaluation of the diffracted

fields, the Method of Equivalent Currents (MEC), introduced by Michaeli, was

applied on the trihedral edges. The entire analysis was carried out for the case of

Eo polarization only.

1. Physical Optics (PO)

Single, double, and triple reflections from the perfectly conducting plates of the

square trihedral corner reflector were determined using the Physical Optics ap-

proximation

Jpo = 2_ × H i (7)

13



where fi is the unit vector normal to the plate under consideration, and H i is the

incident magnetic field. It is important to point out that the above PO model

becomes more accurate as the dimensions of the object increase. After evaluating

the surface current density on a particular plate, the vector potential is calculated

by

A - 4rr# Jpo--_ds -_ 4rIt r JpoeJkL'ds (8)

L_ = x sin O, cos ¢, + y sin 0, sin ¢, + z cos 0_ (9)

In the case of monostatic RCS, 0, = 0i and ¢_ = ¢i. The above integral should

be evaluated over the illuminated area of the plate. For single reflections, the

illuminated area is the entire square plate, whereas for double and triple reflections,

the illuminated area has the shape of a polygon that changes according to the

direction of incidence. From the vector potential expression, the corresponding

far-field spherical components of the electric field can be calculated using

Eo = -jwAo and E_ = -jwA_ (10)

The Er component is considered to be very small and is excluded from the calcula-

tions. In most geometries that are used in scattering problems, it is usually more

convenient to modify the above general expressions to the ones given below [11].

E_ __ 0 (11)

Eo _ -jkrlN° e-ikr (12)
4_r r

E, __ -jk_N, e -jk"
4r r (13)

No = f fs(J cosO, cos¢. + J,,cosO,sin¢. -- JzsinOo) SkL'ds (14)

N¢_ = f fs(-&sin¢, + Jucos¢,)e.ikL°ds (15)

14



The actual expressionsfor Areand Arcare different for eachtrihedral scattering

component. Thesecomponents,in the caseof E0 polarization, include the follow-

ing:

Component 1: Single reflection from plate 1

The incident magnetic field on plate 1 is given by

Hil = (-/t_sin ¢i + aucos¢i)Hoe jkL' (16)

Li = x sin Oi cos ¢i + Y sin 0i sin ¢i + z cos Oi (17)

The current density on plate 1 due to the incident magnetic field is

Jx = (-h_ cos ¢i - hu sin ¢i)2Hoe jk(_:'in°' ¢o_¢,+u,i=o, ,i_¢,) (18)

The corresponding expressions for Are and N¢ are

No = -2Hoabcos 0,(cos ¢i cos ¢, + sin ¢i sin ¢o)e j(x+r) (19)

sinX sinY

× (-y-) (-V--)

N¢ -- 2Hoab(sin ¢o cos ¢i - cos ¢8 sin ¢i)e j(x+v) (20)

sinX sinY

× (-y-)(--y-)

ka

X - -_ (sin0, cos¢, +sinOicos¢,) (21)

Y = kb(sin 0, sin ¢, + sin Oisin ¢i) (22)
2

The integrals in equations (14) and (15) are evaluated over the entire plate, since

it is totally illuminated.

Component 2: Single reflection from plate 2

Hi2 = (-h_sin¢i + _.ucos¢i)Hoe jkL' (23)

15



J2 = hz2Ho cos ¢ie jk(_'in°' sin¢i+zcosOi) (24)

"r-z" sinY sinZ
Ne = -2Hobecos¢isinOse _ + _(---_)(---_) (25)

N¢ = 0 (26)

The integration for the evaluation of No was taken over the entire plate.

Component 3: Single reflection from plate 3

Hi3 = (-_._sin¢, + _ycos¢i)Hoe "ikL' (27)

J3 = _z2Ho sin ¢i ejk(xsinOi cc4ci+zc°eO`) (28)

x sinX sinZ
No = - 2Hoac sin ¢i sin O, e_(+z)(.____)(.___) (29)

= 0 (30)

kc

Z = T(cos 0, + cos0,) (31)

Like the two previous scattering components, the integration in equation (14) was

evaluated on the entire plate in order to obtain No.

Component 4: Double reflection - Plate 1 to Plate 2

The incident magnetic field on plate 1 is given by (16). Then, Geometrical Optics

(CO) is used to find the reflected magnetic field from plate 1, which is now the

incident magnetic field on plate 2. The use of Geometrical Optics for the first re-

flection will simplify the final expressions for the doubly reflected fields. If Physical

Optics were used to account for the first reflection, instead of Geometrical Optics,

then the expression for the scattered field in the far-field region would include a

quadruple integral with non-constant limits, which is much more difficult to eval-

uate than a double integral. The incident magnetic field on plate 2, which was

initially reflected from plate 1, is given by

H_2 = (-_t_sin¢i + _cos¢i)Hoe jkL'2 (32)

16



L12 = z sin 0i cos ¢i + Y sin 8i sin ¢i - z cos #i

The current density on plate 2 due to the above magnetic field is

J12 = _2Ho cos _)i ejk(_sinoi sin¢i-z cos0i)

(33)

(34)

The above expression is valid only on the illuminated area of plate 2. The shape

of the illuminated area is a polygon, shown in Fig. 7, whose coordinates can be

found accurately, at any angle of incidence, using trigonometric identities. In the

case of double reflection from plate 1 to plate 2

N =O. (35)

The expression for Are can be found after evaluating the following integral over the

illuminated area shown in Fig. 7 (The shape of the illuminated area changes with

respect to the incident angle).

Ne = -2Ho sin ¢i sin O, f fs eJk(_'w"2+*w'12) ds

= sin 0, sin ¢, + sin 0i sin ¢iWyl2

W_a2 = cosO, - cosOi

(36)

(37)

(38)

Similar discussion applies for the remaining doubly reflected fields. To save time

and space, we present only the necessary equations for those components.

Component 5: Double reflection - Plate 1 to Plate 3

(39)Hila = (-&= sin ¢i + _t,t cos ¢i)Hoe jkL'3

L13 = x sin 0i cos ¢i + Y sin Oisin ¢i -- z cos 01 (40)

Jla = h,2Hosin¢ie jk(_'i_°'c°'¢'-'¢''°') (41)

Na = -2Hosin ¢isin0, f/e'ik(_w"_+'w"3)ds (42)
d J$

17



g_

W_13

Wz_3

= 0

= sin O, cos 4, + sin Oi cos ¢i

= cos Os -- cosOi

Component 6: Double reflection - Plate 2 to Plate 1

Hizl = (fit sin ¢i + a_ cos ¢i)Hoe "ikL2'

L21 = -x sin 0i cos ¢i + Y sin Oi sin ¢i + z cos Oi

J21 = (-_ cos ¢i + a_ sin ¢i)2Hoe jk(-x'i"O' ¢o,¢,+usi_e, sln¢,)

Ne = 2//o cos 8,(sin ¢i sin ¢, - cos ¢_ cos ¢,)

× f[_sk,=W.,l+_W.21)ds
,1S

N o = 2Ho(cOs ¢i sin ¢, - sin ¢i cos G)

.IS

W_21 = sin 0, cos ¢, - sin 01 cos ¢i

W_21 = sin 0, sin G + sin 0i sin ¢i

Component 7: Double reflection - Plate 2 to Plate 3

H_s

L23

*]23

= (_ sin ¢i + _,u cos el)Hoe jkL_3

= -x sin 0i cos ¢i + y sin Oi sin ¢i + z cos 01

= -_z sin ¢i2Hoe jk(-__°_¢°_+_°_°'}

N_ = 0

18

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)



W=_a = sin 0, cos ¢, - sin Oi cos ¢i

W,2a = cos 0, + cos 0_

Component 8: Double reflection - Plate 3 to Plate 1

Hi3t = (-fi= sin ¢i - au cos ¢i)Hoe "ikL31

Lal = xsin0icos¢i-ysin0isin¢i+zcos0i

J31 = (&= cos ¢i - ay sin ¢i)2Hoe jk(x'inO'c°'_'-_sinO_sin¢')

No = -2Ho cos 0,(sin ¢i sin ¢, - cos ¢i cos ¢,)

N6 = -2Ho(cos ¢i sin ¢, + sin ¢i cos ¢,)

x [ / e"ik(xw=s' +uwy3,)ds
JJS

W=31 = sin 0, cos ¢, + sin 0i cos ¢i

Wu3x = sin O, sin ¢, - sin Oi sin ¢i

Component 9: Double reflection - Plate 3 to Plate 2

Hi32 ---- (-&=sin ¢, - _u cos el)Hoe jkL32

L32 = x sin 0i cos ¢i - Y sin 0i sin ¢i + z cos 0i

332 ---- --_t z cos ¢i2Hoe "ik(-_sinO_sin¢_+zc°8°O

N, = 0

Wuaz = sin 0, sin ¢, - sin Oisin ¢i
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(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)



W,32 = cos0, + cos0i (73)

The remaining scattering components of the square trihedral corner reflector,

besides the edge diffractions, are the triple reflected fields. The triple reflected

fields are very important scattering components because they contribute the most

to the monostatic radar cross section. The reason is that after three consecutive

reflections the reflected fields return directly back to the source. This property of

the trihedral corner reflector can be clearly seen if someone applies Geometrical

Optics on the three intersected plates and finds the direction of propagation for the

triple reflected field. In this analysis, Geometrical Optics was implemented for the

calculation of the triple reflections. More precisely, Geometrical Optics was used

for the first and second reflections in order to find the expression for the incident

field on the third plate; then Physical Optics was applied on the illuminated area

of the third plate. As in the case of double reflection, the shape of the illuminated

area of the third plate, see Fig. 7, can be determined accurately using trigonometry

and vector analysis. Geometrical Optics approximation gives very good results for

the monostatic radar cross section of the trihedral, but not very good results for

the bistatic radar cross section because the sidelobes are not predicted very well.

To get more accurate results for the case of bistatic radar cross section, Physical

Optics should be applied for all three consecutive reflections, which is certainly

not an easy task to carry out. The reason is because strict application of Physical

Optics would require the evaluation of six-fold integrals with non-constant limits.

The triply reflected fields of the square trihedral corner reflector are the following.

Component 10: Triple Reflection from Plate 1 to Plate 2 to Plate 3

After applying Geometrical Optics for the first two reflections and the required

boundary conditions for the electric field on the conducting plates, the incident

2O



magnetic field on the third plate canbe found.

H_23

L123

= (fi_: sin ¢i + au cos ¢i)Hoe jkL'23

= -x sin Oi cos ¢_ + y sin Oi sin ¢i - z cos 0i

According to Physical Optics approximation, the surface current

illuminated area of the plate 3 is given by

Jx23 = -az sin ¢i2Hoe jk(-* sin 0i cos ¢i -z cos Oi )

The expressions for No and N¢ are the following.

No = 2 Ho sin ¢ sin O, f fs eJkO:w"3 +_w"123)ds

N_ = 0

W_¢12 3 = sin 0o cos ¢, - sin 0i cos ¢i

W_123 = cos 0, - cos 0i

Component 11: Triple Reflection from Plate 1 to Plate 3 to Plate 2

H_32

L132

J132

Wx132

Wz132

= (-az sin ¢i - _ cos ¢i)Hoe jkL's2

= x sin 0i cos ¢i - y sin 8i sin ¢i - z cos 0i

= -_ cos ¢i2Hoe jk(-ys_°'si"_-_¢°_°')

= 2Hocos¢isin0off e'ik(_w_"_2+'w"_)d.s
JJS

= 0

= sin 0° sin ¢, - sin 01 sin ¢i

= cos 0° -- cosOi
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(74)

(75)

density on the

(76)

(77)

(78)

(79)

(80)

(8_)

(82)

(83)

(84)

(85)

(86)

(87)



Component 12: Triple Reflection from Plate 2 to Plate 1 to Plate 3

Hi21s = (_ sin ¢i + flu cos ¢i)Hoe jkL213

L213 = --X sin Oi cos ¢; + y sin 0i sin ¢i -- z cos 0_

J213 = -_t_ sin¢i2Hoe jk(-x'in°_¢°*¢_'-_c°*O')

No = 2Hosin¢isinO, f fse_k('w'_3+'w"l_)ds

N, = 0

W_213 = sin 0, cos ¢, - sin 0_ cos ¢_

Wz213 "- cos 0, - cos 0 i

Component 13: Triple Reflection from Plate 2 to Plate 3 to Plate 1

Hi231 : (h_ sin ¢i - au cos ¢i)Hoe jkL2_

L231 = -x sin Oi cos ¢i - y sin 0i sin ¢i + z cos 01

J231 = (_ cos ¢i + _-u sin ¢i)2Hoe jk(-_'ina'c°'¢'-u'in°'sh¢')

No = 2Ho cos 0s(sin ¢i sin ¢, + cos ¢i cos ¢,)

N¢ = 2Ho(sin ¢, cos ¢_ - cos ¢, sin ¢i)

JJS

W_23a = sin 0, cos ¢, - sin Oi cos ¢i

W,23x = sin 0, sin ¢, - sin 0i sin ¢i

(88)

(89)

(9o)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)
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Component 14: Triple Reflection from Plate 3 to Plate 1 to Plate 2

H_I 2 = (-fi_sin¢i - fly cos ¢i)Hoe jkL3_2

La12 = x sin Oi cos ¢i - Y sin Oi sin ¢i - z cos 0,

3312 = -_tz cos ¢i2Hoe j_(-'_si"°_ sinOi-zcosOi)

No = 2HocosCisinO. f _ e jk('/w'a12+zw'31_,d_

N¢ = 0

Wy312 = sin 0, sin ¢, - sin 0i sin ¢i

Wza12 = cos 0, - cos Oi

Component 15: Triple Reflection from Plate 3 to Plate 2 to Plate 1

Hi321 = (_t_ sin ¢i - _t_ cos dpi)Hoe jkLz_'

La21 = -z sin 8i cos ¢i - Y sin 8i sin ¢_ + z cos 8_

3321 = (_tx cos ¢i + a_ sin ¢i)2Hoe jk(-_'inO'c°s¢i-usine'sin@i)

No = 2Ho cos 0,(sin ¢i sin ¢, + cos ¢i cos _b,)

N_, = 2Ho(sin ¢, cos ¢i - cos ¢, sin ¢i)

W1321 -- sin 0, cos ¢, - sin 0i cos ¢i

W_a21 = sin 0o sin ¢o - sin 0i sin ¢i

(102)

(103)

(104)

(105)

(106)

(107)

(10S)

(109)

(ii0)

(111)

(112)

(113)

(114)

(115)
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2. Method of Equivalent Currents (MEC)

The Method of Equivalent Currents (MEC), introduced by Michaeli, wasapplied

on the edgesof the squaretrihedral corner reflector to find the first-order diffrac-

tions. The expressionsfor the electricand magneticcurrentsat the trihedral edges

are similar to thosepublishedby Michaeli [16, 17]. For completeness,theseequa-

tions aregiven belowfor the specificcaseof anedgeparallel to the z-axis. Similar

expressionscan be obtained for the edgesat other orientations.

M ! =

+

H_o 2jrI [sine sin((r - al)/N)
Nk sin/3 sin/3' [sinai cos((r - a,)/N) - cos(¢'/N)

sin(Nrr - ¢) sin(Qr - a2)/N)

sina2 cos((r - a2)/N) + cos(¢'/N)

(116)

where

I I
_ , 2jsin(¢/N) [ 1- -E*° kNr I sin 2/3t cos((_r - a,)/N) - cos(¢'/N)

1 ] 2j+ cos((r-a2)/N) +cos(¢'/N) - Hi_°Nksinfl '

#lcot/3'-cot/3cos¢ sin((r-al)/N)sina--_ cos((r = a--_)/TV) --- c---_s(¢'/N)

_u2cot fl' - cot�3 cos Nr - ¢ sin((Tr - a2)/N)

sin a2 cos((r - a2)/N) + cos(¢'/N)

cos 71 - cos2/3'
_ul = sin 2/3'

cos 75 - cos2/3'
_u2 = sin s/3'

cos 7x = sin/3' sin fl cos ¢ + cos/3' cos/3

cos 72 = sin/3' sin/3 cos(Nr - ¢) + cos/3' cos/3

(117)

(118)

(119)

(120)

(121)
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O_1 = -jln(#l + k/'_ 2- 1) (122)

_2 = -jln(p2 + V/_ - 1) (123)

The above formulations were applied on the trihedral edges. However, the diffracted

fields are relatively small compared to the reflected fields; therefore, they will not

contribute very much to the monostatic radar cross section. On the other hand, it

is important that these diffractions be included for the bistatic radar cross section,

since now the reflected fields will be of lower magnitude and first-order diffractions

will be more significant. In our analysis, first-order diffractions were included for

both monostatic and bistatic radar cross section, because first-order diffractions

become increasingly important as the target becomes smaller; even for the mono-

static case.

3. Results

A complex program based on the above formulations has been developed to calcu-

late both monostatic and bistatic RCS of the square trihedral corner reflector for

the E0 polarization. This program is applicable for any angle of incidence and/or

observation angle. It also runs very well and fast on various computers such as the

SUN, VAX, CMS, or even PC. Two plots for the monostatic case are presented in

this report. Fig. 8 shows the monostatic RCS for an incident angle of ¢ = 45 ° as

the angle 0 varies from 0° to 90 °. Fig. 9 shows the monostatic RCS for an incident

angle 6 = 66 ° as the angle ¢ varies from 0° to 90 °. For both plots, the size of each

square trihedral plate was taken to be 5,_. FDTD data were provided to compare

our results. Comparison between the two methods shows a very good agreement.

In addition, it is important to note that running an FDTD program to calculate
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the monostaticRCSof a trihedral definitely requires a lot of time, whereas running

the "PO + MEC" program to do the same task takes only a few seconds.

C. FUTURE WORK

In this report, only the monostatic RCS of the square trihedral corner reflector in

the Ee polarization was discussed. Actually, the formulations given in the above

sections can be used for bistatic RCS without any modification. However, we do not

present any plots for the bistatic RCS because of lack of accuracy at the sidelobes.

There is very good agreement with FDTD data at and near the mainlobe but

not very good agreement at the sidelobes. The reason is because the Geometrical

Optics approximation was used for both double and triple reflections. To get better

graphs for the bistatic case, it is necessary that we use strictly Physical Optics for

double and trible reflections. However, this is a very challenging task, since it would

be necessary to solve a quadruple and a six-fold integral with non-constant limits.

This will be a priority goal for the future. In addition, the formulation for the E¢

polarization will be investigated to have a complete picture of the backscattering

of the square trihedral corner reflector. Lastly, a similar procedure will be applied

for a triangular trihedral corner reflector. Measurements will also be performed to

compare with predictions.
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Figure 6: Geometryof the trihedral corner reflector.

Figure 7: Shading of a trihedral plate from doubly and triply reflected fields.
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Figure 8: Monostatic RCS of the square trihedral corner reflector with dimensions

a = b = c = 5.0A, incident angle q_ = 45 °, and polarization of the E-field in the
theta direction.
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Figure 9: Monostatic RCS of the square trihedral corner reflector with dimensions

a = b = c = 5.0A, incident angle # = 66 °, and polarization of the E-field in the
theta direction.
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