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Abstract— High-gain observers are commonly utilized to
estimate the states used in constructing the output feedback
control, when such states are derivatives of the output. In
the presence of measurement noise, the estimation error can
be noticeably compromised if the observer gain is chosen too

large. However, the effect of measurement noise on the tracking
error is less significant. This phenomenon is demonstrated with
a nonlinear motivating example, and further explored in the
context of linear systems from a transfer function perspective.

I. INTRODUCTION

In the absence of measurement noise, high-gain observers

are able to concurrently reject modeling uncertainty and

rapidly estimate the system states. Although these objectives

are still achieved in the presence of noise, the bound on

the estimation error is altered. In [1], it is shown that

the state estimation error contains one term (related to the

modeling uncertainty) proportional to the observer parameter

ε and another containing the noise inversely proportional to

εn−1, where n is the observer dimension. A bound on the

differentiation error was also estimated in [2]. The effect

of measurement noise on the system states and control was

briefly considered in a motivating example found in [3].

Thus, it has been shown that noise can have a large impact on

the state estimation and control. Yet, simulation studies have

suggested that the effect of the measurement noise on the

tracking error is significantly less than the effect manifested

in the estimation error.

Given the complexity of nonlinear systems and the viabil-

ity of transfer functions as an analysis tool in linear systems,

the purpose of this note is to investigate the aforementioned

phenomenon from a linear systems perspective. In order

to explicitly show the importance and prevalence of this

topic, Section II begins the discussion with a nonlinear

example. Section III derives the transfer functions relevant

to unveiling the effect that measurement noise has on the

tracking performance. Ultimately, the tracking error is shown

to be uniformly bounded in the observer parameter ε.
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II. A NONLINEAR MOTIVATION

Consider the example found in [4]

ẋ1 = x2 (1)

ẋ2 = x3

2
+ u (2)

y = x1 + v (3)

where the xi’s are the the system states, y the output,

u the control, and v the measurement noise. The control

objective is to have the state x1 track a sinusoid with an

amplitude of 0.1 and a frequency of 0.3 rad/s. Using standard

feedback linearization techniques, the controller is chosen as

u = −x̂3

2
− (x̂1 − r) − (x̂2 − ṙ) + r̈. In order to prevent

peaking in the plant during the transient period, the controller

is saturated outside [-1, 1]. The estimates for the output

feedback controller are obtained from the high-gain observer

defined as

˙̂x1 = x̂2 +
2

ε
(y − x̂1) (4)

˙̂x2 =
1

ε2
(y − x̂1) (5)

where two separate trials are run with ε = 0.001 and

ε = 0.0005. The initial conditions are set at x1(0) = 0.1,

x2(0) = x̂1(0) = x̂2(0) = 0. Note that x1(0) and x̂1(0)
are deliberately chosen to be unequal to induce peaking of

the transient response. The measurement noise v is gener-

ated using the Simulink block “Uniform Random Number”,

where the magnitude is limited to [-0.00011, 0.00011] and

the sampling time is set at 0.00005 seconds.

Fig. 1 shows the steady-state response of the estimation

error x2 − x̂2 for the linear observers. In particular, as the

value of the observer parameter ε is decreased, the magnitude

of the error significantly increases. However, the error in

tracking the reference signal, displayed in Fig. 2, shows no

appreciable change as ε is decreased. In fact, for values of

ε ∈ [0.0005, 0.01], the steady-state response of the tracking

error is restricted to the range [−0.000029, 0.00011]. Hence,

the tracking error is uniformly bounded in ε. The same

phenomenon is exhibited in linear systems with measurement

noise, and will be investigated in the subsequent section.
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(a) Linear Observer Parameter ε = 0.001
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(b) Linear Observer Parameter ε = 0.0005

Fig. 1. Steady-state response of the error (x2 − x̂2) vs. time
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(a) Linear Observer Parameter ε = 0.001
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(b) Linear Observer Parameter ε = 0.0005

Fig. 2. Steady-state response of the tracking error (x1 − r) vs. time

III. LINEAR SYSTEM EXPLORATION

Unlike nonlinear representations, the transfer functions

of a linear system can reveal how the measurement noise

impacts the tracking error. Consider the system

ẋ1 = x2 (6)

ẋ2 = x3 (7)

ẋ3 = a1x1 + a2x2 + a3x3 + bu (8)

y = x1 + v (9)

where the xi’s are the system states, y the output, and u the

control. The variable v is the measurement noise. Tracking

can be achieved by the state feedback controller

u =
1

b
[ − a1x1 − a2x2 − a3x3 +

...
r

− k1(x1 − r) − k2(x2 − ṙ) − k3(x3 − r̈)]
(10)

where the coefficients k1, k2, and k3 are chosen such that

s3 + k3s
2 + k2s + k1 (11)

is Hurwitz. The state estimates for the output feedback

controller are generated with the linear high-gain observer

˙̂x1 = x̂2 +
α1

ε
(y − x̂1) (12)

˙̂x2 = x̂3 +
α2

ε2
(y − x̂1) (13)

˙̂x3 =
α3

ε3
(y − x̂1) (14)

where the αi’s are designed such that

s3 + α1s
2 + α2s + α3 (15)

is Hurwitz. In this discussion the control is not saturated, as

typically employed to avoid peaking in the plant during the

transient response, because tracking performance is exam-

ined during steady-state where the saturation is not active.

The transfer functions from the noise to the tracking errors

can be represented as

E1(s)

V (s)
= H1(s, ε) (16)

E2(s)

V (s)
= H2(s, ε) (17)

E3(s)

V (s)
=

1

ε
H3(s, ε) (18)

where in the time domain e1 = x1 − r, e2 = x2 − ṙ,

and e3 = x3 − r̈. Realize that H1(s, ε), H2(s, ε), and

H3(s, ε) are transfer functions composed from a two-time

scale system. By applying the results of [5], it can be

shown that the H∞-norm of Hi(s, ε) is of O(1). Therefore,

the H∞-norms of (16), (17), and (18) are of O(1), O(1),
and O(1

ε
), respectively. Yet, the estimation error does not

decrease as ε is made smaller [1]. In general, the H∞-norm

for an n-dimensional system can be expressed as
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1

εi−2
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(19)

where 2 < i ≤ n. In essence, the presence of measurement

noise in the system affects the estimation error to a larger

degree than the tracking error.

IV. CONCLUSION

When high-gain observers are employed in the presence

of measurement noise, there exists a trade-off between fast

state reconstruction and a reasonable state estimation error.

However, this sort of compromise does not exist when the

primary interest is in the system tracking error. It was argued

by constructing the system transfer functions from the noise

to the tracking error and its derivatives, that the error and its

first derivative are bounded uniformly in ε. All subsequent

tracking error derivatives are inversely proportional to some

power of ε. Currently, the authors of this note are inves-

tigating the technical challenges behind showing a similar

result for nonlinear systems. One aspect lies in revisiting the

work of [3] to further generalize the results reported on the

effect of measurement noise, by removing the restrictions

pertaining to the existence of all noise derivatives.
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