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HIGH GAIN OBSERVER BASED ON A TRIANGULAR STRUCTURE

HASSAN HAMMOURI, BOUBEKEUR TARGUI,
AND FREDERIC ARMANET

Laboratoire d’Automatique et de Génie des Procédés, UPRES-A Q 5007, LAGEP, CPE-Lyon,
Bat. 308G, UCBL I, 69622 Villeurbanne cedex, France.

SUMMARY
A high gain observer based on a triangular structure of nonlinear systems is proposed . An al-
gorithm permitting to calculate a gain of the observer is given. This observer synthesis is then
extended to a class of multi-output nonlinear systems which contains the model of binary distilla-
tion columns. Finally, we illustrate the performance of the estimator using numerical simulations
of a methanol-ethanol distillation column.

KEY WORDS Nonlinear systems, observability, observer

1. INTRODUCTION
The knowledge of state variables is often required in order to apply the advanced concepts
of control and diagnosis to practical applications. One way permitting to obtain such vari-
ables, consists of combining a priori knowledge about physical system with experimental
data to provide on-line estimator (observer). This estimator is generally a dynamic system
obtained from the nominal model by adding a correction term which is proportional to
some output deviation. In other words, given a nominal model:

{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))
(0)

The state x(t) belongs to an open subset V of Rn, the input u(t) belongs to a Borelian
subset U of Rm and the output y(t) ∈ Rp. An observer for (1) is generally a dynamic
system of the form:





·
x̂(t) = f(x̂(t), u(t))− k(t)(h(x̂(t))− y(t))

ṙ(t) = F (r(t), u(t), y(t), x̂(t))
k(t) = ϕ(r(t))

r(t) and k(t) are called indifferently the gain of the observer. For some particular systems,
the gain k(t) does not depend on the input (see for instance the Luenberger observer).
For general nonlinear systems the observer’s gain depend on the input. This comes from
the fact that the observability concept generally depends on the inputs: given an input u
defined on some interval [0, T ], we say that u render system (1) observable if for every two
initial states x 6= x′; there exist t ∈ [0, T ] such that h(xu(t)) 6= h(x′u(t)), where xu(t) and
x′u(t) are respectively the trajectories associated with u and issued from the initial states
x, x′. Generally a nonlinear system may be observable for some input and unobservable
for an other one. For more details, see 7,9.

An interesting class of nonlinear systems consists of those which are observable for
every input, called uniformly observable systems. For this class of nonlinear systems,
we can design an observer whose gain does not depend on the inputs (see, 1,2,3,5,6,8,10).
For such systems a canonical (triangular) form is designed in order to design an observer.
To ensure the mathematical convergence, a particular high gain is required. However, the



use of large gain may generate the so-called the peak phenomena (overshoot problem),
moreover the estimator becomes noise sensitive. Due to nonlinearity of the system, the
choice of the gain which gives the best compromise between fast convergence, the noise
rejection and the attenuation of the peak phenomena becomes a difficult task, and only
simulations allow to determine a plausible gain.

This paper is organized as follows: in section 2, we extend the observer synthesis stated
in 5 and 6 to a class of multi-output uniformly observable systems. In section 3, we apply
this theoretical result to a binary distillation column.

2. HIGH GAIN OBSERVER
Consider the following control affine nonlinear system:

{
ẋ(t) = f(x(t), u(t)) = f0(x(t)) +

∑m
i=1 ui(t)fi(x(t))

y(t) = h(x(t))
(0)

where u = (u1, ..., um).
In the single output case (p = 1) and when U = Rm, the authors in 4 and 5 have shown
that if in addition system (2) is uniformly observable, then,

(z1, ..., zn) = (h(x), Lf0(h(x)), ..., Ln−1
f0

(h(x)))

becomes a local system of coordinates (almost everywhere) in which, system (2) takes the
following canonical form:

{
ż(t) = Az(t) + F0(z(t)) +

∑m
i=1 ui(t)Fi(z(t))

y(t) = Cz(t)
(0)

where Lf0 denotes the Lie derivative, A, C and the Fj ’s are given by:

A =




0 1 0 0
... 1

0
. . . 1

0 . . . 0 0




; C =
[

1 0 . . 0
]

F0 = [0, . . . , 0, F0n]T ; for 1 ≤ i ≤ m, Fi = [Fi1, . . . , Fin]T and Fij = Fij(z1, .., zj).
Moreover, if the Fi’s are global Lipschitz (or if the concerned trajectories of system (3)
are bounded), then an exponential observer for system (3) takes the following form:

·
ẑ(t) = Aẑ(t) + F0(ẑ(t)) +

m∑

i=1

ui(t)Fi(ẑ(t))− S−1
θ CT (Cẑ(t)− y(t))

where Sθ is the symmetric positive definite (S.P.D.) matrix satisfying:

θSθ + AT Sθ + SθA = CT C.

For single output non control affine nonlinear system (1), in 6, the authors have shown
that if a single output system (1) is uniformly observable then, a similar transformation
as above, transforms the system into the following form:







ż1(t) = F1(z1(t), z2(t), u(t))
ż2(t) = F2(z1(t), z2(t), z3(t), u(t))
...
żn−1(t) = Fn−1(z1(t), . . . , zn(t), u(t))
żn(t) = Fn(z1(t), . . . , zn(t), u(t))
y(t) = Cz(t) = z1(t)

(0)

with, the additional condition:

C1)
∂Fi

∂zi+1
(z, u) 6= 0;∀(z, u).

Now set F = [F1, . . . , Fn]T , if the following assumption holds:
H 1)
i) The F is a global Lipschitz function:

‖∂F (u, z)
∂z

(u, z)‖ is uniformly bounded.

ii) ∃α > 0 s.t. ∀(u, z) ∈ (U ×Rn) we have:

∂Fi(u, z)
∂zi+1

≥ α

then, we can find a constant vector K, such that the following system:

·
ẑ = F (ẑ, u) + ∆θK(Cẑ − y) (0)

becomes an exponential observer for system (4), where:

∆θ is the (n× n) diagonal matrix:

∆θ = diag(θ, θ2, . . . , θn).

Remark 1
In the case where only condition C1 holds and that U is a bounded connected set,

and the trajectories of (4) lie into a compact set, then hypothesis H1 can be omited (see
Remark 2 below).

In what follows, we give a constructive algorithm permitting to calculate such gain K,
and we extend this observer synthesis to a class of multi-output systems.
To do so, we need some preliminary results:

Consider the following k × k matrix,

Ak(t) =




0 a1(t) 0 0
... a2(t)

0
. . . ak−1(t)

0 . . . 0 0




(0)



where, the ai’s may be unknown and satisfying the following constraint:

H 2) ∀t ≥ 0, α1 ≤ ai(t) ≤ α2, for some constants α1, α2 > 0.

Let Sk be the k × k symmetric matrix of the form:

Sk =




s11 s12 0 0

s12 s22
. . .

...

0
. . . . . . 0

...
. . . sk−1k

0 . . . 0 sk−1k skk




(0)

and denote by Ck the k-row vector:

Ck = [1, 0, .., 0]

we then obtain the following:

Lemma 1
Assume that H 2 holds, then for every ρ > 0, we can find η > 0 and a symmetric

positive definite (S.P.D.) matrix Sk of the form (6) such that:

∀t ≥ 0, AT
k (t)Sk + SkAk(t)− ρCT

k Ck ≤ −ηIk.

Moreover Sk depends only on the bounds α1, α2 and not on the knowledge of Ak(t).
The proof of lemma 1 will be given below.

Now, let An(t) be the n×n matrix of the form (6) in which ai(t) is replaced by
∂Fi

∂zi+1
(ẑ(t)+

ω(t), u(t)) , where ω(t) is any vector of Rn. Then from hypothesis H1, it follows that
the ai’s satisfy H2, here, α1 = α and α2 is the Lipschitz constant of F , given by

sup‖∂F

∂z
(z(t), u(t))‖, (z, u) ∈ Rn × U . We can state the following:

Theorem 1.
Assume that H1 holds, then system (5) in which K is replaced by ∆θS

−1
n CT is an

exponential observer.

The proof is similar to this given in 6 ( the extension of this result, is given in Theorem 2
below).

In what follows, we will extend this observer synthesis to the following class of nonlinear
systems which contains the model of binary distillation columns:





ẋ1(t) = f1(x(t), u(t)) + d1(t)
ẋ2(t) = f2(x(t), u(t)) + d2(t)
y(t) = (y1(t), y2(t))T = (Cn1x

1(t), Cn2x
2(t))T

(0)



where x =
[

x1

x2

]
∈ Rn; xi =




xi
1
...

xi
ni


 ∈ Rni for i = 1, 2 (n = n1 + n2); yi = Cnix

i = xi
1

(Cni = [1, 0, . . . , 0]); u is an known signal such that ∀t, u(t) ∈ U , the di’s are unknown
and bounded disturbances, with supt≥0

∥∥di(t)
∥∥ = d < +∞.

Finally, the nonlinear dynamics satisfy the following triangular structure:

f1(x, u) =




f1
1 (x1

1, x
1
2, u)

f1
2 (x1

1, x
1
2, x

1
3, u)

...
f1

n1−1(x
1, u)

f1
n1

(x, u)




; f2(x, u) =




f2
1 (x2

1, x
2
2, u)

f2
2 (x2

1, x
2
2, x

2
3, u)

...
f2

n2−2(x
2
1, . . . , x

2
n2−1, u)

f2
n2−1(x, u)
f2

n2
(x, u)




The following lemma gives a sufficient condition which guarantee the uniform observabil-
ity.

Lemma 2
If for every (x, u) ∈ Rn × U,

∂f i
j

∂xi
j+1

(x, u) 6= 0; then system (8) is uniformly observable.

Proof. The uniform observability means that for every initial states x 6= x̄ and every input
from any [0, T ] into U , the associated output y(t) = h(x(t)) and ȳ(t) = h(x̄(t)) are not
identically equal on [0, T ], where x(t) (respectively x̄(t)) is the trajectory corresponding
to the input u and initial state x (resp. x̄).
To prove the Lemma 2, it suffices to show that if for every t ∈ [0, T ], h(x(t)) = h(x̄(t)),
then x = x̄.

Here, x =
[

x1

x2

]
and h(x) =

[
x1

1

x2
1

]
.

Assume that h(x(t)) = h(x̄(t)),∀t ∈ [0, T ].
We obtain

x1
1(t) = x̄1

1(t), ∀t ∈ [0, T ].

Differentiating this last equality, we get:

f1
1 (x1

1(t), x
1
2(t), u(t)) = f1

1 (x1
1(t), x̄

1
2(t), u(t))

Using the mean value theorem, there exists a ω1(t) ∈ [0, 1] s.t.

∂f1
1

∂x1
2

(x1
1(t), x

1
2(t) + ω1(t)(x1

2(t)− x̄1
2(t)), u(t))(x1

2(t)− x̄1
2(t)) = 0

But
∂f1

1

∂x1
2

(x, u) 6= 0,∀(x, u) ∈ Rn × U.

Thus
x1

2(t) = x̄1
2(t), ∀t ∈ [0, T ].

Using the triangular structure of f1 and the fact that ∂f1
i

∂xi+1
(x, u) 6= 0; ∀(x, u) ∈ Rn × U ,

an induction proof gives x1(t) = x̄1(t), ∀t ∈ [0, T ].



In similar manner, using the triangular structure of f2 and the fact that x1(t) = x̄1(t) ,
and x2

1(t) = x̄2
1(t) we can show by similar induction proof that ∀t ≥ 0, x2(t) = x̄2(t). This

ends the proof of the lemma 2.
As in the single output case (see hypothesis H1), the design of an observer for (8),

requires the following assumption :
H 3)
i) ∃c > 0;∀(x, u),

∥∥∥∂f i

∂x (x, u)
∥∥∥ ≤ c

ii) ∃α > 0;∀x; ∀u,
∂f i

j

∂xi
j+1

(x, u) ≥ α, for i = 1, 2 and for 1 ≤ j ≤ ni − 1.

Remark 2
If U is a connected compact subset of Rm and that the trajectories of system (8) lie

into a connected compact subset K of Rn, then hypothesis H3 can be replaced by:

C2)
∂f i

∂xi
j+1

(x, u) 6= 0,∀(x, u) ∈ (K × U).

Proof of remark 2. Indeed, From C2, it follows that ∃α > 0;∀(x, u) ∈ (K × U) we have

| ∂f i
j

∂xi
j+1

(x, u)| ≥ α.

Now, since K × U is a connected set, it follows that
∂f i

j

∂xi
j+1

keeps a constant sign.

Using the simple change of coordinates x̃i
j = εijx

i
j where εij = sign(

∂f i
j

∂xi
j+1

), system (8)

becomes:




˙̃x1(t) = f̃1(x̃(t), u(t)) + d̃1(t)
˙̃x2(t) = f̃2(x̃(t), u(t)) + d̃2(t)
y(t) = (Cn1 x̃

1(t), Cn2 x̃
2(t))T

Moreover, it has a similar triangular structure (8) and,

∂f̃ i
j

∂x̃i
j+1

(x̃, u) ≥ α, ∀(x̃, u) ∈ (K̃ × U)

where K̃ = {x̃/x̃i
j = εijx

i
j and x ∈ K}.

Now as in 5, we can always find global Lipschitz functions having similar triangular struc-
ture as f̆1, f̆2 and satisfying:
a) f̆ i(x̃, u) = f̃ i(x̃, u), for i = 1, 2 and for every (x̃, u) ∈ (K̃ × U)

b)
∂f̆ i

j

∂x̃i
j+1

(x̃, u) ≥ α,∀(x̃, u) ∈ (Rn × U)

This ends the proof of Remark 2.
Noticing that if U is not a connected set, then condition H3− i) together with C2 are

not sufficient for the existence of an observer of constant gain.

Conter-example
Consider the following system:



(S)





ẋ =
[

0 u
0 0

]
x

y(t) = x1 = Cx

with u ∈ U = {+1,−1}.
Clearly system (S) has a triangular structure and satisfies H3 − i), and C2.
However (S) cannot admit an observer with constant gain.

Proof of the Conter-example. Assuming that (S) admits an observer of constant gain:

˙̂x =
[

0 u
0 0

]
x̂ + K(Cx̂− y)

with K =
[

k1

k2

]
.

Thus the obtained error equation:

ė =
[

k1 u
k2 0

]
e

becomes simultaneous asymptotically stable for every input u : R+ → {1,−1}.
Now set A1 =

[
k1 1
k2 0

]
and A2 =

[
k1 −1
k2 0

]
, in particular the two systems:

ė = Aie (i = 1, 2)

becomes asymptotically stable.
This implies that the spectrums Sp(Ai) are in C = {λ ∈ C : Re(λ) < 0}.
Let us examine this last fact:
The respective characteristic polynomial of A1 and A2 are P1 = λ2 − k1λ − k2 and
P2 = λ2 − k1λ + k2.
Set r11 , r12 ( resp. r21, r22) the roots of P1 (resp. P2), we obtain:





r11 + r12 = −k1

r11r12 = −k2

r21 + r22 = −k1

r21r22 = k2

Thus the stability of A1 (resp. of A2) is equivalent to k1 < 0 and k2 < 0 (resp. k1 < 0
and k2 > 0). Consequently, there exist no k1, k2 which give rise to both simultaneous
asymptotic stability of A1 and A2.

Now, we can state our main result:

Theorem 2.
Let δ1 > 0, δ2 > 0 be two constants satisfying:

2n1 − 1
2n2 − 1

δ1 < δ2 <
2n1 + 1
2n2 − 1

δ1



set, ∆θδi = diag(θδi , θ2δi , . . . , θniδi), (i = 1, 2), and assume that H 3 holds for system (8).
Then there exist S.P.D. matrices Sni (i = 1, 2) of the form (7) such that the following
system: 




·
x̂1(t) = f1(x̂(t), u(t))− r1∆θδ1S

−1
n1 CT

n1(Cn1x̂(t)− y1(t))
·

x̂2(t) = f2(x̂(t), u(t))− r2∆θδ2S
−1
n2 CT

n2(Cn2x̂(t)− y2(t))
(0)

becomes an exponential estimator:
∃r1, r2 > 0; ∃θ0 > 0;∀θ ≥ θ0; ∃λ1, λ2 > 0; ∃σ > 0,such that for every x̂(0), x(0), we have:
‖x̂(t)− x(t)‖ ≤ λ1e

−σt ‖x̂(0)− x(0)‖+λ2d, here d is the upper bound of
∥∥di(t)

∥∥ , i = 1, 2.
This means that the ball B(0, λ2d) is exponentially asymptotically attracts the error of
estimation.

Remark 3
Noticing that for θ large σ becomes large and hence the speed of convergence of the

observer may be chosed arbitrary . However, for θ sufficiently large, λ1 may become large
and hence the disturbance may affect the performance of the estimator. Consequently, a
good choice of θ which not affect the performances of the estimator is necessary. Due to
nonlinearity, this problem becomes very difficult and only simulations allows to obtain a
compromise between the fast convergence of the observer and the disturbance sensitivity.
First, let us give the proof of Lemme 1.

Proof of Lemma 1.We will give the proof by induction.

For k = 2; consider A2(t) =
[

0 a1(t)
0 0

]
, with 0 < α1 ≤ a1(t) ≤ α2, ∀t ≥ 0.

Let S2 =
[

s11 s12

s12 s22

]
be symmetric positive definite (S.P.D), and set;

P2(t) = AT
2 (t)S2 + S2A2(t)− ρCT

2 C2 =
[ −ρ s11a1(t)

s11a1(t) 2s12a1(t)

]
, (0)

for some ρ > 0 and where X2 = [x1, x2]
T .

We have:
XT

2 P2(t)X2 = −ρx2
1 + 2s11a1(t)x1x2 + 2s12a1(t)x2

2

Now choosing s11 > 0, s22 > 0 and s12 < 0, and using inequality 0 < α1 ≤ a1(t) ≤ α2, we
obtain:

XT
2 P2(t)X2 ≤ −ρx2

1 + 2s11α2x1x2 − 2s12α1x
2
2 (0)

Now, choosing s12 < 0 and s22 > 0 such that:

|s12| > s2
11α

2
2

2ρα1
(0)

s22 >
s2
12

s11
(0)

Inequality (12), implies that:

XT
2 P2(t)X2 ≤ −η‖X2‖2, where η = (1− 2s11α2

2ρα1 |s12|)min{ρ, 2 |s12|α1} > 0,



and inequality (13) imposes that S2 remains S.P.D. Hence lemma 1 is proved for k = 2.
Now assume that for every ρ > 0; there exist ηk−1 > 0 and a S.P.D matrix Sk−1 of the
form (7) such that:

∀t ≥ 0, AT
k−1(t)Sk−1 + Sk−1Ak−1(t)− ρCT

k−1Ck−1 ≤ −ηk−1Ik−1 (0)

Let us show that for any ρ > 0; there exists η > 0 and a S.P.D matrix Sk, such that
inequality (14) holds for Sk and Ck.

Set, Sk =
[

Sk−1 Fk−1

F T
k−1 skk

]
, where Sk−1 satisfies (15) and Fk−1 is a (k-1)-column vector of

the form Fk−1 = [0, ..., 0, sk−1k]
T .

Set,

Ak(t) =
[

Ak−1 vk−1(t)
0 0

]

where vk−1 is the (k-1)-column vector vk−1 = [0, ..., 0, ak−1(t)]
T .

Consider the symmetric matrix Pk(t) = SkAk(t) + Ak(t)T Sk − ρCT
k Ck. As for k = 2, we

will show that we can choose Sk such that for every Xk ∈ Rk, XT
k Pk(t)Xk ≤ −η‖Xk‖2.

A simple computation gives:

Pk(t) =
[

Pk−1(t) Sk−1vk−1(t) + AT
k−1(t)Fk−1

F T
k−1Ak−1(t) + vT

k−1(t)Sk−1 2F T
k−1vk−1(t)

]

hence,

XT
k Pk(t)Xk = XT

k−1Pk−1(t)Xk−1 + 2XT
k−1Sk−1vk−1(t)xk + 2sk−1kak−1(t)x2

k.

Now, choosing sk−1k < 0 and using the fact that 0 < α1 ≤ ak−1(t) ≤ α2, we get:

XT
k Pk(t)Xk = XT

k−1Pk−1(t)Xk−1 + 2α2‖Sk−1‖‖Xk−1‖ |xk|+ 2sk−1kα1x
2
k (0)

Inequalities (14) and (15) yield to:

XT
k Pk(t)Xk ≤ −ηk−1‖Xk−1‖2 + 2α2‖Sk−1‖‖Xk−1‖ |xk|+ 2sk−1kα1x

2
k (0)

Now, consider sk−1k < 0 and such that:

α2‖Sk−1‖√
2 |sk−1k|α1ηk−1

< 1

or equivalently;

sk−1k < −α2
2‖Sk−1‖2

2α1ηk−1

Combining this last inequality with (16), we get:

XT
k Pk(t)Xk ≤ −η‖Xk‖2, where η = (1− α2‖Sk−1‖√

2 |sk−1k|α1ηk−1

)min{ηk−1, 2sk−1kα1}

To end the proof, we will choose skk so that Sk remains S.P.D.
From the above notations, we have:

XT
k SkXk = XT

k−1Sk−1Xk−1 + 2F T
k−1Xk−1xk + skkx

2
k

≥ XT
k−1Sk−1Xk−1 − 2‖Fk−1‖‖Xk−1‖ |xk|+ skkx

2
k

≥ XT
k−1Sk−1Xk−1 − 2 |sk−1k| ‖Xk−1‖ |xk|+ skkx

2
k (since ‖Fk−1‖ = |sk−1k| )



From the induction hypothesis, we know that Sk−1 is S.P.D. Hence there exist a constant
ν̃k−1 > 0 s.t. XT

k−1Sk−1Xk−1 ≥ ν̃k−1‖Xk−1‖2.
Thus,

XT
k SkXk ≥ ν̃k−1‖Xk−1‖2 − 2 |sk−1k| ‖Xk−1‖ |xk|+ skkx

2
k

Now, choosing skk such that

skk >
s2
k−1k

νk−1

or equivalently;
|sk−1k|√
skkνk−1

< 1

we obtain:

XT
k SkXk ≥ νk‖Xk‖2 where νk = (1− |sk−1k|√

skkνk−1
) inf{ν̃k−1, skk} > 0

This ends the proof of lemma 1.

proof of Theorem 2. Let α, c be the positive constants given in assumption H 3 and
consider two any unknown matrices:

Ani(t) =




0 ai
1(t) 0 . . . 0

... ai
2(t)

...

0
. . . ai

ni−1(t)
0 . . . 0 0




for i = 1, 2

such that : α ≤ ai
j(t) ≤ c, for i = 1, 2 and 1 ≤ j ≤ ni.

From lemma 1 in which α1, α2 are respectively replaced by α and c, we know that there
exists two matrices Sn1 and Sn2 which only depend on α and c such that:

∀t ≥ 0, AT
ni

(t)Sni + SniAni(t)− ρiC
T
ni

Cni ≤ −ηiIni (0)

for some constants ρi > 0 and ηi > 0, i = 1, 2.

In what follows, we will show that system (9) in which the Sni ’s are those satisfying (17),
is an exponential estimator.

Set e(t) = x̂(t) − x(t) =
[

e1(t)
e2(t)

]
=

[
x̂1(t)− x1(t)
x̂2(t)− x2(t)

]
, where x(t) and x̂(t) are two

respective trajectories of systems (8).
Differentiating e(t), we obtain:





ė(t)1(t) = f1(x̂(t), u(t))− f1(x(t), u(t))
−r1∆θδ1S

−1
n1

CT
n1

(Cn1 x̂
1(t)− y1(t)) + d1(t)

ė2(t) = f2(x̂(t), u(t))− f2(x(t), u(t))
−r2∆θδ2S

−1
n2

CT
n2

(Cn2 x̂
2(t)− y2(t)) + d2(t)

(0)

Recall that:




f1
j = f1

j (x1
1(t), . . . , x

1
j+1(t), u(t)); j = 1, . . . , n1 − 1

f1
n1

= f1
n1

(x, u)
f2

j = f2
j (x2

1, . . . , x
2
j+1, u); j = 1, . . . , n2 − 2

f2
n2−1 = f2

n2−1(x, u)
f2

n2
= f2

n2
(x, u)



Using the following notations:





δf1
j = f1

j (x̂1
1, . . . , x̂

1
j , x

1
j+1, u)− f1

j (x1
1, . . . , x

1
j+1, u); j = 1, . . . , n1 − 1

δf1
n1

= f1
n1

(x̂, u)− f1
n1

(x, u)
δf2

j = f2
j (x̂2

1, . . . , x̂
2
j , x

2
j+1, u)− f2

j (x2
1, . . . , x

2
j+1, u); j = 1, . . . , n2 − 2

δf2
n2−1 = f2

n2−1(x̂
1, x̂2

1, . . . , x̂
2
n2−1, x

2
n2

, u)− f2
n2−1(x

1, x2
1, . . . , x

2
n2

, u)
δf2

n2
= f2

n2
(x̂, u)− f2

n2
(x, u)

(0)

we obtain:
for 1 ≤ j ≤ n1 − 1;

f1
j (x̂, u)− f1

j (x, u) = f1
j (x̂1

1, . . . , x̂
1
j+1, u)− f1

j (x̂1
1, . . . , x̂

1
j , x

1
j+1, u) + δf1

j

=
∂f1

j

∂x1
j+1

(x̂1
1, . . . , x̂

1
j , σ

1
j (t), u(t))e1

j+1(t) + δf1
j

where σ1
j (t) = x̂1

j+1(t) + τj(t)e1
j+1(t) for some τj(t), 0 ≤ τj(t) ≤ 1.

Similarly, we have:

f2
j (x̂, u)− f2

j (x, u) =
∂f2

j

∂x2
j+1

(x̂2
1, . . . , x̂

2
j , σ

2
j (t), u(t))e2

j+1(t) + δf2
j ; for 1 ≤ j ≤ n2 − 2

and,

f2
n2−1(x̂, u)− f2

n2−1(x, u) =
∂f2

n2−1

∂x2
n2

(x̂1, x̂2
1, . . . , x̂

2
n2−1, σ

2
j (t), u(t))e2

n2
(t) + δf2

n2−1

where σ2
j (t) = x̂2

j+1(t) + τ ′j(t)e
2
j+1(t) for some τ ′j(t), 0 ≤ τ ′j(t) ≤ 1.

Now set:

a1
j (t) =

∂f1
j

∂x1
j+1

(x̂1
1(t), . . . , x̂

1
j (t), σ

1
j (t)); for j = 1, . . . , n1 − 1

a2
j (t) =

∂f2
j

∂x2
j+1

(x̂2
1(t), . . . , x̂

2
j (t), σ

2
j (t)); for j = 1, . . . , n2 − 2

a1
n2−1(t) =

∂f2
j

∂x2
n2

(x̂1, x̂2
1, . . . , x̂

2
n2−1, σ

2
n2

(t), u(t))

Ani(t) =




0 ai
1(t) 0 . . . 0

... ai
2(t)

...

0
. . . ai

ni−1(t)
0 . . . 0 0




The error equation (18) becomes:
{

ė1(t) = An1(t)e
1(t) + δf1 − r1∆θδ1S

−1
n1

CT
n1

Cn1e
1(t) + d1(t)

ė2(t) = An2(t)e
2(t) + δf2 − r2∆θδ2S

−1
n2

CT
n2

Cn2e
2(t) + d2(t)

(0)



where δf1 = [δf1
1 , ..., δf1

n1
]T and δf2 = [δf2

1 , ..., δf2
n2

]T .
As in 5, we use the following change of coordinates:

{
ε1
j = θ−jδ1e1

j for j = 1, ..., n1

ε2
j = θ−jδ2e2

j for j = 1, ..., n2

Set ε1 = [ε1
1, ..., ε

1
n1

]T , ε2 = [ε2
1, ..., ε

2
n2

]T and ε =
[

ε1

ε2

]
, this change of coordinates takes

the vectorial form:

ε =
[

ε1

ε2

]
=

[
∆−1

θδ1
e1

∆−1
θδ2

e2

]

A simple calculation shows that the error equation (20) is equivalent to:
{

ε̇1(t) = θδ1(An1(t)− r1S
−1
n1

CT
n1

Cn1)ε
1(t) + ∆−1

θδ1
(δf1 + d1(t))

ε̇2(t) = θδ2(An2(t)− r2S
−1
n2

CT
n2

Cn2)ε
2(t) + ∆−1

θδ2
(δf2 + d2(t))

(0)

To end the proof of theorem 2, we only need to show that for θ sufficiently large, we have:

‖ε(t)‖ ≤ c1e
−σt + c2d

for some positive constants c1, c2 and σ.
To do so, we will show that the quadratic form V (ε) = (ε1)T Sn1ε

1 + (ε2)T Sn2ε
2 is a

Lyapunov function for system (21). Let ε(t) be a trajectory of (21), and differentiate
V (ε(t)), we get:

V̇ (ε(t)) = θδ1(ε1(t))T [An1(t)
T Sn1 + Sn1An1(t)− 2r1C

T
n1

Cn1 ]ε
1(t)

+ θδ2(ε2(t))T [An2(t)
T Sn2 + Sn2An2(t)− 2r2C

T
n2

Cn2 ]ε
2(t)

+ 2(ε1(t))T Sn1∆
−1
θδ1

(δf1 + d1(t)) + 2(ε2(t))T Sn2∆
−1
θδ2

(δf2 + d2(t))

Now, choose ri = ρi

2 and using inequality (17), we get:

V̇ (ε(t)) ≤ −θδ1η1‖ε1(t)‖2 − θδ2η2‖ε2(t)‖2

+ 2(ε1(t))T Sn1∆
−1
θδ1

δf1 + 2(ε2(t))T Sn2∆
−1
θδ2

δf2

+ 2(ε1(t))T Sn1∆
−1
θδ1

d1(t) + 2(ε2(t))T Sn2∆
−1
θδ2

d2(t)

≤ −θδ1η1‖ε1(t)‖2 − θδ2η2‖ε2(t)‖2

+ 2
√

(ε1(t))T Sn1ε
1(t)

√
(∆−1

θδ1
δf1)T Sn1∆

−1
θδ1

δf1

+ 2
√

(ε2(t))T Sn2ε
2(t)

√
(∆−1

θδ2
δf2)T Sn2∆

−1
θδ2

δf2

+ 2
√

(ε1(t))T Sn1ε
1(t)

√
(∆−1

θδ1
d1(t))T Sn1∆

−1
θδ1

d1(t)

+ 2
√

(ε2(t))T Sn2ε
2(t)

√
(∆−1

θδ2
d2(t))T Sn2∆

−1
θδ2

d2(t)

Recall that the following inequalities hold for any S.P.D matrix S:

λmin(S)‖X‖2 ≤ XT SX ≤ λmax(S)‖X‖2



where λmin(S) and λmax(S) are respectively the smallest and the largest eigenvalues of S.
Applying these inequalities, we obtain:

V̇ (ε(t)) ≤ − θδ1η1

λmax(Sn1)
(ε1(t))T Sn1ε

1(t)− θδ2η2

λmax(Sn2)
(ε2(t))T Sn2ε

2(t)

+ 2
√

λmax(Sn1)
√

(ε1(t))T Sn1ε
1(t)‖∆−1

θδ1
δf1‖

+ 2
√

λmax(Sn2)
√

(ε2(t))T Sn2ε
2(t)‖∆−1

θδ2
δf2‖

+ 2
√

λmax(Sn1)
√

(ε1(t))T Sn1ε
1(t)‖∆−1

θδ1
d1(t)‖

+ 2
√

λmax(Sn2)
√

(ε2(t))T Sn2ε
2(t)‖∆−1

θδ2
d2(t)‖

Recall that ∆−1
θδi

δf i =




1
θδi

δf i
1

...
1

θniδi
δf i

ni


, and using H 3)-i) and the triangular structure of the

(δf i
j)’s we obtain:

For j = 1, . . . , n1 − 1; θ−jδ1 |δf1
j | ≤ cθ−jδ1

√
(e1

1)2 + . . . , (e1
j )2 where c is the Lipschitz

constant of the f i’s.
Hence,

θ−jδ1 |δf1
j | ≤ cθ−jδ1

√
(θδ1ε1

1(t))2 + . . . , (θjδ1ε1
j (t))2

Now, taking θ ≥ 1, we get:

θ−jδ1 |δf1
j | ≤ c

√
(ε1

1(t))2 + . . . , (ε1
j (t))2 ≤ c‖ε1(t)‖ (-11)

For j = n1, we have:

θ−n1δ1 |δf1
n1
| ≤ cθ−n1δ1‖e(t)‖
= cθ−n1δ1

√
(θδ1ε1

1(t))2 + . . . + (θn1δ1ε1
n1

(t))2 + (θδ2ε2
1(t))2 + . . . + (θn2δ2ε2

n2
(t))2

For θ ≥ 1, we obtain:

θ−n1δ1 |δf1
n1
| ≤ c‖ε1(t)‖+ cθn2δ2−n1δ1‖ε2(t)‖ (-11)

Similarly for θ ≥ 1, we have:

θ−jδ2 |δf2
j | ≤ c‖ε2(t)‖ for 1 ≤ j ≤ n2 (-11)

For j = n2 − 1, n2, and θ ≥ 1, we obtain:





θ−(n2−1)δ2 |δf2
n2−1| ≤ c‖ε2(t)‖+ cθn1δ1−(n2−1)δ2‖ε1(t)‖, (j = n2 − 1)

θ−n2δ2 |δf2
n2
| ≤ c‖ε2(t)‖+ cθn1δ1−n2δ2‖ε1(t)‖, (j = n2)

≤ c‖ε2(t)‖+ cθn1δ1−(n2−1)δ2‖ε1(t)‖ (since θ ≥ 1)
(-11)

Finally, inequalities (24) to (27) with θ ≥ 1, lead to:
{ ‖∆−1

θδ1
δf1‖ ≤ c‖ε1(t)‖+ cθn2δ2−n1δ1‖ε2(t)‖

‖∆θδ2 δf
2‖ ≤ cθn1δ1−(n2−1)δ2‖ε1(t)‖+ c‖ε2(t)‖



hence;




‖∆−1
θδ1

δf1‖ ≤ c√
λmin(Sn1 )

√
ε1(t)T Sn1ε

1(t) + cθn2δ2−n1δ1√
λmin(Sn2 )

√
ε2(t)T Sn2ε

2(t)

‖∆θδ2 δf
2‖ ≤ cθn1δ1−(n2−1)δ2√

λmin(Sn1 )

√
ε1(t)T Sn1ε

1(t) + c√
λmin(Sn2 )

√
ε2(t)T Sn2ε

2(t)
(-11)

Combining (23) and (28), we obtain:

V̇ (ε(t)) ≤ −( θδ1η1

λmax(Sn1) − 2c

√
λmax(Sn1)√
λmin(Sn1 )

)(ε1(t))T Sn1ε
1(t)

−( θδ2η2

λmax(Sn2 ) − 2c

√
λmax(Sn2 )√
λmin(Sn2 )

)(ε2(t))T Sn2ε
2(t)

+2c(θn2δ2−n1δ1

√
λmax(Sn1 )√
λmin(Sn2 )

+θn1δ1−(n2−1)δ2

√
λmax(Sn2 )√
λmin(Sn1 )

)
√

(ε1(t))T Sn1ε
1(t)

√
ε2(t)T Sn1ε

2(t)

+2
√

λmax(Sn1)
√

(ε1(t))T Sn2ε
1(t)‖∆−1

θδ1
d1(t)‖

+2
√

λmax(Sn2)
√

(ε2(t))T Sn2ε
2(t)‖∆−1

θδ2
d2(t)‖

Setting W1 = θ
δ1
2

√
(ε1(t))T Sn1ε

1(t), W2 = θ
δ2
2

√
(ε2(t))T Sn2ε

2(t), we obtain:

V̇ (ε(t)) ≤ −(
η1

λmax(Sn1)
− 2c

θ−δ1
√

λmax(Sn1)√
λmin(Sn1)

)W1

− (
η2

λmax(Sn2)
− 2c

θ−δ2
√

λmax(Sn2)√
λmin(Sn2)

)W2

+ 2c(θ(n2δ2−n1δ1−
δ1
2
− δ2

2
)

√
λmax(Sn1)√
λmin(Sn2)

+ θ(n1δ1−(n2−1)δ2−
δ1
2
− δ2

2
)

√
λmax(Sn2)√
λmin(Sn1)

)
√

W1

√
W2

+ 2θ−
δ1
2

√
λmax(Sn1)

√
W1‖∆−1

θδ1
d1(t)‖+ 2θ−

δ2
2

√
λmax(Sn2)

√
W2‖∆−1

θδ2
d2(t)‖

Set α(θ) = c(θ(n2δ2−n1δ1−
δ1
2
− δ2

2
)
√

λmax(Sn1 )√
λmin(Sn2 )

+ θ(n1δ1−(n2−1)δ2−
δ1
2
− δ2

2
)
√

λmax(Sn2)√
λmin(Sn1)

), we get:

V̇ (ε(t)) ≤ −(
η1

λmax(Sn1)
− 2c

θ−δ1
√

λmax(Sn1)√
λmin(Sn1)

− α(θ))W1

− (
η2

λmax(Sn2)
− 2c

θ−δ2
√

λmax(Sn2)√
λmin(Sn2)

− α(θ))W2

+ 2θ−
δ1
2

√
λmax(Sn1)

√
W1‖∆−1

θδ1
d1(t)‖

+ 2θ−
δ2
2

√
λmax(Sn2)

√
W2‖∆−1

θδ2
d2(t)‖

Now using the condition of theorem 2: 2n1−1
2n2−1δ1 < δ2 < 2n1+1

2n2−1δ1, it follows that:

n1δ1 − (n2 − 1)δ2 −
δ1

2
−

δ2

2
< 0

Hence there exist θ0 ≥ 1 such that for every θ ≥ θ0, we have:




2c
θ−δ1

√
λmax(Sn1 )√

λmin(Sn1 )
+ α(θ) ≤ η1

2λmax(Sn1 )

2c
θ−δ2

√
λmax(Sn2 )√

λmin(Sn2 )
+ α(θ) ≤ η2

2λmax(Sn2 )

(-14)



Combining (29) and (30), and taking θ ≥ θ0, we deduce that:

V̇ (ε(t)) ≤ − η1

2λmax(Sn1)
W1 − η2

2λmax(Sn2)
W2

+ 2θ−
3δ1
2

√
λmax(Sn1)d

1
√

W1 + 2θ−
3δ2
2

√
λmax(Sn2)d

2
√

W2 (-14)

where d = supt≥0{‖di(t)‖; i = 1, 2}
Hence,

V̇ (ε(t)) ≤ − η1θ
δ1

2λmax(Sn1)
(ε1(t))T Sn1ε

1(t)− η2θ
δ2

2λmax(Sn2)
(ε2(t))T Sn2ε

2(t)

+ 2dθ−δ1
√

λmax(Sn1)
√

(ε1(t))T Sn1ε
1(t)

+ 2dθ−δ2
√

λmax(Sn2)
√

(ε2(t))T Sn2ε
2(t)

≤ −σ(θ)V (ε(t)) + γ(θ)d
√

2
√

V (ε(t)) (-16)

where
σ(θ) = min{ η1θδ1

2λmax(Sn1 ) ,
η2θδ2

2λmax(Sn2)};γ(θ) = max{2θ−δ1
√

λmax(Sn1), 2θ−δ2
√

λmax(Sn2)}
and, d = max{d1, d2}.
Hence the ball B(0, γ(θ)d

σ(θ) ) exponentially attracts ε(t).
Since e(t) = x̂(t) − x(t) = [(∆θδ1ε

1(t))T ∆θδ2ε
2(t)]T it follows that e(t) is exponentially

attracted by some B(0, λ1(θ)d).

3. APPLICATION TO BINARY DISTLLATION COLUMNS
Based on the Lewis assumption (the molar overflow is constant), the model of a binary
distillation column that we consider is the classical (L, V ) model:





H1ẋ1 = V (y2 − x1) ( total condenser)
Hiẋi = L(xi−1 − xi) + V (yi+1 − yi)(i = 2, . . . , f − 1; rectifying section)
Hf ẋf = F (Zf − xf ) + L(xf−1 − xf ) + V (yf+1 − yf ) (feed tray)
Hiẋi = (F + L)(xi−1 − xi) + V (yi+1 − yi) (i = f + 1, . . . , n− 1; stripping section)
Hnẋn = (F + L)(xn−1 − xn) + V (xn − yn)(boiler)

(-16)
Where Hi is the liquid holdup on the ith-tray supposed known, xi, yi are the liquid and
vapor compositions on the ith-tray, f is the number of the feed tray, F, L, V are the feed,
reflux, and vapor rates (measured), and ZF is the feed composition. On each tray the
liquid and vapor compositions, yi and xi, are linked by the liquid-vapor equilibrium law:

yi =
αxi

1 + (α− 1)xi
(-16)

where α is the relative volatility constant (0 < α < 1). The state of the model are the set
of liquid and feed compositions (xi, Zf )of the most volatile component. The two control
variables are L and V , i.e. u = [L, V ]T . In practice, the top and bottom product compo-
sitions x1 and xn are measured, i.e. y = [x1, xn]T . In the sequel, we will use the following
notations:







x1 =




x1
1

.

.
x1

n1


 =




x1

.

.
xf−1


 ; x2 =




x2
1

.

.
x2

n2


 =




xn

.

.
xf

Zf




Here, n1 = f − 1, n2 = n − f + 2, The dynamics of Zf is assumed to be unknown and
bounded:

Żf = ε(t)

The extended model is then of the form (9):




ẋ1(t) = f1(x(t), u(t))
ẋ2(t) = f2(x(t), u(t)) + d2(t)
y(t) = (x1

1, x
2
1)

T = (x1, xn)T
(-16)

where d2
n2

(t) = ε(t) and d2
i (t) = 0, for 1 ≤ i ≤ n2 − 1.

In order to apply the observer design of section 2, one has to check hypothesis H 3).
Let us check H 3):
H 3) -i) can be obtained by extending nonlinear dynamics by global Lipschitz one. Indeed,
the state components of the system are in the interval ]ε, 1], where ε > 0 is the smallest
concentration.
H 3) -ii) For 1 ≤ i ≤ n1 − 1 = f − 2





f1
1 =

V

H1
(y2 − x1

1)

f1
i =

V

Hi
(yi+1 − yi) +

L

Hi
(x1

i−1 − x1
i )

yi =
αx1

i

1 + (α− 1)x1
i

hence for 1 ≤ i ≤ n1 − 1 = f − 2 we have:

∂f1
i

∂x1
i+1

=
V

Hi

∂yi+1

∂x1
i+1

=
V

Hi

α

(1 + (α− 1)x1
i )2

≥ V

Hi

α

(1 + (α− 1)ε)2
> 0 (-16)

Similarly, for 1 ≤ i ≤ n2 − 1 = n− f + 1 we have:




f2
1 =

1
Hn

[(F + L)(x2
2 − x2

1) + V (x2
1 − yn)]

f2
i =

1
Hi

[(F + L)(x2
i−1 − x2

i ) + V (yi+1 − yi)]

f2
n2−1 = F (Zf − xf ) + L(x2

n2−2 − x2
n2−1) + V (yf+1 − yf )

then, 



∂f2
i

∂x2
i+1

=
(F + L)

Hi
> 0; 1 ≤ i ≤ n2 − 2 = n− f

∂f2
n2−1

∂x2
n2

=
F

Hf
> 0; for i = n2 − 1

(-16)

Simulation results: In order to show the performance of the proposed observer, we
consider the binary methanol-ethanol distillation column with the following characteristics:

n = 12; f = 8;F = 1.65 (mol/min);α = 1.65



L = 4.69 (mol/min);V = 5.94 (mol/min);H1 = 5.5 mol; H12 = 5.5 mol

Hi = 0.55 mol for 2 ≤ i ≤ n− 1

The feed composition Zf varies as a no uniform square signal from 0.75 to 0.38 (ε(t) = 0).
The model simulation was performed under the following initial conditions:

x(0) = ( 0.93000585, 0.88953536, 0.84223977, 0.78925097,
0.73261728, 0.67505746, 0.61947090, 0.56837712, 0.47000139,
0.36710020, 0.27017424, 0.18748224, 0.75)T (-17)

The gain of the observer was synthesized following the procedure described in proofs of
the above lemma 1 with:

r1 = r2 = 1,

δ1 = 1, δ2 =
2n1

2n2 − 1
δ1 =

14
11

and

Sn1 =




1.5 −0.5 0 0 0 0 0
−0.5 2 −1.5 0 0 0 0

0 −1.5 4 −2 0 0 0
0 0 −2 8 −3 0 0
0 0 0 −3 10.5 −4 0
0 0 0 0 −4 15.5 −5
0 0 0 0 0 −5 17.5




,

Sn2 =




1.5 −0.5 0 0 0 0
−0.5 2 −1.5 0 0 0

0 −1.5 4 −2 0 0
0 0 −2 8 −3 0
0 0 0 −3 10.5 −4
0 0 0 0 −4 15.5




.

then,
S−1

n1
CT

n1
= [0.7610, 0.2830, 0.1237, 0.0352, 0.0113, 0.0032, 0.0009]T

and
S−1

n2
CT

n2
= [0.7610, 0.2830, 0.1237, 0.0352, 0.0113, 0.0032]T

Since the obtained results are quite similar and in order to avoid curves redundancy, we
only present here those related to three trays which respectively correspond to a tray
(tray 3) in the rectifying section, to the feed tray (composition in feed tray xf and feed
composition Zf ) and finally to a tray 10 in the stripping section.
Two sets of simulation results of the observer are presented:
The first one is with free noisy outputs measurements x1(t) and x12(t) issued from sim-
ulation of model (33)(see Fig. 1). The second sets of simulation is with noisy outputs
measurements x1(t) and x12(t) issued from simulation of model (33) and respectively cor-
rupted by an adding a Gaussian noise with zero mean and an amplitude equivalent to 5%
of the corresponding values (see Fig. 2).
As previously mentioned, the observer convergence can be enhanced with large values of
θ. However, such values are to be avoided, since the observer generate the so-called peak
phenomena (see Fig. 3.) and my become noise sensitive (see Fig. 4.). To obtain good
results, the choice a value of θ is one which provided a best compromise between the fast



convergence and the noise rejection (see Fig. 5. and Fig. 6.).

3. CONCLUSION
In this paper, we have extended the high gain observer proposed in 5,6 to a class of multi-
output nonlinear system which are not necessarily control affine.
A new algorithm permitting to compute the gain of the observer is proposed. The construc-
tion is based on a symmetric positive definite matrix having a simple structure. Moreover,
this S.P.D. matrix plays a key role in the proof of the convergence of the estimator.
The extension of this result to a multi-output systems (more then two outputs), requires
an adequate structure. A interesting structure consists of defining a class of non affine
systems extending the class of uniformly observable systems which are proposed in 2.
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FIGURES CAPTION

Fig. 1. Simulated free noisy outputs x1(t) and x12(t)

Fig. 2. Simulated noisy outputs x1(t) and x12(t)

Fig. 3. Comparison of estimated and simulated data from free noisy outputs (peak phenomena
θ = 4.8)

Fig. 4. Comparison of estimated and simulated data from noisy outputs (noisy sensitive θ = 4.2)

Fig. 5. Comparison of estimated and simulated data from free noisy outputs (good results θ = 3.5)

Fig. 6. Comparison of estimated and simulated data from noisy outputs (good results θ = 3.5)
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Fig. 1. Simulated free noisy outputs x1(t) and x12(t)
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Fig. 2. Simulated noisy outputs x1(t) and x12(t)
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Fig. 3. Comparison of estimated and simulated data from free noisy outputs (peak phenomena θ = 4.8)
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Fig. 4. Comparison of estimated and simulated data from noisy outputs (noisy sensitive θ = 4.2)
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Fig. 5. Comparison of estimated and simulated data from free noisy outputs (good results θ = 3.5)
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Fig. 6. Comparison of estimated and simulated data from noisy outputs (good results θ = 3.5)


