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Abstract. It is well known that the usual harmonic ansatz of geometrical optics
fails near caustics. However, uniform expansions exist which are valid near and on the
caustics, and reduce asymptotically to the usual geometric field far enough from them. In
this paper, we apply the Kravtsov-Ludwig technique for computing high-frequency fields
near cusp caustics. We compare these fields, with those predicted by the geometrical
optics, for a couple of model problems: first, the cusp generated by the evolution of a
parabolic initial front in a homogeneous medium, a problem which arises in the high-
frequency treatment of cylindrical aberrations, and second, the cusp formed by refraction
of the rays emitted from a point source in a stratified medium with a weak interface. It
turns out that inside and near the cusp, the geometrical optics solution is significantly
different than the Kravtsov-Ludwig solution, but far enough from the caustic that the
two solutions are, in fact, in very good agreement.

1. Introduction. The method of geometrical optics has been traditionally applied
for investigating quantitatively high-frequency waves in inhomogeneous media. However,
geometrical optics predicts infinite wave amplitudes on caustics and focal points, and
zero fields in shadow regions (i.e., regions devoid of rays). Formation of caustics is a
typical situation in optics, underwater acoustics, and seismology, as a result of multipath
propagation from localized sources. Even in the simplest oceanic models and geophysical
structures (see, e.g., Tolstoy and Clay [TC], Chap. 5, and Cérveny et. al. [CMP], Chap.
3, respectively), a number of caustics occur, depending upon the position of the source
and the stratification of the wave velocities. A recent review about the caustic formation,
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the related multivaluedness of the phase function, and the methods proposed over the
years for constructing uniform high-frequency asymptotic solution of the Helmholtz and
wave equations can be found in [KKM], [IKM].

Uniform caustic asymptotics have been widely used for acoustical and seismological
computations (see, e.g., [CH1], [CH2|, [HW], [BT] and the references cited therein).
However, the limits of applicability of uniform asymptotic expansions have not been
completely defined yet, as it has been recently pointed out by Asatryan and Kravtsov
[ASK] who attempted to give a qualitative answer. Especially for stratified media with
interfaces, where very complicated caustics may appear (see various examples in [KO2]),
it turns out to be quite difficult to estimate analytically such limits. On the other hand,
the quantitative answer requires a systematic numerical comparison between uniform as-
ymptotic and geometrical optics solutions. In this paper, we perform such computations
by applying the Kravtsov-Ludwig technique for the case of cusp caustics arising in a
couple of typical configurations of ocean acoustics.

2. Classical geometrical optics. We consider the propagation of n-dimensional
{n = 2,3) time-harmonic acoustic waves of frequency w in a medium with variable
refraction index n(x) = co/c(x), co being some reference sound velocity and c(x) the
sound velocity at the point x = (z1,...,2,) € M, where M is some unbounded domain
in R?. For the moment, we assume that n € C*°(R%) and n > 0. The wave field u(x, k)
is governed by the Helmholtz equation

Au+ En?(x)u(x, k) = f(x), x€ M, (2.1)

where k = w/cp is the wavenumber and f is a compactly supported source generating
the waves.

We are interested in the asymptotic behavior of u(x, k) as k — oo (i.e., for very large
frequencies w), assuming that x is confined in some compact subset D of M outside of
the support of the source. The asymptotic decomposition of scattering solutions when
|x| and k simultaneously go to infinity is a rather complicated problem, since the caustics
might go out to infinity. This problem has been studied rigorously for the scattering of
a plane wave by a compact inhomogeneity in [V1], and for the case of a point source in
[KU], under certain conditions of decay for n(x) at infinity.

For fixed & > 0 there is, in general, an infinite set of solutions of (2.1), and we
need a radiation condition to guarantee uniqueness (see, e.g., [CK] for scattering by
compact inhomogeneities and [WED] for scattering by stratified media). This condition
is essentially equivalent to the assumption that there is no energy flow from infinity,
which in geometrical optics is translated to the condition that the rays must go out to
infinity.

According to the WKB technique, we look for a formal asymptotic solution (FAS) of
(2.1), that is, an expansion of the form [V2]

N
un(x, k) = e¥*0 N "(ik) " Ay (x), (2.2)
=0
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the phase ® and the amplitudes A; being real-valued functions in C*°(R%), which satisfies
the asymptotic equation

(A + E2n*(x))un(x, k) =O0(k™™), ze€D, k- oo, (2.3)

where N{ — o0 as N — o0.
Substituting (2.2) into (2.3), and separating the powers (ik)~', 1 = 0,1, ..., we obtain
the eikonal equation

(Ve(x))* = 7°(x) (2.4)

for the phase function, and the following hierarchy of transport equations for the ampli-
tudes:

2V - VAg + Ad(x) Ag(x) = 0, (2.5)
VD - VA + Abx)A)(x) = —AAI1(x),1=1,2,... .

A standard way for solving the eikonal equation (2.4) is the method of bicharacteristics
(see, e.g., [HOJ, Vol. I, Chap. VIII). Let H(x, p) be the Hamiltonian function

H(x,p) = 3(lpl*> —n*(x)), x€ M,peR, (2.7)
corresponding to the Helmholtz equation (2.1), where p = (p1,...,pn) is the momentum,
conjugate to the position x = (zy,...,z,). The associated Hamiltonian system reads as
follows:

dx
2 = Vellxp)=p, (2.8a)
dp
2 = V(X p) = () V(). (2.8b)

Let My = {x = x%(6),0 = (01,...,0,_1) € Uy C R* !} be an initial manifold in R?.
For t = 0 we specify the initial conditions

x(0) =x°@6), p(0)=p°@H), 0l (2.9)
for the Hamiltonian system, and
d(x) = %(0), A(x)=AYO) for x=x°0) € My (2.10)

for the eikonal and the transport equations. Note that the initial momentum p°(6) must
satisfy

p°(0)1* = n*(x°(6)), xo € Mo.

p°(6), ®°(), and AY(6) are given initial momentum, phase, and amplitude on the initial
manifold My, which model the source function f in (2.1). For this issue see [AK], [B] for
the case of a point source and [KO2| for more general sources.

The trajectories I'(¢,0) = {x = x(¢,0),p = p(t,8),t > 0,8 € Uy} which solve the
initial value problem (2.8), (2.9) in the phase space R2% are the bicharacteristics, and
their projections ¥(¢,8) = {x = x(7,6),t > 0,0 € Uy} onto R} are the rays of geometrical
optics.
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We assume that p®(#) is nowhere tangent to Mo, which means that the Cauchy prob-
lem for (2.4) is noncharacteristic. Then, the phase is given by

t
)
®(x(t,0)) = 2°(9) +/ p(r, 9)%—2&, (2.11)
0
where the integral is calculated along the bicharacteristics. The transformation
(t,6) — x(t,0) (2.12)
is one-to-one, provided that the Jacobian
Nxyy- ooy Tn)
J(t,0) = 2.1
(t,9) ot 01,...,0n_1) (2.13)

is non-zero. It is worth noticing that, even if J # 0 for ¢t = 0, it does not necessarily remain
non-zero for all ¢ > 0. Whenever J vanishes, (¢,0) may be nonsmooth or multivalued
functions of x, and the rays (¢, #) may intersect, touch, and in general, have singularities.
Therefore, the phase function S = S(x) may be a multivalued or a nonsmooth function.
However, the bicharacteristics I'(¢, 8) never intersect in the phase space, and this is the
base for constructing uniform expansions near caustics.

The solution of the transport equation (2.5) for the principal amplitude Aq along the
rays is obtained by applying the divergence theorem in a ray tube, and it is given by

010(9)

Ao (x(t,0)) = W7

(2.14)
where ag(#) = A3(#) is the amplitude at the point x = x°(9) on the initial manifold.

The amplitude Ag calculated by (2.14) blows up at the focal points {x = x(t,6) :
J{t,0) = 0}. The manifold generated by the focal points, that is, the envelope of the
family of the rays, is the caustic. Therefore, the WKB technique fails to predict the
correct amplitudes on the caustic. The unbounded increase of the amplitude on the
caustic is a consequence of the energy conservation and the diminishing of the ray tubes
in the caustic vicinity. This phenomenon is related to the way of solving the problem,
rather than with the structure of the wavefield itself, since we know that the solutions of
the Helmholtz equation are analytic outside the support of singular sources or boundary
data, whenever the refraction index is smooth. In fact, a boundary layer analysis [BK]
shows that the ray structure breaks down near the caustic, and in a region adjacent to
this layer, where the modal structure of the wave field is dominant, it is impossible to
separate the waves approaching the caustic from those leaving it. Nevertheless, energy
concentration in this region makes the caustic detectable, as the field is always finite but
very strong there (cf. [KR]).

3. Kravtsov-Ludwig method for the cusp. The construction of uniform high-
frequency solutions of the Helmholtz equation (2.1) by the Kravtsov-Ludwig method is
based on the integral representation (see, e.g., [KR], [LU], [DUI})

. 1/2
u(x) = (““) / RS a(x, €)dE, €€ ECRe, (3.1)

) e
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instead of the FAS (2.2). Here S and a satisfy, identically with respect to £, the eikonal
equation (2.4) and the transport equation (2.5), respectively. The integral (3.1) can be
regarded as a continuous superposition of oscillatory functions of the form (2.2). The
physical motivation underlying the method is the fact that in every small region in which
the refraction index of the medium can be considered as constant and the wave front as
plane, the field can be represented as a superposition of plane waves ae®®, where a and
VS vary slowly in transition from one region to the next.

For large k, the stationary phase lemma (see, e.g., [BH], p. 219) says that the main
contribution to the integral (3.1) comes from the stationary points &;(x), for which
0¢S(x,€;(x)) = 0. In the case of the usual (single phase) geometrical optics, we can
take S(x,£) = ¢(x) — &2, which has only one simple stationary point & = 0. Then the
oscillatory integral (3.1) reduces asymptotically to (2.2). When there are more than one
simple stationary points §;(x), i.e.,

0eS(x,€;(x)) =0, 9ZS(x,€(x)) #0,

we obtain the asymptotic expansion

u(x) ~ Y A} (x)e5, (3.2)

where
Sj (X) = S(X, £j(x))7 (333)
(%) = exp (i (7 + sen(02S(x.£,(x))) ) ) ab&() (3.3b)

1025 (x.&;(x))]

and the summation in (3.2) extends over all of the stationary points. The amplitudes
Aé(x) are solutions of the principal transport equation (2.5). The expansion (3.2) fails
whenever 3525 (x,€;(x)) = 0, that is, for the stationary points of higher multiplicity. The
appearance of multiple stationary points is associated with the formation of caustics. In
this case, modified stationary phase lemmas must be applied (see, e.g., [BO]).

Near caustics the phase is a multivalued function, which, in general, cannot be derived
by integration along bicharacteristics (Eq. (2.11)). In this case, representation theorems
for the phase function are derived by the methods of singularity theory (see, e.g., [AVH]),
provided that the type of the caustic is known. For a cusp caustic it can be shown that
the phase function and the amplitude must have the form ([GS], p. 441, Proposition 7.1
for k =4, and [KR])

g ¢
S(X, 5) = d)(x) +m (X)£ - ,02(X)? + Z, (34)
and
a(x,€) = go(x) + £91(x) + E2g2(x) + f(x,£)S(x,6), (3.5)

f(x,&) being a smooth function.
The stationary points £;(x) are the roots of the cubic equation

BeS(x,8) = p1(x) — p2(x)E +£€* =0, (3.6)
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Region II

/0 gL

1
FI1G. 3.1. The geometry of a cusp caustic
and they are given by the formulae
&1(p1,p2) = A+ B, (3.7a)
1 3
€2(p1. ) = _§(A+B)+7;§<A_B>, (3.7b)
1 V3
53(/)1,/)2)=—§(A+B)—17(A—B)v (3.7¢)
where ) 5
p1 1/3 p1 1/3 P P
A== D =(— — = — — ==, .7d
(5+vP)" . B=(5-vD) . p=f-5 G
Note that D = 0 at the points of the cusp (see Fig. 3.1):
4 3
2= (3.8)

P = o7
From (3.7a) and (3.7¢) it follows that there are three real stationary points in Region I,
a double one on the sides of the cusp, and a triple one, equal to zero, at the “beak” of
the cusp, while there is only one real stationary point in Region IT (single-phase region).

It is worth noticing that each real stationary point corresponds to a real, and therefore
there are three rays passing through any point inside the cusp (Region I), but only one
ray through each point outside the cusp (Region II). At the sides of the cusp the double
stationary point corresponds to a pair of coalescing rays tangent to the caustic, while the
third one corresponds to the ray which crosses the caustic transversely. Finally, at the
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“beak” of the cusp (3.8}, the triple stationary point & = £ = £3 = 0 corresponds to the
three rays coalescing at this point p; = p2 = 0.

According to the matching principle [LU], [KR], we apply the stationary phase lemma
for the integral (3.1) with phase (3.4) and amplitude (3.5) (see, e.g., [BH], p. 221, [WO],
Chap. VII), and we match the obtained amplitudes and phases with the geometrical
ones. From the matching of the amplitudes we obtain the system

go(x) +£;91(%) + &2 g2(x) = A;(x) (87 S (x, £ (x)))*/?

) (3.9)
= A;(x)(3 (x) — p2(x))/?, 5 =1,2,3,
where A;(x) are the geometrical amplitudes given by (2.14),
A;(x) = o0(6;) (3.10)
J3(x)

Here §; are the values of the parameter at the initial manifold corresponding to the jth
ray, while ag(f;) is the corresponding initial amplitude and J;(x) is the value of the
Jacobian calculated along the jth ray (see Eq. (2.14)).

From the matching of the phases gj(¢>, p1,p2) = S(x,&(p1, p2)) with the geometrical
phases ®;(x) which are computed by integration along the jth ray (j = 1,2,3) (Eq.
(2.11)), we obtain

2 4
§(6.p1.02) = 9(x) + (o1, po) — po L) LGP g 1
(3.11)

We solve first the nonlinear system (3.11) for p;(x), p2(x), and ¢(x), and thereafter
we calculate &;(x) = &;(p1(x), p2(x)) by the relations (3.7a)-(3.7c). Then, we solve the
linear system (3.9) for the modified amplitudes gg, g1, 92. It can be shown using (3.10)
and the system (3.9) that the modified amplitudes go, g1, and g» remain finite on the
caustic [LU].

Finally, using (3.1}, (3.4), (3.5), and (3.12), we obtain the asymptotic expansion

u(x) = (21)"2e T e (go(x)k ¥ Yo (—a, b) — ik~ % g1 (x)8, Yo (—a, b)

1 (3.12)
+ 26k7 2 ga(x)0aYo(~a,b)) + O(k™1), &k — oo,
where
i ¢
Yo(—a,b) = / exp <z (— —a— + bt>> dt (3.13)
N 193
is the Pearcey’s integral [BO], [WO], and
a=kip, and b=kip. (3.14)

The integral (3.13) converges in the usual Lebesgue sense, i.e., without regularization
[GS]. The three terms in the expansion (3.12) correspond to the first three terms in (3.5),
since the stationary phase lemma gets rid of the last term in (3.5), the contribution of
which is included in the remainder.

Obviously we can write

bzua , [1,:3—/2, (315)
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where g is the uniformity parameter used in the uniform asymptotic expansion of Yj
constructed by Kaminski [KAM]. Roughly speaking, it provides a measure of the distance
of the point (p1, pp) from the caustic (where p takes the value u. = 2/v/27).

For the numerical computation of the Pearcey integral in the numerical examples of
Sec. 4, we combined series expansion ([CF1], [CF2]) with numerical integration after
deforming the integral (3.13) in the complex t-plane, and the above-mentioned uniform
asymptotic expansion to achieve accurate results for the whole range of arguments a, b
[KAL]. The numerical-asymptotic computation of the high-frequency field by formula
(3.12) relies on the accurate numerical solution of the nonlinear system (3.11). For solving
this system, we rewrite it in the form

_ & &
¢ = —01§1+P23 ——4—+‘1)1, (3.16a)
Pl - &) - (- )+ (6 -6 = & - 3, (3.16b)
1
p1(&2 — &) — %(ﬁ% — )+ (6 €)= 82— 2. (3.16¢)
Using the formulae
§1+86+8 =0, &i&&=—p1, &+ 868 +8i&s = —p2, (3.17)

connecting the roots of the cubic equation (3.6) with p;,ps we express the equations
(3.16b), (3.16¢) as a system with respect to s, £3:

F(&,63) = —€3/4 — 26363 — 36263/2 — 36365 = @1 — Do, (3.18a)
H(E2,63) = —63/4 — 26263/2 + £3€3/2 + £3/4 = @2 — Ps. (3.18b)

Note that the roots &3,&3 correspond to the rays which coalesce as we approach the
caustic. The system (3.18a), (3.18b) is solved by Newton’s method assuming as conver-
gence criterion the absolute distance between successive approximations of the roots to
be less than a given tolerance . In our numerical examples (Sec. 4), we take ¢ = 10712
The initial values for starting Newton’s algorithm are selected as the roots of the cubic
equation (3.6) where the coordinates p;, po are found using the geometric transformation
mapping the particular caustic to the standard form (3.8) (see Egs. (4.8), (4.19a,b) and
(4.23a,b) below).

As we approach the beak of the cusp, the Jacobian of the system (3.18a), (3.18b)
goes to zero together with &, &3, and with the same order with respect to the distance
from the beak. However, since (®5 — ®3) goes also to zero and (&3 — 83)/H(&2,&3)
remains bounded away from zero, the computation is stable up to distances of the order
1071 from the beak. At such distances, the value of the uniformity parameter is p =
0.3124999612154552, while on the caustic it has the value u = 2/v/27 = 0.38490018.. ...
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4. Numerical examples.

4.1. Ewvolution of parabolic front. The treatment of high-frequency, paraxial propaga-
tion from a point source in an inhomogeneous half-space (n = 1) leads, after certain
transformations [KO1], to the computation of the high-frequency field generated by a
propagating front, which is initially parabolic and of unit strength (cf. [ZD]). In the
framework of geometrical optics, we consider the eikonal equation

(Vé(z,2))? = 1, (4.1)
with initial data
Or=0, 9,®r=1, (4.2)

given on the parabola (initial manifold)

2
Moz{(x,z)|x:§;, z=(,( € R} (4.3)

The Hamiltonian (2.7) is given by H(x,p) = 3(|p|> — 1). Solving the system (2.8) for
the above Hamiltonian, we find the rays

2
2(r,¢) = ﬁf + g—a (4.42)
21, ¢)=— ¢ T+ (4.4b)

Vo2 +¢?
The Jacobian (2.13) is given by
1 c
J(T,C)=5V02+C2—m7, (4.5)
and accordingly the caustic is the curve

303
2

Eliminating the parameter 7 from the equations (4.4a,b), we obtain the cubic equation

r=o0+

23, (4.6)

¢ +20(0 — )¢ —20%2 = 0. (4.7

Note that by the simple change of coordinates

§=\/L§;, p1=—\/gz, p2 =T — 0, (4.8)

we rewrite the equation of the caustic (4.6) in the form (3.8), while the cubic equation
(4.7) takes the form (3.6). This transformation, as we have already mentioned in Sec. 3,
enables us only to choose the initial values of &2, &3 when solving the system (3.18a,b)
by Newton’s method. However, the correct Kravtsov-Ludwig coordinates pi1, p2 to be
inserted in the formula (3.13) have to be found from the solution of the nonlinear system
(3.16).

For the computation of the modified amplitudes g, g1, g2 we proceed as we described
in Sec. 3. The geometrical phases are derived by integration along the rays, and they are
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—0.01 g
14 ]
Rayl Ray3
Ray?2
—-1.5 & v A r
1 2 3 4 4.604
FI1G. 4.1. Caustic and rays (¢ = 1)
given by
7 {z,y) )
)= [ nen gt g (492)
0
o2+ C]Q
=7z, 2) = (¢ —2)—— (4.9b)

where J;(x) = J(7;, ;) are given by (4.5). In the sequel, for simplicity, we assume that
ag = 1 everywhere on I'.

Recall that inside the cusp (Region I), the rays which pass through the point x = (z, 2)
at the times 7; = 7;(x,2), j = 1,2, 3, originate at the points of the initial parabola I'
corresponding to the values (; = (;(z,z) = &(p1, p2) V20, where &; are given by (3.7a)-
(3.7¢), with p1, p2 defined in (4.8).

In Figures 4.2a, 4.2b, and 4.2¢, we compare the amplitudes of the field predicted by
geometrical optics (GO) with that predicted by the Kravtsov-Ludwig formula (KL) for
relatively high frequencies (k = 100) along the three rays passing through the point
(o, 20) = (1.7937, —0.382) inside the cusp (4.6) with ¢ = 1 (Fig. 4.1). We compute the
amplitudes as functions of |z|. The solid lines represent the GO solution which blows
up along each ray as we approach the caustic. The dashed lines represent the KL solu-
tion when the Pearcey integral is computed using the uniform asymptotic expansion by
Kaminski [KAM], while the dotted lines represent the KL solution when we compute the
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F1G. 4.2a. |u| vs. |z| along ray 1

Fic. 4.2b. |u| vs. |2| along ray 2

Pearcey integral by direct numerical integration. In the latter case the numerical inte-
gration fails for very large k|z|. However, uniform asymptotics and numerical integration
give almost identical results for a satisfactory range of |z| for each k, thus providing some
evidence that the computation is accurate for large values of k|z|. We observe that GO
tends to match with the KL solution far away from the caustic. The distance from the
caustic for satisfactory matching depends, in general, on the particular wave number k.
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FIG. 4.2¢c. |u| vs. |z| along ray 3

4.2. Point source a stratified medium. Now we consider the high-frequency field a
point source at (xq,29) = (0, 20), 20 < 0, in a medium with refraction index (a > 0):

2, )L 2<0
(@) = {(1 +az)7%, 2>0. (4.10)

The initial conditions (2.9) for the Hamiltonian system (2.8a), (2.8b), in this case are
xo = (0, z9), po = (cosf,sin ). The geometrical optics field of a point source has been
studied using matched asymptotic expansions and boundary layer methods by Avila and
Keller [AK] and Babich [B]. A detailed discussion of the point source from the viewpoint
of singularity theory is presented in {IKM]. A Hamiltonian ray-tracing algorithm by
using adaptive Runge-Kutta solvers for solving the system (2.8a), (2.8b), and (2.9) when
n? has discontinuous derivatives was developed in [KKM].

The rays shot from the source (direct rays) with initial angle 8, 0 < § < 7/2, are given
by

z(t,0) =1t-cosh, z(t,0) =2+t sinb, (4.11)

i.e., they are straight lines in the homogeneous half space z < 0. These rays hit the
interface z = 0 at x,(8) = —zpctgh, and they are refracted upwards into the half space
z > 0. The upwards refracted rays are given by

1 - 20 _ o 2
2(t,8) = t - cos 8 — zoctgh, z(t,9)=1<\/ (atcos®§ — sin6) —1>. (4.12)

o cos @

The rays (4.12), due to continuous refraction, return back to the interface z4(8) =
1(2tan@ — azoctgh), and then they are refracted downwards into z < 0. The downward




HIGH FREQUENCY WAVES NEAR CUSP CAUSTICS 123
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—0.298, ¢35 2 3 3.67

Fig. 4.3. Caustic and rays launched with 6 = 0.2rad and 6 = 0.44rad

refracted rays in z < 0 are given by

z(t,0) =t -cosf + 5(2 tanf — azgctgh), =z(t,0) = —t-sinf. (4.13)

The Jacobian for the rays (4.12) is given by

-1
J= (a\/l — (atcos? g — sin0)2)

(1 — (at cos®  — sinB)? tan @ + cos f(at cos® § — sin 6)(2at sinf + 1) (4.14a)

— acosf(at cos? @ — sin 6) (tsin&— ad ))7

sin? @

and for the rays (4.13) by

sin 6 2 azg

J =t . 4.14b

T (cos20+sin29> ( )

After some cumbersome manipulations to eliminate ¢t between (4.12), (4.13a), (4.14a),

and (4.14b), we find that the caustic in the upper half space z > 0 is given by the
parametric equations

2
2e(6) = —zoctg— 2(omg)cos 0
sin® 8 + (azp) cos? @

9 sin? 9
55 — tan® 60— I
cos? f (sin” 8 + (azp) cos? )

(14 az(0))* = (4.15a)

and in the lower half space z < 0 by

z.(0) = %tan&, 2.(0) = —$(2 tan? 6 + az). (4.15b)




124 E. KALLIGIANNAKI, TH. KATSAOUNIS, anp G. N. MAKRAKIS

2.478 |

02493
002493, L

FiG. 4.4a. |u| vs. |z|, § = 0.2rad, k = 200

The point

Tr = 2?’_7‘(/5120)(—20), ok = é <—1 +4/1- %) : (4.16)

given by (4.15a) for 8 = O = arccos(,/gjl—m), is a cusp, since dz./df = dz./df = 0,
d*r./df? = d?z./d6* # 0 for § = k. The caustic crosses the interface z = 0 at
the point zoc = %x/—azo/Q, which is the common point of the branches (4.15a) and
(4.15b) for 8 = By = arctan(y/—az0/2). It can be easily shown using the parametric
equations (4.15a) and (4.15b) that at this point the derived caustic is, in fact, smooth.
For initializing Newton’s algorithm for solving the system (3.18a), (3.18b), we need to
put the caustic equations in the standard form (3.8).

Eliminating ¢t between the parametric equations of the rays (4.12), and putting y =
cos® §, we obtain the equations

L(z,2)y* + M(z,2)y* + N(z,2)y + Q(z) =0, (4.17)
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1.9 2 2.1 2.2 2.3 2.398

FiG. 4.4b. |u| vs. |z|, 6 = 0.44rad, k = 800

By the transformation y = £ — ?])—Vi—, we can rewrite (4.17) in the standard form (3.8)
of the cusp,
& — o€+, =0,
where
1 /2M®* MN
=— - 4.1
" L(mg o +Q>, (4.192)
1 M?
=——|N-——|. 4.19b
P2 I ( 3L> (4.19b)

Similarly eliminating ¢ between the equations (4.11) and (4.13), and putting w = tan9,
we obtain

w+ ZO; ‘oo, (4.20a)

2uw? — azw — (az + azg) = 0. (4.20b)

Multiplying the above equations we find the cubic equation

w® + R(z, 2)w® + Sw+ Q(z, 2) = 0, (4.21)
where
_az  (20-—27)
R(z,2) 5 et (4.22a)
S = —az, (4.22b)
2 _ 2
T(z,z) = 9—(—Z—ZO—). (4.22¢)
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0.07336
0 —
-0.9604 - v
1.826 2 3 3.526
Fi1G. 4.5. Caustic and rays launched with angle 8 = 6pc = 0.463 rad
and 6 = 0.6rad
Now, by the transformation w = € — %, we rewrite (4.21) in the form (3.8), choosing
2R®* SR
=— - — 4T 4.23a
M o7 3 ( )
R2
P2 = 5 S. (4.23b)

We compare again the GO (continuous line) and KL solutions along some rays for
the case zp = —0.5 and a = 1. The ray launched with angle 8x = 0.38759rad
passes from the beak of the caustic K which has coordinates (xx = 1.837117307087383,
zx = 6.0660171779821193 x 10~2). The KL solution is computed using both numerical
integration (dashed line) and the uniform asymptotic expansion of the Pearcey integral
(dotted line). The numerical integration fails by oscillations for certain large values of
the arguments in the Pearcey integral. However, it agrees for a satisfactory large range
with the numerical integration, to guarantee accuracy of the computation. In Fig. 4.3
we show the caustic and the rays launched from the source with angles # = 0.2rad,
0.44rad. The corresponding points of contact between the caustic and the rays are
(xz = 2.687438429694025, z = 2.0177387162637617 x 102) and (z = 1.907681220507820,
z = 3.9775586930300477 x 1072). The computed amplitudes are compared in Figures
4.4a and 4.4b. The corresponding wave numbers were selected & = 200 and k£ = 800
to obtain satisfactory accuracy between the numerical integration and the uniform as-
ymptotic expansion used for computing the Pearcey integrals. Similar results for the
rays launched with angles 8 = 6y = 0.463...rad and 6 = 0.6rad are shown in Figures
4.5, 4.6a, and 4.6b. The points of contact between the rays and the caustic are now
(z = 2.0,z = 0.0) and (z = 2.736547233366769, z = —0.4360863450559146), respec-
tively. Note that in Fig. 4.6b, near z = 2.02, the GO blows up at the point where the
corresponding ray crosses transversely the caustic (see Fig. 4.5).
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2.397

2.3

2.2

2.1

0.7737 17y

F1G. 4.6a. |u| vs. |z|, 8 = 8pc, k = 800

FiG. 4.6b. |u| vs. |z|, 8 = 0.6rad, k = 200
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